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We study a model of mass redistribution on a finite graph. We address
the questions of convergence to equilibrium and the rate of convergence. We
present theorems on the distribution of empty sites and the distribution of
mass at a fixed vertex. These distributions are related to random permutations
with certain peak sets.

1. Introduction. We study a model of mass redistribution on a finite graph.
A vertex x of the graph holds mass Mx

t ≥ 0 at time t . When a “meteor hits” x

at time t , the mass Mx
t of the soil present at x is distributed equally among all

neighbors of x (added to their masses). There is no soil (mass) left at x just after
a meteor hit. Meteor hits are modeled as independent Poisson processes, one for
each vertex of the graph.

We will address the following questions about the meteor model. Does the pro-
cess converge to equilibrium? If so, at what rate? Assuming that the mass distri-
bution process is in equilibrium, what is the distribution of “meteor craters” (sites
with zero mass) at a fixed time? In equilibrium, at a fixed time and vertex, what
is the distribution of soil mass? We will answer some of these questions in the
asymptotic sense, for some families of growing graphs.

We will also study an “earthworm model” in which the soil redistribution events
do not occur according to the Poisson arrival process but along the trajectory of a
symmetric random walk on the graph. See Section 7 for the motivation of the
“earthworm” model.

We will now present sources of inspiration, motivation and possible applications
for our main model.

(i) Similar models of mass redistribution appeared in [24], but that paper went
in a completely different direction. It was mostly focused on the limit model when
the graph approximates the real line. Continuous mass redistribution also appeared
in a version of the chip-firing model in [9], but the updating mechanism in that pa-
per is different from ours. Mass redistribution is a part of every sandpile model,
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including a “continuous” version studied in [20]. Sandpile models have consid-
erably different structures and associated questions from ours. Our model is one
of the simplest models for mass redistribution. Therefore, its analysis is likely
to be most complete on the mathematical side—a program that we only start in
this paper. The elementary character of our model makes it amenable to a vari-
ety of mathematical techniques—something that we demonstrate in this article.
Our model can be easily modified and generalized to accommodate the needs of
applied science.

(ii) More on the theoretical side, our model is related to products of random
matrices. Let G be a finite graph with a set of vertices V = {1,2, . . . , n}. Let A

denote the transpose of the transition probability matrix of the nearest neighbor
simple random walk on this graph, and let I be the diagonal (identity) matrix.
For every i = 1,2, . . . , n, let Âi be the matrix obtained from A − I by zeroing
out all but the ith column, and let Ai = I + Âi . Consider this collection of ma-
trices {A1, . . . ,An}. Suppose we generate a sequence of i.i.d. random variables
{I1, I2, . . .} with the uniform distribution in V and consider the sequence of prod-
ucts of i.i.d. matrices AInAIn−1 · · ·AI2AI1 . It is easy to see that Mx

t is the xth co-
ordinate of the product of a finite sequence of matrices AIj

right-multiplied with
the column vector Mx

0 . Does the product AInAIn−1 · · ·AI2AI1 have a limit in some
sense as n tends to infinity? Products of i.i.d. random matrices have been an old
and fascinating subject (see [16, 21]), and several conditions are known for con-
vergence of distributions of the products. There are also a number of theorems on
the limit distribution. However, the particular class of products considered here is
just beyond the assumptions under which general results are known to hold. Most
of the entries in any Ai are zero, violating assumptions in [21], equation (3.1), and
these matrices are not strong contractions in the sense of [16], Theorem 1.1. How-
ever, as we will show, the additional graph structure in the background determines
the limit and the rate of convergence of the products AInAIn−1 · · ·AI2AI1 .

(iii) A more recent line of investigation related to our work is on Markov chains
on the space of partitions; see [13, 14]. One of the important considerations in this
regard is the product of i.i.d. picks from a probability measure on the space of finite
probability transition matrices. That is, S1, S2, . . . are i.i.d. stochastic matrices, and
one is interested in the backward product S1S2 · · ·Sm. The knowledge of this limit
determines the behavior of a corresponding Markov chain on the space of finite
partitions of N; see [13], equation (5) and Theorem 1.2. The transpose of each Ai

is a stochastic matrix. If we define Si = A′
i , then S1S2 · · ·Sm is the transpose of

Am · · ·A2A1. Hence, the limits described in this work give explicit information
about certain Markov chains on the space of partitions.

In the title of this paper, WIMPs stands for “weakly interacting mathematical
particles.” It turns out that one of the main technical tools in this paper is a pair
of “weakly interacting” continuous time symmetric random walks on the graph. If
the two random walks are at different vertices, they move independently. However,
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if they are at the same vertex, their next jumps occur at the same time, after an
exponential waiting time, common to both processes. The dependence ends here—
the two processes jump to vertices chosen independently, even though they jump
at the same time. Heuristically, one expects WIMPs to behave very much like
independent continuous time random walks. Showing this is the heart of a number
of arguments but it proves to be harder than one would expect. In other cases, the
slight dependence manifests itself clearly and generates phenomena that otherwise
would be trivial. WIMPs played an important role in [19].

The rest of the paper is organized as follows. Section 2 contains rigorous defini-
tions of the meteor process and WIMPs. Section 3 is devoted to basic properties of
the meteor process and convergence to equilibrium. We present three theorems on
convergence. The first one is very abstract and does not provide any useful infor-
mation on the rate of convergence. The second one provides a rate of convergence,
but since it applies to all meteor processes, it is not optimal in specific examples.
The third theorem is limited to tori and gives a sharp estimate for the convergence
rate. Section 4 is devoted to the distribution of craters in circular graphs and is the
most combinatorial of all the sections—it is partly based on results from [3]. We
address several questions about craters. The first one is concerned with the prob-
ability of a given pattern of craters. The second question is about fluctuations of
the numbers of patterns around the mean. We do not provide a standard large de-
viations result, but we prove a theorem on the most likely configuration of craters
assuming that there are very few of them. Section 5 presents results on the mass
distribution at a single vertex or a family of vertices, in case of circular graphs.
Section 6 contains theorems on the mass distribution for noncircular graphs. The
first result is a bound for the variance for a large class of graphs. The second result
is a completely explicit limiting distribution at a vertex, for the complete graphs,
when the size of the graph grows to infinity. Finally, Section 7 contains the proof
of the claim that the earthworm distributes mass in a torus more or less evenly, on
a large scale.

2. Preliminaries. The following setup and notation will be used in most of
the paper. All constants will be assumed to be strictly positive, finite, real numbers,
unless stated otherwise. The notation |S| will be used for the cardinality of a finite
set, S.

We will consider only finite connected graphs with no loops and no multiple
edges. We will often denote the chosen graph by G and its vertex set by V . In
particular, we often use k for |V |. We let dv stand for the degree of a vertex v, and
write v ↔ x if vertices v and x are connected by an edge.

We will write Ck to denote the circular graph with k vertices, k ≥ 2. In other
words, the vertex set of Ck is {1,2, . . . , k}, and the only pairs of vertices joined
by edges are of the form (j, j + 1) for j = 1,2, . . . , k − 1, and (k,1). For Ck , all
arguments will apply “mod k.” For example, we will refer to k as a vertex “to the
left of 1,” and interpret j − 1 as k in the case when j = 1.
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Every vertex v is associated with a Poisson process Nv representing “arrival
times of meteors” with intensity 1. We assume that processes Nv are jointly inde-
pendent. A vertex v holds some “soil” with mass equal to Mv

t ≥ 0 at time t ≥ 0.
The processes Mv evolve according to the following scheme.

We assume that Mv
0 ∈ [0,∞) for every v, a.s. At the time t of a jump of Nv ,

Mv jumps to 0. At the same time, the mass Mv
t− is “distributed” equally among

all adjacent sites, that is, for every vertex x ↔ v, the process Mx increases by
Mv

t−/dv ; more formally, Mx
t = Mx

t− + Mv
t−/dv . The mass Mv will change only

when Nv jumps and just prior to that time there is positive mass at v, or Nx jumps
for some x ↔ v and just prior to that time there is positive mass at x. We will
denote the mass process Mt = {Mv

t , v ∈ V }.
We will now define WIMPs (“weakly interacting mathematical particles”)

which will be used in a number of arguments.

DEFINITION 2.1. We will define several processes on the same probability
space. Suppose that two mass processes M0 and M̃0 are given, and assume that
a = ∑

v∈V Mv
0 = ∑

v∈V M̃v
0 .

For each j ≥ 1, let {Y j
n , n ≥ 0} be a discrete time symmetric random walk

on G with the initial distribution P(Y
j
0 = x) = Mx

0 /a for x ∈ V . Similarly, let

{Ỹ j
n , n ≥ 0}, j ≥ 1, be discrete time symmetric random walks on G with the initial

distribution P(Ỹ
j
0 = x) = M̃x

0 /a for x ∈ V , j ≥ 1. We assume that conditional on

M0 and M̃0, all processes {Y j
n , n ≥ 0}, j ≥ 1 and {Ỹ j

n , n ≥ 0}, j ≥ 1, are inde-
pendent.

Recall Poisson processes Nv defined earlier in this section, and assume that they
are independent of {Y j

n , n ≥ 0}, j ≥ 1 and {Ỹ j
n , n ≥ 0}, j ≥ 1. For every j ≥ 1,

we define a continuous time Markov process {Zj
t , t ≥ 0} by requiring that the

embedded discrete time Markov chain for Zj is Y j and Zj jumps at a time t

if and only if Nv jumps at time t , where v = Z
j
t−. We define {Z̃j

t , t ≥ 0} in an
analogous way, so that the embedded discrete time Markov chain for Z̃j is Ỹ j and
Z̃j jumps at a time t if and only if Nv jumps at time t , where v = Z̃

j
t−. Note that

the jump times of all Zj ’s and Z̃j ’s are defined by the same family of Poisson
processes {Nv}v∈V .

REMARK 2.2. The processes Zj and Z̃j in Definition 2.1 are continuous time
nearest neighbor symmetric random walks on G with exponential holding time
with mean 1.

The joint distribution of (Z1,Z2) is the following. The state space for the pro-
cess (Z1,Z2) is V 2. If (Z1

t ,Z
2
t ) = (x, y) with x �= y, then the process will stay

in this state for an exponential amount of time with mean 1/2, and at the end of
this time interval, one of the two processes (chosen uniformly) will jump to one
of the nearest neighbors (also chosen uniformly). This behavior is the same as that
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of two independent random walks. However, if (Z1
t ,Z

2
t ) = (x, x), then the pair

of processes behave in a way that is different from that of a pair of independent
random walks. Namely, after an exponential waiting time with mean 1 (not 1/2),
both processes will jump at the same time; each one will jump to one of the nearest
neighbors of x chosen uniformly and independently of the direction of the jump of
the other process.

The same remark applies to any pair of processes in the family {Zj , j ≥ 1} ∪
{Z̃j , j ≥ 1}.

3. Basic properties and convergence to equilibrium. It will be convenient
from the technical point of view to postpone the presentation of the most elemen-
tary properties of the meteor process to the end of this section. We will start with
three theorems on convergence to the stationary distribution.

REMARK 3.1. The mass process {Mt , t ≥ 0} is a somewhat unusual stochas-
tic process in that its state space can be split into an uncountable number of disjoint
communicating classes. It is easy to see that, due to the definition of the evolu-
tion of {Mt , t ≥ 0}, for every time t ≥ 0 and every v ∈ V , Mv

t = ∑
x∈V axM

x
0 ,

where ax is a random variable that depends on t and v. Every ax has the form

m
∏

y∈V d
−jy
y for some integers m and jy . In other words, ax take values in the

ring Z[1/e1, . . . ,1/ei], where e1, . . . , ei is a list of all distinct values of degrees
of vertices in V . Therefore, Mv

t ’s take values in the free module over the ring
Z[1/e1, . . . ,1/ei] spanned by {Mv

0 , v ∈ V }.
For example, consider the following two initial distributions. Suppose that

Mv
0 = 1 for all v. Fix some x ∈ V , and let M̃v

0 = 1/π for all v �= x and M̃x
0 =

|V | − (|V | − 1)/π . If {Mt , t ≥ 0} and {M̃t , t ≥ 0} are mass processes with these
initial distributions, then for every t > 0, the distributions of Mt and M̃t will be
mutually singular.

It follows from these observations that proving convergence of {Mt , t ≥ 0} to
the stationary distribution cannot proceed along the most classical lines; see [22]
for the discussion of this technical issue and a solution. We will follow [22] in
spirit although not in all technical details.

THEOREM 3.2. Consider the process {Mt , t ≥ 0} on a graph G. Assume that
|V | = k and

∑
v∈V Mv

0 = k. When t → ∞, the distribution of Mt converges to a
distribution Q on [0, k]k . The distribution Q is the unique stationary distribution
for the process {Mt , t ≥ 0}. In particular, Q is independent of the initial distribu-
tion of M.

PROOF. We will consider a coupling of two copies of the process {Mt , t ≥ 0}.
Suppose that {Mt , t ≥ 0} and {M̃t , t ≥ 0} are driven by the same processes
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{Nv
t , t ≥ 0}v∈V but the distribution of M0 is not necessarily the same as that M̃0.

We do assume that
∑

v∈V Mv
0 = ∑

v∈V M̃v
0 = k.

First we will argue that the total variation distance between the distributions of
Mt and M̃t , that is, Dt := ∑

v∈V |Mv
t − M̃v

t | is a nonincreasing process, a.s. Note
that since G is finite, the number of jumps of Nv’s is finite on every finite time
interval and Dt is constant between any two jump times. Suppose that Nx has a
jump at a time T . Then

DT − DT − = ∑
v∈V

∣∣Mv
T − M̃v

T

∣∣− ∑
v∈V

∣∣Mv
T − − M̃v

T −
∣∣

= −∣∣Mx
T − − M̃x

T −
∣∣+ ∑

v↔x

(∣∣Mv
T − M̃v

T

∣∣− ∣∣Mv
T − − M̃v

T −
∣∣)

= −∣∣Mx
T − − M̃x

T −
∣∣

+ ∑
v↔x

(∣∣∣∣(Mv
T − − M̃v

T −
)+ Mx

T − − M̃x
T −

dx

∣∣∣∣− ∣∣Mv
T − − M̃v

T −
∣∣)

≤ −∣∣Mx
T − − M̃x

T −
∣∣

+ ∑
v↔x

(∣∣Mv
T − − M̃v

T −
∣∣+ ∣∣∣∣Mx

T − − M̃x
T −

dx

∣∣∣∣− ∣∣Mv
T − − M̃v

T −
∣∣)

= −∣∣Mx
T − − M̃x

T −
∣∣+ ∑

v↔x

∣∣∣∣Mx
T − − M̃x

T −
dx

∣∣∣∣ = 0.

This shows that Dt is nonincreasing.
Recall that G is connected, and fix some vertex y. Let (x1, x2, . . . , xn) be a

sequence of vertices of G such that xj ↔ xj+1 for 1 ≤ j ≤ n − 1, xn ↔ y and
{x1, x2, . . . , xn} = G \ {y}. The vertices’ xj ’s are not necessarily distinct. Recall
that |V | = k. Let d = maxx∈V dx . Let a = maxv �=y Mv

0 , b = ∑
v �=y Mv

0 , and note
that a ≥ b/(k − 1). Suppose that the first n meteors hit vertices x1, x2, . . . , xn, in
this order. During this process, at least 1/dth part of the mass from any vertex xj ,
j < n, is pushed to xj+1, and at least 1/dth part of the mass at xn is pushed to y.
Let m be the smallest integer with the property that M

xm

0 = a. Then at least ad−1

of mass will be pushed from xm to xm+1. This implies that least ad−2 of mass
will be pushed from xm+1 to xm+2. By induction, at least ad−j of mass will be
pushed from xm+j−1 to xm+j . Hence, at least ad−n of mass will be added to y. In
other words, the mass outside y will be reduced at least by ad−n ≥ bd−n/(k − 1).
Putting it in a different way, the mass outside y will be reduced at least by the
factor of 1 − d−n/(k − 1).

Consider an arbitrarily small ε > 0, and let m be so large that (1 − d−n/(k −
1))mk ≤ ε. If the first nm meteors hit vertices

x1, x2, . . . , xn, x1, x2, . . . , xn, . . . , x1, x2, . . . , xn︸ ︷︷ ︸
m times

,
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in this order, then the mass outside y will be reduced to at most (1 − d−n/(k −
1))mk ≤ ε. Sooner or later, with probability 1, there will be a sequence of nm

meteor hits described above, and then the mass outside y will be less than ε. Hence
the mass at y will be between k−ε and k at the end of this sequence of meteor hits.
Note that the argument applies equally to {Mt , t ≥ 0} and {M̃t , t ≥ 0}. Hence, at
the end of this sequence of nm hits, the function D will be at most 2ε. Since Dt is
nonincreasing, we see that Dt converges to 0, a.s.

For every t , the distribution of Mt is a measure on [0, k]k , a compact set, so the
family of distributions of Mt , t ≥ 0, is tight. Therefore, there exists a sequence tn
converging to ∞ such that the distributions of Mtn converge to a distribution Q

on [0, k]k , as n → ∞.
Let d denote the Prokhorov distance (see [4], page 238) between probability

measures on [0, k]k , and recall that convergence in the metric d is equivalent to the
weak convergence of measures. By abuse of notation, we will use the same symbol
for the Prokhorov distance between probability measures on [0, k]k and R. We will
also apply d to random variables, with the understanding that it applies to their
distributions. Let 0 denote the probability distribution on R concentrated at 0. It is
easy to see that for every δ > 0 there exists α(δ) > 0 such that if d(Dt ,0) ≤ α(δ)

then d(Mt ,M̃t ) ≤ δ.
The bounds in our argument showing convergence of Dt to 0 do not depend on

M0 or M̃0 so there exists a deterministic function ρ : [0,∞) → [0,∞) such that
limt→∞ ρ(t) = 0 and d(Dt ,0) ≤ ρ(t) for any M0 any M̃0.

Suppose that there exists a sequence sn converging to ∞ such that the distribu-
tions of Msn converge to a distribution Q′ on [0, k]k , as n → ∞, and Q′ �= Q. Let
δ = d(Q,Q′)/2 > 0.

Find u0 so large that ρ(t) < α(δ) for t ≥ u0. Let tn and sm be such that
u0 < tn < sm, d(Mtn,Q) ≤ δ/4 and d(Msm,Q′) ≤ δ/4. Let M̃0 = Msm−tn . Then
d(M̃tn,Q

′) ≤ δ/4. Since tn > u0, we have ρ(tn) < α(δ), so d(Dtn,0) ≤ α(δ) and,
therefore, d(Mtn ,M̃tn) ≤ δ. By the triangle inequality,

d
(
Q,Q′) ≤ d(Mtn,Q) + d

(
M̃tn ,Q

′)+ d(Mtn ,M̃tn)

≤ δ/4 + δ/4 + δ = 3δ/2.

This contradicts the fact that d(Q,Q′) = 2δ and shows that Mt converges in dis-
tribution to Q, as t → ∞. The fact that Dt converges to 0 shows that Q does not
depend on the distribution of M0.

Next we will show that the distribution Q is stationary. It is routine to show
that for every η > 0 there exists β(η) > 0 such that for any distributions Q and Q′
on [0, k]k with d(Q′,Q′′) ≤ β(η), one can construct M0 and M̃0 on the same
probability space so that the distribution of M0 is Q′, the distribution of M̃0
is Q′′, and d(D0,0) ≤ η.

Consider an arbitrarily small δ > 0. Let the distribution of M0 be Q and find u1
so large that d(Mt ,Q) ≤ β(α(δ/2)) ∧ δ/2 for all t ≥ u1. Then we can construct
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M0 and M̃0 on the same probability space so that the distribution of M0 is Q,
the distribution of M̃0 is the same as that of Mu1 , and d(D0,0) ≤ α(δ/2). Then
d(Dt ,0) ≤ α(δ/2) for all t ≥ 0 and, therefore, we have d(Mt ,M̃t ) ≤ δ/2 for any
t ≥ 0. Note that d(M̃t ,Q) ≤ δ/2 for all t ≥ 0 because d(Mt ,Q) ≤ δ/2 for all
t ≥ u1. We obtain for t ≥ 0,

d(Mt ,Q) ≤ d(M̃t ,Q) + d(Mt ,M̃t ) ≤ δ/2 + δ/2 = δ.

Since δ > 0 is arbitrarily small, Q is stationary. �

REMARK 3.3. In view of Theorem 3.2 and its proof, it is easy to see that there
exists a stationary version of the process Mt on the whole real line; that is, there
exists a process {Mt , t ∈ R}, such that the distribution of Mt is the stationary
measure Q for each t ∈ R. Moreover, one can construct independent Poisson pro-
cesses {Nv

t , t ∈ R}, v ∈ V , on the same probability space, such that {Mt , t ∈ R}
jumps according to the algorithm described in Section 2, relative to these Poisson
processes. We set Nv

0 = 0 for all v for definiteness.

The next theorem is the only result in our paper that is proved in a context more
general than that in Section 2. Consider a graph, and let P = (pxy)x,y∈V be the
probability transition matrix for a Markov chain on V . In this model, if a meteor
hits site x, then the mass is distributed to other vertices in proportion to pxy , not
necessarily in equal proportions to all neighbors. We remark parenthetically that,
by convention, we place an edge between two vertices x and y of G if and only if
pxy + pyx > 0.

THEOREM 3.4. Consider a graph G, and suppose that Ut and Ũt are inde-
pendent continuous time Markov chains with mean 1 exponential holding times at
every vertex and the transition rates for the embedded discrete time Markov chains
given by P. Let

τU = inf{t ≥ 0 :Ut = Ũt },
(3.1)

α(t) = sup
x,y∈V

P(τU > t |U0 = x, Ũ0 = y).

Consider any (possibly random) distributions of mass M0 and M̃0; that is, assume
that Mx

0 ≥ 0 and M̃x
0 ≥ 0 for all x ∈ V and

∑
x∈V Mx

0 = ∑
x∈V M̃x

0 = |V |, a.s. One
can define mass processes Mt and M̃t on a common probability space so that for
all t ≥ 0,

E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣) ≤ |V |α(t).(3.2)
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REMARK 3.5. In the notation of Theorem 3.4, let Tx = inf{t ≥ 0 :Ut = x}.
According to [2], Proposition 1, if P represents a reversible Markov chain, then

sup
x,y∈V

E(τU |U0 = x, Ũ0 = y) ≤ c sup
x,y∈V

E(Tx |U0 = y).

For an arbitrary Markov chain, Conjecture 1 in [2] states that

sup
x,y∈V

E(τU |U0 = x, Ũ0 = y) ≤ c|V | sup
x,y∈V

E(Tx |U0 = y).

The conjecture remains open at this time, as far as we know.

PROOF OF THEOREM 3.4. Suppose that Z and Z̃ are constructed as Z1 and Z̃1

in Definition 2.1, except that {Y 1
n , n ≥ 0} and {Ỹ 1

n , n ≥ 0} are discrete time Markov
chains with the transition probability matrix P. The initial distributions are given
by P(Y0 = x) = Mx

0 /|V | and P(Ỹ0 = x) = M̃x
0 /|V | for x ∈ V . Let

τ = inf{t ≥ 0 :Zt = Z̃t },

Ẑt =
{

Z̃t , for t ≤ τ ,

Zt, for t > τ .

The distribution of {Ẑt , t ≥ 0} is the same as that of {Z̃t , t ≥ 0}.
Let {Z∗

t , t ≥ 0} have the same distribution as {Z̃t , t ≥ 0} and be independent of
{Zt, t ≥ 0}, given M0 and M̃0. Let τ∗ = inf{t ≥ 0 :Zt = Z∗

t }. Since the Poisson
processes Nm are independent from one another, it follows easily that the distribu-
tions of {

τ,
{
Zt, t ∈ [0, τ ]}, {Z̃t , t ∈ [0, τ ]}}

and {
τ∗,

{
Zt, t ∈ [0, τ∗]}, {Z∗

t , t ∈ [0, τ∗]}}
are identical. Thus τ and τ∗ have the same distributions, and therefore, (3.1) im-
plies that P(τ > t) ≤ α(t).

Let Gt = σ(Ms,M̃s,0 ≤ s ≤ t), and note that Gt = σ(M0,M̃0,N
v
s ,0 ≤ s ≤

t, v ∈ V ). The process Z is “coupled” with the processes Nv which determine the
motion of mass. This easily implies that for all x and t ,

P(Zt = x|Gt ) = Mx
t /|V |.(3.3)

It is easy to see that the distributions of{{
Nv

s , s ∈ [0, t]}v∈V ,
{
Z̃s, s ∈ [0, t]}}

and {{
Nv

s , s ∈ [0, t]}v∈V ,
{
Ẑs, s ∈ [0, t]}}
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are the same, so we obtain the following formula, analogous to (3.3),

P(Z̃t = x|Gt ) = P(Ẑt = x|Gt ) = M̃x
t /|V |.

It follows that

E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣) = |V |E
(∑

x∈V

∣∣P(Zt = x|Gt ) − P(Ẑt = x|Gt )
∣∣)

= |V |E
(∑

x∈V

∣∣E(1{Zt=x} − 1{Ẑt=x}|Gt )
∣∣)

≤ |V |E
(∑

x∈V

E
(|1{Zt=x} − 1{Ẑt=x}||Gt

))
= |V |EE(1{Zt �=Ẑt }|Gt )

= |V |EP(τ > t |Gt ) ≤ |V |α(t).

This completes the proof. �

THEOREM 3.6. Consider the meteor process on a graph G = Cd
n (the product

of d copies of the cycle Cn). Consider any distributions (possibly random) of mass
M0 and M̃0; that is, assume that Mx

0 ≥ 0 and M̃x
0 ≥ 0 for all x ∈ V and

∑
x Mx

0 =∑
x M̃x

0 = |V | = nd , a.s. There exist constants c1, c2 and c3, not depending on
n and d , such that if n ≥ 1 ∨ c1

√
d logd and t ≥ c2dn2, then one can define a

coupling of processes Mt and M̃t on a common probability space so that

E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣) ≤ exp
(−c3t/

(
dn2))|V |.(3.4)

PROOF. Step 1. In this step, we will show that there exist constants c1, c2 ∈
(0,∞) and c4 < 2, not depending on n and d , such that if n ≥ 1 ∨ c1

√
d logd and

t ≥ c2dn2, and the processes Mt and M̃t are independent, then

E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣) ≤ c4|V |.(3.5)

Let Z and Z̃ be defined as Z1 and Z2 in Definition 2.1. In particular, P(Z0 =
x) = P(Z̃0 = x) = Mx

0 /|V | for x ∈ V .
Let Z∗

t = Zt − Z̃t , and note that Z∗ is a continuous time Markov process on V ,
with the mean holding time equal to 1/2 at all vertices x �= 0 := (0, . . . ,0). Re-
call that if (Zt , Z̃t ) = (x, x), then after an exponential waiting time with mean 1
(not 1/2), both processes will jump at the same time. They will jump to one of
the neighbors of x (the same for both processes) with probability 1/(2d). Hence,
this jump of (Z, Z̃) will not correspond to a jump of Z∗. It follows that the mean
holding time for Z∗ at 0 is β := (1−1/(2d))−1. Note that if Z∗

t = 0, the next jump
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it will take will be to a vertex at the distance 2 from 0. If Z∗
t �= 0, then the next

jump will be to a neighbor of Z∗
t .

Let Z1
t be a continuous time symmetric nearest neighbor random walk on V ,

with the mean holding time equal to 1/2 at all vertices x �= 0, and mean holding
time at 0 equal to β . The only difference between Z1 and Z∗ is that Z1 can jump
from 0 only to a nearest neighbor while Z∗ can jump from 0 to some other vertices.

We will construct a coupling of Z∗ and Z1 such that Z1
0 = Z∗

0 and, a.s.,{
t ≥ 0 :Z∗

t = 0
} ⊂ {

t ≥ 0 :Z1
t = 0

}
.(3.6)

We let Z1
t = Z∗

t for all t less than the time S1 of the first jump out of 0. At the
time S1, we let processes Z1 and Z∗ make independent jumps, each one according
to its own jump distribution.

Let TZ1(0) = inf{t ≥ 0 :Z1
t = 0}, and let TZ∗(0) have the analogous meaning.

Suppose that x, y ∈ V , x ↔ 0 and y � 0. Then for every t ≥ 0,

P
x(TZ1(0) > t

) ≤ P
y(TZ∗(0) > t

)
because Z∗ has to pass a neighbor of 0 on its way to 0. Now standard coupling
arguments show that we can construct Z1 after S1 in such a way that it hits 0 at
the same time or earlier than the hitting time of 0 by Z∗. Let S2 be the first hitting
time of 0 by Z1 after time S1. We will consider several cases:

(a) Suppose that Z∗
S2

� 0. We let processes Z1 and Z∗ evolve independently

after S2 until the first time S3 such that either Z1
S3

�= 0 or Z∗
S3

↔ 0.

(a1) Suppose that Z1
S3

�= 0. Then Z1
S3

↔ 0 and Z∗
S3

� 0. Hence, we can couple Z1

and Z∗ after time S3 in such a way that Z1 will hit 0 before Z∗ does. At the
time when Z1 hits 0, we are back in the case represented by the time S2.

(a2) Suppose that Z∗
S3

↔ 0. Then Z1
S3

= 0. We continue the construction of the
processes after S3 as in case (b) described below.

(b) Suppose that Z∗
S2

↔ 0. We let processes Z1 and Z∗ evolve independently

after S2 until the first time S4 such that either Z1 or Z∗ jumps.

(b1) If Z∗ jumps at time S4 and Z∗
S4

� 0, then we are back in the case analogous
to (a).

(b2) If Z∗ jumps at time S4 and Z∗
S4

= 0, then we continue in the same way as
after time 0.

(b3) If Z1 jumps at time S4, then Z∗
S4

↔ 0 and Z1
S4

↔ 0. Then we couple Z1 and
Z∗ after S4 so that they hit 0 at the same time. We continue after this time in
the same way as after time 0.

(c) Suppose that Z∗
S2

= 0. Then we continue after this time in the same way as
after time 0.
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The construction of Z1 can be continued by induction. This completes the ar-
gument justifying the existence of a coupling of Z1 and Z∗ such that Z1 is at 0
whenever Z∗ is at this point.

It is elementary to check that for some c3 and all d , n ≥ 2, j ≥ c3dn2 and x ∈ V ,
we have

n−d/2 ≤ P(Yj ∈ x) ≤ 2n−d .(3.7)

Let N∗ be a Poisson process with the mean time between jumps equal to β . It
is easy to see that there exists c4 > 0 such that for t ≥ 2βc3dn2,

P
(
N∗

t ≤ c3dn2) ≤ e−c4n
2
.(3.8)

Let Ñt be the number of jumps made by Z1 by the time t , and note that Ñ is
stochastically minorized by N∗. By (3.6), (3.7) and (3.8), there are c5 and c6 such
that for n ≥ c5

√
d logd and t ≥ 2βc3dn2,

P
(
Z∗

t = 0
) ≤ P

(
Z1

t = 0
)

=
∞∑

j=0

P
(
Z1

t = 0|Ñt = j
)
P(Ñt = j)

≤ P
(
Ñt ≤ c3dn2)+ ∑

j>c3dn2

P
(
Z1

t = 0|Ñt = j
)
P(Ñt = j)

(3.9)
≤ P

(
N∗

t ≤ c3dn2)+ ∑
j>c3dn2

2n−d
P(Ñt = j)

≤ e−c4n
2 + 2n−d

≤ c6n
−d .

From now on, we will assume that n ≥ c5
√

d logd and t ≥ 2βc3dn2.
Let N̂t be the number of jumps made by Z by the time t and note N̂ is stochas-

tically minorized by N∗. By (3.7)–(3.8), for x ∈ V ,

P(Zt = x) =
∞∑

j=0

P(Zt = x|N̂t = j)P(N̂t = j)

≥ ∑
j>c3dn2

P(Zt = x|N̂t = j)P(N̂t = j)

≥ ∑
j>c3dn2

(
n−d/2

)
P(N̂t = j)

(3.10)
≥ (

n−d/2
)
P
(
N̂t > c3dn2)

≥ (
n−d/2

)
P
(
N∗

t > c3dn2)
≥ c7n

−d .
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It follows from (3.9) that P(Zt − Z̃t = 0) = P(Z∗
t = 0) ≤ c6n

−d , so for fixed t

and n, there must exist V1 ⊂ V with |V1| ≥ nd/2, such that for all x ∈ V1,

P(Zt = Z̃t = x) ≤ 2c6n
−2d .(3.11)

Let Gt = σ(Ms,0 ≤ s ≤ t). It follows easily from the definition of Z that for
x ∈ V ,

P(Zt = x|Gt ) = Mx
t /nd

and, by (3.10),

EMx
t = nd

EP(Zt = x|Gt ) = nd
P(Zt = x) ≥ c7.(3.12)

The random variables Zt and Z̃t are conditionally independent given Gt , so for
x ∈ V ,

P(Zt = Z̃t = x|Gt ) = (
Mx

t /nd)2
.

Thus, by (3.11), for x ∈ V1,

E
(
Mx

t

)2 = n2d
EP(Zt = Z̃t = x|Gt ) = n2d

P(Zt = Z̃t = x) ≤ 2c6.

Let c8 = √
2c6. We have for j ≥ 1, x ∈ V1,

P
(
2j c8 ≤ Mx

t ≤ 2j+1c8
) ≤ 2−2j c−2

8 E
(
Mx

t

)2 ≤ 2−2j .

Let j1 be such that
∑

j≥j1
2−j+1c8 ≤ c7/2. Then, by (3.12) and the last estimate,

c7 ≤ EMx
t

≤ (c7/4)P
(
0 < Mx

t ≤ c7/4
)+ 2j1+1c8P

(
c7/4 ≤ Mx

t ≤ 2j1+1c8
)

+ ∑
j≥j1

2j+1c8P
(
2j c8 ≤ Mx

t ≤ 2j+1c8
)

≤ c7/4 + 2j1+1c8P
(
c7/4 ≤ Mx

t ≤ 2j1+1c8
)+ ∑

j≥j1

2j+1c82−2j

≤ c7/4 + 2j1+1c8P
(
c7/4 ≤ Mx

t ≤ 2j1+1c8
)+ c7/2,

and, therefore, for x ∈ V1,

P
(
c7/4 ≤ Mx

t ≤ 2j1+1c8
) ≥ c7c

−1
8 2−j1−3.

Let c9 = c7c
−1
8 2−j1−3. Assume that M and M̃ are independent. Then, for x ∈ V1,

P
(
Mx

t ≥ c7/4, M̃x
t ≥ c7/4

) ≥ c2
9.(3.13)

Let K be the number of x such that Mx
t ≥ c7/4 and M̃x

t ≥ c7/4. Then∑
x∈V

∣∣Mx
t − M̃x

t

∣∣ ≤ ∑
x∈V

Mx
t + ∑

x∈V

M̃x
t − Kc7/4 = 2nd − Kc7/4.
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Recall that |V1| ≥ nd/2. By (3.13),

E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣) ≤ 2nd − (
nd/2

)
c2

9c7/4.

This completes the proof of (3.5).
Step 2. In this step, we will show that (3.5) holds (with a different constant)

even if Mt and M̃t are not independent. More precisely, we will argue that there
exist constants c1, c2 ∈ (0,∞) and c10 < 2, not depending on G, such that if n ≥
1 ∨ c1

√
d logd and t ≥ c2dn2, then for some coupling of Mt and M̃t ,

E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣) ≤ c10|V |.(3.14)

We will employ several families of WIMPs. Let {Zj
t , t ≥ 0}j≥1 and {Z̃j

t , t ≥
0}j≥1 be as in Definition 2.1. In particular, the jump times of all Zj ’s and Z̃j ’s are
defined by the same family of Poisson processes {Nv}v∈V . Let Mt and M̃t denote
the mass processes corresponding to {Nv}v∈V .

Let {Xj
t , t ≥ 0}j≥1 be jointly distributed as {Zj

t , t ≥ 0}j≥1. Similarly, let

{X̃j
t , t ≥ 0}j≥1 be jointly distributed as {Z̃j

t , t ≥ 0}j≥1. However, we make the

family {Xj
t , t ≥ 0}j≥1 independent of {X̃j

t , t ≥ 0}j≥1. Let {Rt , t ≥ 0} have the
same distribution as {Mt , t ≥ 0}, and assume that Rt is driven by the same fam-
ily of Poisson processes as {Xj

t , t ≥ 0}j≥1. By analogy, let {R̃t , t ≥ 0} have the
same distribution as {M̃t , t ≥ 0}, and assume that R̃t is driven by the same fam-
ily of Poisson processes as {X̃j

t , t ≥ 0}j≥1. The processes Rt = {Rx
t }x∈V and

R̃t = {R̃x
t }x∈V are independent.

Fix some t > 0 and integer m > 0. We find a maximal matching between (some)
Xj ’s and (some) X̃j ’s; that is, we find an asymmetric relation ∼ (a subset of

{1,2, . . . ,m}2) such that i ∼ j only if Xi
t = X̃

j
t . Moreover i ∼ j1 and i ∼ j2 im-

plies j1 = j2 and, similarly, i1 ∼ j and i2 ∼ j implies i1 = i2. Among all such re-
lations ∼ we choose one of those that have the greatest number of matched pairs.
Note that for every x ∈ V , either all i with Xi

t = x are matched with some j , or

all j with X̃
j
t = x are matched with some i (or both). Recall that ∼ depends on m

and let rm be the (random) number of matched pairs.
By the law of large numbers, a.s., for x ∈ V ,

lim
m→∞

1

m

m∑
j=1

1{Xj
t =x} = Rx

t /|V |, lim
m→∞

1

m

m∑
j=1

1{X̃j
t =x} = R̃x

t /|V |.

This implies that

lim
m→∞

(
1

m

m∑
j=1

1{Xj
t =x} − 1

m

m∑
j=1

1{X̃j
t =x}

)
= 1

|V |
(
Rx

t − R̃x
t

)
,
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and, a.s.,

lim
m→∞

(
1

m
(2m − rm)

)
= 1

|V |
∑
x∈V

∣∣Rx
t − R̃x

t

∣∣.(3.15)

Hence, a.s.,

1

|V |
∑
x∈V

∣∣Rx
t − R̃x

t

∣∣ = 2 − lim
m→∞

rm

m
.(3.16)

Next we define a new relation ≈ (a subset of {1,2, . . . ,m}2). Recall that t > 0
and m > 0 are fixed. We will construct ≈ by adding pairs to this relation in a
dynamic way. We start by letting i ≈ j if i ∼ j at time 0. Informally speaking, we
match Xi

0 and X̃
j
0 if they are at the same vertex, and we try to match as many pairs

as possible at the initial time. We wait until the first time s1 > 0 when there exist
i1 and j1 such that i1 �≈ j for all j , i �≈ j1 for all i, and X

i1
s1 = X̃

j1
s1 . We add the

pair (i1, j1) to the relation ≈. We proceed by induction. Given sk−1, let sk > sk−1
be the first time when there exist ik and jk such that ik �≈ j for all j , i �≈ jk for

all i (at times between sk−1 and sk), and X
ik
sk = X̃

jk
sk . We add the pair (ik, jk) to the

relation ≈. We proceed in this way until time t . Let r∗
m be the number of matched

pairs at time t .
We will find a lower bound for r∗

m in terms of rm. Suppose that i1 ∼ j1. This

implies that X
i1
t = X̃

j1
t . Hence it is possible that i1 ≈ j1. In this case, a pair (i1, j1)

that is in relation ∼ is also in relation ≈.
If i1 �≈ j1, then it must be the case that in the construction of the relation ≈,

either Xi1 was matched with some X̃j−
1 before time t , or X̃j1 was matched with

some Xi+1 before time t , or both. We will write i ≈̇ j if and only if j ≈ i. Let

i−min ∼ j−
min · · · i−2 ∼ j−

2 ≈̇ i−1 ∼ j−
1 ≈̇ i1 ∼ j1 ≈̇ i+1 ∼ j+

1 ≈̇ i+2 ∼
(3.17)

∼ j+
2 · · · i+max ∼ j+

max

be the maximal chain with the alternating structure that should be clear from the
formula. The chain does not have to end with j+

max; it could end with i+max. A similar
remark applies to the left end of the chain. The minimal ratio of the number of pairs
of integers in the chain which are in relation ≈ to the number of pairs of integers
in the chain which are in relation ∼ is 1/2.

Any two chains of the form given in (3.17) are either identical or disjoint. Recall
that if i1 ∼ j1, then either i1 ≈ j1 or the pair (i1, j1) is an element of a chain as
in (3.17). It follows that

r∗
m ≥ rm/2.(3.18)

Recall that t > 0 is fixed. If i ≈ j , then let σX(i, j) = inf{t ≥ 0 :Xi
t = X̃

j
t }.

Otherwise, let σX(i, j) = t .
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Recall WIMPs {Zj
t , t ≥ 0}j≥1 and {Z̃j

t , t ≥ 0}j≥1. Let a relation � be defined

relative to these WIMPs in exactly the same manner as ≈ was defined for {Xj
t , t ≥

0}j≥1 and {X̃j
t , t ≥ 0}j≥1. In other words, � matches colliding particles of type

Zi with Z̃j as soon as the collisions occur, with the restriction that each particle
is matched with at most one other particle. If i � j , then let σZ(i, j) = inf{t ≥
0 :Zi

t = Z̃
j
t }. Otherwise, let σZ(i, j) = t .

Recall that (i, j) ∈≈ is equivalent to i ≈ j . It is easy to see that the distribution
of the family({(

Xi
s, X̃

j
s

)
,0 ≤ s ≤ σX(i, j)

}
(i,j)∈≈,

{(
Xi

s, X̃
j
s

)
,0 ≤ s ≤ t

}
(i,j) /∈≈

)
is the same as that of({(

Zi
s, Z̃

j
s

)
,0 ≤ s ≤ σZ(i, j)

}
(i,j)∈�,

{(
Zi

s, Z̃
j
s

)
,0 ≤ s ≤ t

}
(i,j) /∈�

)
because the jump times of the processes in each family are determined by inde-
pendent Poisson processes at vertices of the graph. Let rZ

m be the number of pairs
in the relation �. We see that the distributions of rZ

m and r∗
m are identical.

If σZ(i, j) < t , then we let Ẑs = Z̃s for s ∈ [0, σZ(i, j)) and Ẑs = Zs for s ≥
σZ(i, j). Note that the distribution of the family {Ẑj

t , t ≥ 0}j≥1 is the same as that

of the family {Z̃j
t , t ≥ 0}j≥1. If i � j , then Zi

t = Ẑ
j
t . We have

lim
m→∞

(
1

m

(
2m − rZ

m

)) = 1

|V |
∑
x∈V

∣∣Mx
t − M̃x

t

∣∣,
for the same reason that (3.15) holds. Therefore, using (3.5), (3.16), (3.18) and the
equality of the distributions of rZ

m and r∗
m, we obtain for n ≥ 1 ∨ c1

√
d logd and

t ≥ c2dn2,

E

(
1

|V |
∑
x∈V

∣∣Mx
t − M̃x

t

∣∣)(3.19)

= 2 −E

(
lim

m→∞
rZ
m

m

)
(3.20)

≤ 2 −E

(
lim

m→∞
rm

2m

)
= 2 −E

(
lim

m→∞
rm

m

)
+ 1

2
E

(
lim

m→∞
rm

m

)
= E

(
1

|V |
∑
x∈V

∣∣Rx
t − R̃x

t

∣∣)+ 1

2

(
2 −E

(
1

|V |
∑
x∈V

∣∣Rx
t − R̃x

t

∣∣))

= 1 + 1

2
E

(
1

|V |
∑
x∈V

∣∣Rx
t − R̃x

t

∣∣) ≤ 1 + c4/2.
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This proves (3.14).
Step 3. The process Mt is “additive” in the following sense. Suppose that

Mt and M̃t are driven by the same family of Poisson processes Nv . Let
M̂0 = M0 + M̃0, and suppose that M̂t is also driven by the same family of Pois-
son processes Nv . Then M̂t =Mt + M̃t for all t , a.s.

Fix t = c2dn2 and suppose that Mt and M̃t are driven by the same family of
Poisson processes Nv . Let

M+
t = (Mt − M̃t ) ∨ 0,

M̃+
t = (M̃t −Mt ) ∨ 0,

Mc
t = (

Mt −M+
t

) = (
M̃t − M̃+

t

)
.

The process Mc
t represents the maximum matching mass at every site, and pro-

cesses M+
t and M̃+

t represent the excesses of Mt and M̃t (if any) above the
common mass. Suppose that all these processes are driven by the same family of
Poisson processes Nv after time t . Then for every s ≥ t ,

Ms = Mc
s +M+

s , M̃s = Mc
s + M̃+

s .

By the Markov property applied at time t = c2dn2 and (3.14) applied to
M+

s and M̃+
s , we obtain for s ≥ 2c2dn2,

E

(∑
x∈V

∣∣(M+)x
s − (

M̃+)x
s

∣∣|Ft

)
≤ c10

1

2

∑
x∈V

((
M+)x

t + (
M̃+)x

t

)
.

Hence

E

(∑
x∈V

∣∣(M+)x
s − (

M̃+)x
s

∣∣) ≤ (c10/2)E

(∑
x∈V

((
M+)x

t + (
M̃+)x

t

))

= (c10/2)E

(∑
x∈V

∣∣Mx
t − M̃x

t

∣∣)
≤ (c10/2)c10|V |.

An inductive argument applied at times t of the form t = jc2dn2, j ≥ 2, yields for
s ≥ (j + 1)c2dn2,

E

(∑
x∈V

∣∣(M+)x
s − (

M̃+)x
s

∣∣) ≤ (c10/2)j c10|V |.

This implies (3.4) and completes the proof. �

REMARK 3.7. (i) Let ‖ · ‖TV denote the total variation distance, and let the
mixing time for the random walk on G be defined by

T = inf
{
t ≥ 0 : sup

μ
‖μPt − π‖TV ≤ 1/4

}
,



1746 BILLEY, BURDZY, PAL AND SAGAN

where π stands for the stationary distribution, and Pt denotes the transition kernel.
See [28], Chapter 4, for these definitions and various results on mixing times.

Consider the graph Cd
n for some n,d ≥ 3. For this graph, α(t) defined in (3.1)

is equal to 1/2 for t of order nd . Theorem 3.6 shows that the left-hand side of (3.4)
is bounded by nd/2 for t of order n2, thus greatly improving (3.2) in the case
G = Cd

n . Since the mixing time for random walk on Cd
n is of the order n2, the

bound in Theorem 3.6 cannot be improved in a substantial way. Recall P defined
before Theorem 3.4.

CONJECTURE. The mixing time for the random walk corresponding to P
should give the optimal bound in (3.2).

A support to our conjecture is lent by the recent proof (see [8]) of the “Aldous
spectral gap conjecture,” saying that the “interchange process” and the correspond-
ing random walk have the same spectral gap.

(ii) The proof of Theorem 3.6 depends on the assumption that G = Cd
n only at

one point, namely, the estimate

P(Zt = Z̃t = x|Zt = y, Z̃0 = z)
(3.21)

≤ c0P(Zt = x|Zt = y)P(Z̃t = x|Z̃0 = z)

is derived using properties of Cd
n in an essential way. In other words, if a similar

estimate can be obtained for some other family of graphs, the proof of the theo-
rem would apply in that case. It is not hard to construct examples showing that
there is no universal constant c0 such that (3.21) holds for all finite graphs G,
all x, y, z ∈ V and all t > 0. Hence, any generalization of Theorem 3.6 has to be
limited to a subfamily of finite graphs or come with a different proof.

We now present very elementary properties of the meteor process.

PROPOSITION 3.8. Let T v
t denote the time of the last jump of Nv on the inter-

val [0, t], with the convention that T v
t = −1 if there were no jumps on this interval.

Let U(v) = {v} ∪ {x ∈ V :x ↔ v}.
(i) Assume that Mv

0 + Mx
0 > 0 for a pair of adjacent vertices v and x. Then,

almost surely, for all t ≥ 0, Mv
t + Mx

t > 0.
(ii) Let Rt be the number of pairs (x, v) such that x ↔ v and Mv

t + Mx
t = 0.

The process Rt is nonincreasing, a.s.
(iii) Assume that Mx

0 > 0 for x ∈ U(v) \ {v}. Then, a.s., Mv
t = 0 if and only

if one of the following conditions holds: (a) T v
t = max{T x

t :x ∈ U(v)} > −1 or
(b) Mv

0 = 0 and max{T x
t :x ∈ U(v) \ {v}} = −1.

(iv) Suppose that the process {Mt , t ≥ 0} is in the stationary regime, that is,
its distribution at time 0 is the stationary distribution Q. Then Mv

t + Mx
t > 0 for

all t ≥ 0 and all pairs of adjacent vertices v and x, a.s.
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(v) Recall from Remark 3.3 the stationary mass process {Mt , t ∈ R} and the
corresponding Poisson processes {Nv

t , t ∈ R}, v ∈ V . Let T v denote the time of
the last jump of Nv on the interval (−∞,0], and note that T v is well defined for
every v because such a jump exists, a.s. Then, a.s., Mv

0 = 0 if an only if T v =
max{T x :x ∈ U(v)}.

PROOF. (i) Suppose to the contrary that Mv
t + Mx

t = 0 for some x ↔ v and
t > 0. The value of Mv

t + Mx
t can change only when one of the processes Ny ,

y ∈ U1 := U(x) ∪ U(v), has a jump. Note that U1 is a finite set. It follows that
the union of jump times of all processes Ny , y ∈ U1, does not have accumulation
points. Moreover, jumps of different processes Ny in this family never occur at the
same time, a.s. Let T be the infimum of times such that Mv

t +Mx
t = 0. Then Mv

s +
Mx

s > 0 for all s < T and Mv
T − + Mx

T − > 0. Suppose without loss of generality
that Mv

T − > 0. If Nv has a jump at T , then Mx
T > 0, a contradiction. If Ny has

a jump at T for some y ∈ U1, then Nv does not have a jump at T and, therefore,
Mv

T > 0, also a contradiction. We conclude that the assumption that Mv
t +Mx

t = 0
for some x ↔ v and t > 0 is false.

(ii) For x ↔ v, let R
x,v
t be 1 if Mv

t + Mx
t = 0 and 0 otherwise. This process

is nonincreasing, by part (i). Since Rt = ∑
x,v∈V,x↔v R

x,v
t , it follows that Rt is

nonincreasing.
(iii) If Mv

0 = 0 and max{T x
t :x ∈ U(v) \ {v}} = −1, then processes Nx , x ∈

U(v) \ {v}, do not jump on the interval [0, t]. Hence, Mv
s = 0 for all s ∈ [0, t]. In

particular, Mv
t = 0. We will assume that max{T x

t :x ∈ U(v) \ {v}} > −1 in the rest
of the proof.

Suppose that T v
t = max{T x

t :x ∈ U(v)} > −1. Then Mv
T v

t
= 0. Since processes

Nx , x ↔ v, do not have jumps on the interval [T v
t , t], we must have Mv

s = 0 for
all s ∈ [T v

t , t]. Hence, Mv
t = 0.

Suppose that T v
t < max{T x

t :x ∈ U(v)} and let y be such that T
y
t =

max{T x
t :x ∈ U(v)} > −1 and y ↔ v. By part (i), either Mv

T
y
t − > 0 or M

y

T
y
t − > 0

(or both). If Mv
T

y
t − > 0, then Mv

s > 0 for all s ∈ [T y
t , t] because Nv does not

jump on this interval. If M
y

T
y
t − > 0, then Mv

T
y
t

> 0 and, therefore, Mv
s > 0 for all

s ∈ [T y
t , t] because Nv does not jump on this interval. We see that in either case,

Mv
t > 0.
(iv) Since V is finite, there exists a sequence (x1, x2, . . . , xn) of vertices of G

such that xj ↔ xj+1 for 1 ≤ j ≤ n − 1, xn ↔ x1, and the sequence contains all
vertices in V . The vertices xj ’s are not necessarily distinct.

Let Ai be the event that processes Nv , v ∈ V , have 2n jumps in the time in-
terval [i, i + 1), and the jumps occur at the following vertices in the following
order: x1, x2, . . . , xn, x1, x2, . . . , xn. It is easy to see that if Ai occurs, then there
is only one vertex v with Mv

i+1 = 0; specifically, v = xn. Hence if Ai occurs, then
Ri+1 = 0 and, by part (ii), Rt = 0 for t ≥ i + 1. Events Ai are independent and
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have positive probability so the probability of A1 ∪ A2 ∪ · · · ∪ Am is bounded be-
low by 1 − pm for some p < 1. It follows that P(Rm+1 = 0) ≥ 1 − pm for m ≥ 1.
This and stationarity imply that P(R0 = 0) = P(Rm+1 = 0) = 1 for m ≥ 1.

(v) It follows from part (iv) that Mv
0 + Mx

0 > 0 for all pairs of adjacent vertices
v and x, a.s. Hence Mv

k + Mx
k > 0 for all k ∈ Z and, therefore, Mv

t + Mx
t > 0 for

all pairs of adjacent vertices v and x and all t ∈R, a.s. Now we can apply the same
reasoning as in the proof of case (a) in part (iii). �

4. Meteor craters in circular graphs. This section is devoted to meteor pro-
cesses on circular graphs. Recall that Ck denotes the circular graph with k vertices,
k ≥ 2.

We will say that there is a crater at the site j at time t if M
j
t = 0. Craters are

special features of the meteor process for a number of reasons. First, the mass at a
crater has the minimum possible value. Second, we expect that the distribution of
mass M

j
t is a mixture of an atom at 0 and a distribution with a continuous density.

Third, given the distribution of mass Ms at all sites at time s and positions of
all craters at times t ∈ [s, u], we can determine the mass process {Mt , t ∈ [s, u]}.
For these reasons, we find it interesting to study the distribution of craters. An
easy argument (see the proof of Theorem 4.1) shows that the concept of a crater is
essentially equivalent to a peak in a random (uniform) permutation.

The research on peaks and other related permutation statistics, such as valleys,
descents and runs has a very long history. For a review of some related literature,
see the introduction to [12]; the authors trace the beginning of this line of research
to the nineteenth century. However, the research in this area seems to have a num-
ber of separate lines, because the authors of [12] do not cite [10] or [26, 27]. In
view of this disconnected nature of the literature we are not sure whether we were
able to trace all the existing results in the area that are relevant to our paper.

There are (at least) three natural probabilistic questions that have to do with
craters. The first one is concerned with the probability of a given pattern of craters.
This is equivalent, more or less, to the question about the asymptotic frequency of
a given pattern of craters in a very large cyclic graph Ck . We will provide formulas
for two specific crater “patterns” in Theorems 4.1 and 4.2. It is possible that both
results could be derived from [26, 27], but the style of those old papers may be
hard to follow for the modern reader. We will base our proofs on the combinatorial
results in [3]. The results in [3] could be used to derive more advanced theorems
on craters that go beyond the scope of this paper.

The second question is about fluctuations of the number of copies of a pattern.
There are a number of combinatorial versions of the central limit theorem for per-
mutation statistics; see, for example, [10, 12] and references therein. We will state
a theorem that appeared in [5], and we will provide a new short proof based on
classical probabilistic tools and our meteor process.
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Finally, there is a question of large deviations for the crater process. We will not
provide a standard large deviations result, but we will prove a theorem on the most
likely configuration of craters assuming that there are very few of them.

Consider the meteor process on Ck , and assume that
∑k

j=1 M
j
0 = k. For n ≥ 1

and k ≥ n + 4, let Fk
n be the event that Mi

0 > 0 for i = 3,4, . . . , n + 2 and M2
0 =

Mn+3
0 = 0. In other words, Fk

n is the event that 3 is the starting point of a maximal
sequence of vertices which are not craters at time 0 and that sequence has length n.
We let Fk

0 be the event that M2
0 = 0.

For n ≥ 1 and k ≥ n + 3, let F̂ k
n be the event that Mi

0 > 0 for i = 3, . . . , n + 2.
In other words, F̂ k

n is the event that sites 3, . . . , n + 2 are not craters at time 0, but
this sequence does not have to be maximal.

THEOREM 4.1. Consider the meteor process on Ck in the stationary regime;
that is, assume that the distribution of M0 is the stationary measure Q. We have

p0 := P
(
Fk

0
) = 1/3, k ≥ 3,(4.1)

pn := P
(
Fk

n

) = n(n + 3)2n+1

(n + 4)! , n ≥ 1, k ≥ n + 4,(4.2)

p̂n := P
(
F̂ k

n

) = 2n+1

(n + 2)! , n ≥ 1, k ≥ n + 3.(4.3)

PROOF. Recall from Remark 3.3 the stationary mass process {Mt , t ∈ R} and
the corresponding Poisson processes {Nj

t , t ∈ R}, j = 1, . . . , k, defined on the
whole real time-line. As in Proposition 3.8(v), we let T j denote the time of the
last jump of Nj on the interval (−∞,0]. According to Proposition 3.8(v), M

j
0 = 0

if and only if T j−1 < T j > T j+1.
Note that T m �= T j if m �= j , a.s. Let a1 · · ·ak be the random permutation of

{1,2, . . . , k} defined by the condition aj < am if and only if T j < T m, for all j

and m. It is clear that a1 · · ·ak is the uniform random permutation of {1,2, . . . , k}.
We say that j is a peak (of the permutation a1 · · ·ak) if aj−1 < aj > aj+1.

Hence M
j
0 = 0 if and only if aj is a peak.

By symmetry, any of the random numbers aj−1, aj and aj+1 is the largest of
the three with the same probability. Hence the probability that aj−1 < aj > aj+1
is 1/3. This proves (4.1).

The event Fk
n holds if and only if in the initial part a1 · · ·an+4 of the permutation

a1 · · ·ak , there are exactly two peaks at 2 and n+3. It is clear that the probability of
this event is the same if a1 · · ·an+4 is a random uniform permutation of {1, . . . , n+
4} with the same peak set. Recall that the number of permutations of {1, . . . , n +
4} is (n + 4)!. We now see that (4.2) follows from Theorems 1 and 10 in [3].
Note that we are concerned with permutations of size n + 4 while the two cited
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theorems in [3] count permutations of size n. This explains the shift of size 4 in
the corresponding formulas in our paper and [3].

Finally, we will prove (4.3). The event F̂ k
n holds if an only if there are no peaks

in the part a2 · · ·an+3 of the permutation a1 · · ·ak . The probability of this event
is the same if a2 · · ·an+3 is a random uniform permutation of {1, . . . , n + 2} with
no peaks. Formula (4.3) follows from Proposition 2 in [3], with a shift of size 2
between the corresponding formulas in our paper and [3]. �

The results in [3] provide an effective tool for calculating various distributions
related to crater positions. We ask the interested reader to consult that paper for the
general theory. We will provide here another explicit probabilistic formula based
on combinatorial results from [3].

THEOREM 4.2. Consider the meteor process on Ck in the stationary regime;
that is, assume that the distribution of M0 is the stationary measure Q. For

i, j ≥ 1 and k ≥ i + j + 5, let Ak
i,j be the event that M2

0 = Mi+3
0 = M

i+j+4
0 = 0

and Mn
0 > 0 for n = 3,4, . . . , i +2, i +4, . . . , i + j +3. In other words, Ak

i,j is the
event that 2 is a crater and the gaps between this crater and the next two craters
have sizes i and j . We have

P
(
Ak

i,j

) = 2i+j

(i + j + 5)!
[
(i + j + 4)

(
j

(
i + j + 1

i − 1

)
+ (j + 1)

(
i + j + 1

i

)
+ (i + 1)

(
i + j + 1

i + 1

)
+ i

(
i + j + 1

i + 2

)
(4.4)

− 2(i + j + 1)

)
+ ij

(
i + j + 4

i + 2

)]
.

PROOF. The theorem follows from Theorems 9 and 12 of [3]. The argument
is totally analogous to that in the proof of Theorem 4.1 so we leave the details
to the reader. We just note that one should take m = i + 3 and n = i + j + 5 in
Theorem 12 of [3]. �

REMARK 4.3. (i) If craters occurred in the i.i.d. manner, then the distribution
of the distance between consecutive craters would have been geometric, with the
tail decaying exponentially. This is not the case. By the Stirling approximation,

pn = n(n + 3)2n+1

(n + 4)! ∼ n(n + 3)2n+1en+4

(n + 4)n+4
√

2π(n + 4)
.

Hence, pn converges to 0 at a rate faster than exponential; specifically, logpn ≈
−n logn.
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(ii) Despite remark (i), the crater process is “partly” memoryless. Consider the
crater distribution at time 0 assuming that the mass process {Mt , t ∈ R} is in
the stationary regime. The event that there is a crater at site j depends only on the
Poisson processes Nn for n = j − 1, j, j + 1, by Proposition 3.8(v). Hence, the
events {Mj

0 = 0} for j = 1 + 3m, m ∈ Z, 1 ≤ j ≤ k − 2, form a sequence of
Bernoulli trials (are i.i.d.). It follows that the gap between the first and second
craters in this sequence has an approximately geometric tail, for large k. The same
observation holds for two similar sequences of sites, namely for those indexed
by j = 2 + 3m, m ∈ Z, 1 ≤ j ≤ k − 2, and those indexed by j = 3m, m ∈ Z,
1 ≤ j ≤ k − 2. However, the three sequences of Bernoulli trials are highly depen-
dent.

(iii) It is natural to ask for the distribution of the number of consecutive sites
with nonzero mass following a crater. This somewhat informal statement can be
translated into a rigorous question about the conditional probability of Fk

n given
that M2

0 = 0. The answer is pn/p0 = 3n(n + 3)2n+1/(n + 4)!. In other words, a
crater is followed by exactly n consecutive sites with nonzero mass with probabil-
ity 3n(n + 3)2n+1/(n + 4)!.

(iv) Remarks (i) and (ii) make it clear that the we should not expect indepen-
dence between the lengths of consecutive stretches of sites with nonzero mass.
More precisely, one can easily check that, in general, for large k,

1

p0
P
(
Ak

i,j

) �= 1

p0
P
(
Fk

i

) 1

p0
P
(
Fk

j

)
.

Curiously, for j ≥ 1 and k ≥ j + 7,

1

p0
P
(
Ak

2,j

) = 1

p0
P
(
Fk

2
) 1

p0
P
(
Fk

j

)
.(4.5)

Hence, if there are exactly two noncraters between two consecutive craters, then
this event gives no information about the length of the next stretch of sites with
nonzero masses. Formula (4.5) follows from (4.2) and (4.4) by direct calculation.
Formula (4.5) does not seem to hold if 2 is replaced by any other integer i ≥ 1,
i �= 2. We offer an informal explanation of (4.5). Suppose that there is a crater at
site 5. Then there is no crater at site 4. The distribution of craters at sites 5,6, . . .

is determined by Poisson processes at sites 4,5, . . . . If we have extra information
that there is a crater at site 2, then this tells us only that the latest meteor hit among
the sites 1,2 and 3 occurred at site 2. Since the Poisson processes at sites 1,2 and 3
are independent of those at sites 4,5, . . . , the information that 2 is a crater has no
predictive value for craters to the right of 5.

When translated into the language of permutation peaks, the condition discussed
in the last paragraph becomes that there are exactly two nonpeaks between any two
consecutive peaks. Interestingly, exactly the same condition came up as part of a
conjecture in [3] about the equidistribution of peaks in permutations. This part
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of the conjecture was recently proved by Kasraoui in [25]. Is there some deeper
connection between this result and equation (4.5)?

(v) Formula (4.3) is extremely easy to prove; see the counting argument in the
proof of Proposition 2 in [3]. We will derive the harder formula (4.2) from the
easier formula (4.3) in an informal way. It has been shown in [6], a follow-up
paper, that stationary distributions on Ck converge to a stationary distribution for
the meteor process on Z, in an appropriate sense. It is easy to see that for the
meteor process on Z,

p̂n = pn + 2pn+1 + 3pn+2 + · · · .
We take the inverse of this linear transformation to see that

pn = p̂n − 2p̂n+1 + p̂n+2.

This and (4.3) imply that

pn = 2n+1

(n + 2)! − 2
2n+2

(n + 3)! + 2n+3

(n + 4)! = n(n + 3)2n+1

(n + 4)! .

THEOREM 4.4. We have
∞∑

n=0

pn = 2/3,(4.6)

∞∑
n=0

npn = 2/3.(4.7)

PROOF. Our argument is based on power series expansions derived by Math-
ematica [29]. The following power series converges for all real x,

∞∑
n=1

2n(n + 3)

(n + 4)! xn+4 = 2x3

3
+ 2x2 + 2ex(x − 2)2 − 8.

From this, we obtain
∞∑

n=0

pn = 1/3 +
∞∑

n=1

pn = 1/3 +
∞∑

n=1

n(n + 3)

(n + 4)! 2n+1

= 1/3 + 2−4
∞∑

n=1

2n(n + 3)

(n + 4)! 2n+4

= 1/3 + 2−4
(

2 · 23

3
+ 2 · 22 + 2e2(2 − 2)2 − 8

)
= 2

3
.

A similar calculation yields
∞∑

n=1

2n2(n + 3)

(n + 4)! xn+4 = 2ex(x3 − 6x2 + 16x − 16
)− 2

3

(
x3 + 6x2 − 48

)
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and
∞∑

n=0

npn =
∞∑

n=1

n2(n + 3)

(n + 4)! 2n+1 = 2−4
∞∑

n=1

2n2(n + 3)

(n + 4)! 2n+4

= 2−4
(

2e2(23 − 6 · 22 + 16 · 2 − 16
)− 2

3

(
23 + 6 · 22 − 48

)) = 2

3
.

This completes the proof. �

REMARK 4.5. (i) The reader may be puzzled by (4.6) since the probabilities
do not add up to 1. This sequence of probabilities does not represent all events in
a partition of a probability space. For the meteor process on Z constructed in [6],
the probabilities pn represent only the events that a given vertex has no mass or it
is the starting point of a sequence of consecutive vertices, all with positive masses.
It is also possible for a vertex to be an interior point of a sequence of consecutive
vertices with positive masses. It follows from (4.6) that the last event has probabil-
ity 1/3.

(ii) We will present a simple heuristic proof of (4.6) and (4.7) based on the me-
teor process on Z constructed in [6]. Recall from (4.1) that p0 = 1/3. The number
of starting points of sequences of consecutive vertices with positive masses must
be the same as the number of craters, since such vertices are never adjacent, by
Proposition 3.8(iv). Hence,

∑∞
n=1 pn = 1/3, implying (4.6). The sum

∑∞
n=1 npn

represents the proportion of noncraters so it must be equal to 2/3 because the pro-
portion of craters is p0 = 1/3.

One can ask not only how often a given configuration of craters occurs in a
very large circular graph Ck but also what the random fluctuations are. We will
prove a central limit theorem to shed some light on this problem. To match well
the existing literature, our formulation will be more general than necessary for the
purpose of describing the configuration of craters.

Consider the meteor process on Ck in the stationary regime; here and later in
this section this means that the distribution of M0 is the stationary measure Q.
Recall from Remark 3.3 that the stationary mass process {Mt , t ∈ R} and the cor-
responding Poisson processes {Nm

t , t ∈R}, m = 1, . . . , k, are defined on the whole
real time-line. As in Proposition 3.8(v), we let T m denote the time of the last jump
of Nm on the interval (−∞,0]. A permutation a = a1a2 · · ·an of {1, . . . , n} will
be called a pattern. We will denote finite families of patterns by A= {a1, . . . ,am}.
We will not assume that all patterns in A have the same length. We will say that
A occurs at j if for some ar = ar

1 · · ·ar
nr

∈ A, we have T j+i−1 < T j+m−1 if and
only if ar

i < ar
m for all 1 ≤ i,m ≤ nr .

According to Proposition 3.8(v), Mm
0 = 0 if an only if T m−1 < T m > T m+1.

Hence, any finite configuration of craters can be represented as a family of patterns.
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THEOREM 4.6 ([5, 11]). Consider the meteor process on Ck in the station-
ary regime. Fix a family of patterns A, and let N be the number of sites in Ck

where A occurs. Then there exist μ,σ > 0 such that (N − kμ)/σ
√

k converges in
distribution to the standard normal random variable as k → ∞.

PROOF. We will supply a proof that is shorter than that in [5] or [11], Exam-
ple 6.2, and illustrates well the power of the meteor representation of craters and
other patterns.

Let {Uj , j ∈ Z} be i.i.d. exponential random variables with mean 1. Note that
for any fixed k, the distribution of {Uj ,1 ≤ j ≤ k} is the same as that of {−T j ,1 ≤
j ≤ k}, where T j ’s are defined relative to Ck . Let ξm be the indicator random
variable of the occurrence of A at the mth site in {Uj , j ∈ Z}. In other words,
ξj = 1 if and only if for some ar = ar

1 · · ·ar
nr

∈ A, we have Uj+i−1 < Uj+m−1 if
and only if ar

i < ar
m for all 1 ≤ i,m ≤ nr . Otherwise, ξj = 0.

It is clear that the process {ξj , j ∈ Z} is stationary.
Let b be the length of the longest pattern in A. If |j − m| > b, then the occur-

rence of A at site j is independent of the occurrence of A at site m, since Un’s are
independent. In other words, if |j − m| > b, then ξj and ξm are independent. This
implies that the process {ξj , j ∈ Z} is ϕ-mixing in the sense of [4], Section 20. The
central limit theorem holds for

∑k−b
j=1 ξj , according to [4], Theorem 20.1. Let N ′

be the number of sites 1 ≤ j ≤ k − b in Ck where A occurs, and note that N ′ has
the same distribution as

∑k−b
j=1 ξj . Hence, the central limit theorem holds for N ′.

Since N and N ′ differ by at most b, the theorem follows. �

REMARK 4.7. Theorem 20.1 of [4] not only yields the central limit theorem
for N in Theorem 4.6 but also provides an effective algorithm for calculating μ

and σ . To compute the values of these parameters, one has to find Eξ1 and E(ξ1ξm)

for all m. This is equivalent to counting the corresponding permutations of length
at most 2b [because we have E(ξ1ξm) = Eξ1Eξm = (Eξ1)

2 for |1 − m| > b]. For
very small b, the counting can be done directly. For moderate b, formulas such as
those in [3] may be helpful, depending on the family of patterns A.

Craters represent sites that were hit by a meteor more recently than their nearest
neighbors. We will now state a result about the locations of the sites such that both
of its neighbors were hit by meteors more recently than the given site. Our result
is partly motivated by a technical application later in this section.

Recall that, according to Proposition 3.8(v), m is a crater if an only if T m−1 <

T m > T m+1. We will say that m is a mound if an only if T m−1 > T m < T m+1.
Note that as we move along the graph Ck , we will encounter an alternating se-
quence of craters and mounds, separated by stretches of sites that are neither. The
craters and mounds correspond to the local maxima and minima of the function
m → T m. Craters and mounds correspond to peaks and valleys of permutations.
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PROPOSITION 4.8. Consider the meteor process on Ck in the stationary
regime. Let Bk

i,j be the event that 2 is a crater followed by a mound and an-
other crater, with i and j sites, respectively, between the three distinguished sites.
More precisely, for i, j ≥ 0 and k ≥ i + j + 5, let Bk

i,j be the event that 2 and
i + j + 4 are craters, i + 3 is a mound and m is neither a crater nor a mound for
m = 3,4, . . . , i + 2, i + 4, . . . , i + j + 3.

(i) We have

P
(
Bk

i,j

) = 2(i + j + 4)

(i + j + 5)!
[(

i + j + 1
i + 1

)
+ (i + 1)

(
i + j + 2

i + 2

)]
.(4.8)

(ii) Recall events Fk
n from Theorem 4.1. If Fk

n holds, let R denote the position
of the unique mound between craters at 2 and n + 3. For any ε > 0 there exist
constants c1, c2 > 0 such that for n ≥ 1 and k ≥ n + 4,

P
(|R/n − 1/2| > ε|Fk

n

)
< c1e

−c2n.(4.9)

PROOF. (i) This part follows from Proposition 23 of [3]. The argument is to-
tally analogous to that in the proof of Theorem 4.1, so we leave the details to the
reader. We just note that one should take m = i + 3 and n = i + j + 5 in Proposi-
tion 23 of [3].

(ii) The function H(x) := −x logx − (1 − x) log(1 − x) is smooth on (0,1). It
is elementary to check that it is increasing on (0,1/2) and decreasing on (1/2,1).
Hence, for some c3, c4 > 0 and all x ∈ (0,1),

H(x) ≤ H(1/2) − c3|x − 1/2|2 ≤ log
(

2

1 + c4|x − 1/2|2
)
.(4.10)

By the Stirling approximation, for any c5 < 1 < c6, some m1 and all m ≥ m1,
we have c5m logm < log(m!) < c6m logm. Fix any ε > 0, and let c7 > 1 be so
small that c7 log(2/(1 + c4ε

2)) := c8 < log 2. For some m1 and r1, all m ≥ m1 and
r ≥ r1 such that m − r ≥ r1, we have

log
(

m

r

)
= log

(
m!

r!(m − r)!
)

≤ c7
(
m logm − r log r − (m − r) log(m − r)

)
= c7m

(
− r

m
log

r

m
−

(
1 − r

m

)
log

(
1 − r

m

))
.

This and (4.10) imply that if m ≥ m1, r ≥ r1, m − r ≥ r1, ε > 0 and
|r/m − 1/2| > ε,

log
(

m

r

)
≤ c7m log

(
2

1 + c4|r/m − 1/2|2
)

≤ c7m log
(

2

1 + c4ε2

)
= c8m.

If we take m = i + j , r = i and we assume that |i − (i + j)/2| > ε(i + j)/2, then
the last estimate yields for i + j ≥ m1 and i, j ≥ r1,

log
(

i + j

i

)
≤ c8(i + j),
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and, therefore, (
i + j

i

)
≤ ec8(i+j).(4.11)

Note that for some polynomial q1,

2(i + j + 4)

(i + j + 5)!
[(

i + j + 1
i + 1

)
+ (i + 1)

(
i + j + 2

i + 2

)]
≤ q1(i + j)

(i + j)!
(

i + j

i

)
.

This, (4.8) and (4.11) give for i and j satisfying |i − (i + j)/2| > ε(i + j)/2,
i + j ≥ m1 and i, j ≥ r1,

P
(
Bk

i,j

) ≤ q1(i + j)ec8(i+j)

(i + j)! .(4.12)

By changing the polynomial q1, if necessary, we can drop the assumptions that
i + j ≥ m1 and i, j ≥ r1.

Let

(n, ε) = {
(i, j) ∈ Z : i, j ≥ 0, i + j + 1 = n,

∣∣i − (i + j)/2
∣∣ > ε(i + j)/2

}
.

Recall that c8 < log 2. We obtain from (4.2) and (4.12) that for some c1, c2 > 0,

P
(|R/n − 1/2| > ε|Fk

n

) = (
P
(
Fk

n

))−1 ∑
(i,j)∈(n,ε)

P
(
Bk

i,j

)

≤ (n + 4)!
n(n + 3)2n+1

∑
(i,j)∈(n,ε)

q1(i + j)ec8(i+j)

(i + j)!

= (n + 4)!
n(n + 3)2n+1

∑
(i,j)∈(n,ε)

q1(n − 1)ec8(n−1)

(n − 1)!

≤ (n + 4)!
n(n + 3)2n+1 n

q1(n − 1)ec8(n−1)

(n − 1)!
≤ c1e

−c2n.

This completes the proof. �

The results and remarks presented so far in this section indicate clearly that the
crater process does not behave like a Poisson point process on Ck . There are many
ways to make this intuition precise. Our next result shows that if there are very
few craters, then their positions are not approximately distributed as independent
uniform random variables on Ck , unlike in the case of a Poisson point process. We
will prove that craters have a tendency to repel each other. This “repulsion” phe-
nomenon is known in some other contexts; for example, it applies to eigenvalues
of random matrices [17] and other determinantal processes [23].
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THEOREM 4.9. Consider the meteor process on a circular graph Ck with
k ≥ 3, and assume that the mass process {Mt , t ∈ R} is in the stationary regime.
Let G1 be the family of adjacent craters, that is, (i, j) ∈ G1 if an only if there are
craters at i and j , and there are no craters between i and j . We define G2 as the
family of pairs (i, j) such that there is a crater at i and a mound at j , or there is a
mound at i and a crater at j , and there are neither craters nor mounds between i

and j . For r > 2, let

A1
r =

{
max(i,j)∈G1 |i − j |
min(i,j)∈G1 |i − j | ≤ r

}
,

A2
r =

{
max(i,j)∈G2 |i − j |
min(i,j)∈G2 |i − j | ≤ r

}
.

(i) Let H 1
n be the event that there are exactly n craters at time 0. For ev-

ery n ≥ 2, p < 1 and r > 2 there exists k1 < ∞ such that for all k ≥ k1,
P(A1

r |H 1
n ) > p.

(ii) Let H 2
n be the event that there are exactly n craters and mounds at time 0.

For every n ≥ 2, p < 1 and r > 2 there exists k1 < ∞ such that for all k ≥ k1, we
have P(A2

r |H 2
n ) > p.

REMARK 4.10. A combinatorial result in [18], Theorem 6.1, shows that, as-
suming that there are exactly n craters, their most likely configuration makes them
equidistant from each other. See also [25] for a closely related result. These results
are not equivalent to Theorem 4.9 because the probability that one of the most
likely configurations will occur does not have to be high.

PROOF OF THEOREM 4.9. Recall that, as we move around the graph Ck ,
we will encounter an alternating sequence of craters and mounds, separated by
stretches of sites that are neither. Hence it is easy to see that part (ii) implies (i). It
remains to prove (ii).

Let Gi,j be the event that there are craters at sites i and j , and there are no
craters between these two sites. Given this event, let Ri,j be the distance from the
unique mound between i and j to the closest of these vertices. We define Ĝi,j and
R̂i,j in an analogous way, reversing the roles of craters and mounds.

Fix an n ≥ 2. It is elementary to see that for every r > 2 there exist ε > 0 and
c1 > 0 such that if A2

r fails to hold, then the following event must occur:⋃
i,j∈V

|i−j |>c1k+1

(
Gi,j ∩ {∣∣Ri,j /|i − j − 1| − 1/2

∣∣ > ε
})

(4.13)
∪ ⋃

i,j∈V

|i−j |>c1k+1

(
Ĝi,j ∩ {∣∣R̂i,j /|i − j − 1| − 1/2

∣∣ > ε
})

.
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If Gi,j holds, then the value of Ri,j does not depend on the positions of craters and
mounds outside the interval between i and j . Hence

P
(
Gi,j ∩ {∣∣Ri,j /|i − j − 1| − 1/2

∣∣ > ε
}|H 2

n

)
= P

(
Gi,j |H 2

n

)
P
(∣∣Ri,j /|i − j − 1| − 1/2

∣∣ > ε|Gi,j ∩ H 2
n

)
≤ P

(∣∣Ri,j /|i − j − 1| − 1/2
∣∣ > ε|Gi,j ∩ H 2

n

)
= P

(∣∣Ri,j /|i − j − 1| − 1/2
∣∣ > ε|Gi,j

)
.

Proposition 4.8(ii) yields for some c2, c3 > 0 and i and j such that |i − j | >

c1k + 1,

P
(
Gi,j ∩ {∣∣Ri,j /|i − j − 1| − 1/2

∣∣ > ε
}|H 2

n

)
≤ P

(∣∣Ri,j /|i − j − 1| − 1/2
∣∣ > ε|Gi,j

)
(4.14)

≤ c2e
−c3|i−j−1| ≤ c2e

−c3c1k.

Interchanging the roles of craters and mounds, we obtain for i and j such that
|i − j | > c1k + 1,

P
(
Ĝi,j ∩ {∣∣R̂i,j /|i − j − 1| − 1/2

∣∣ > ε
}|H 2

n

) ≤ c2e
−c3c1k.

This, (4.14) and (4.13) imply that

P
((

A2
r

)c|H 2
n

) ≤ 2
∑

i,j∈V

|i−j |>c1k+1

c2e
−c3c1k ≤ 2k2c2e

−c3c1k.

The last quantity goes to 0 as k → ∞. This completes the proof. �

The last question that we are going to address in this section concerns the age of
the oldest exposed soil. A meteor hit displaces some soil, and we can imagine that
the displaced soil is placed on the top of the soil already present at the site where
it is deposited. Hence the age of the oldest exposed soil is the minimum over all n

of T̃ n := max(T n−1, T n, T n+1).

THEOREM 4.11. For any ε > 0 and p < 1 there exists k1 such that for k ≥ k1,

P

(∣∣∣ min
1≤n≤k

T̃ n − (1/3) log k
∣∣∣ < ε log k

)
> p.

PROOF. Consider any α ∈ (0,2/3), and let β = 2/3 − α > 0. The probability
that T n is among the kα lowest values of {T j ,1 ≤ j ≤ k} is less than 2kα/k =
2kα−1. Hence, for a fixed n and large k, the probability that T̃ n is among the kα

lowest values of {T j ,1 ≤ j ≤ k} is less than 2(2kα−1)3 = 16k3(α−1) = 16k−1−3β

(the dependence between the relevant events is negligible for large k). It follows
that the probability that there exists a site n such that T̃ n is among the kα lowest
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values of {T j ,1 ≤ j ≤ k} is less than k16k−1−3β = 16k−3β . The last quantity goes
to 0 as k → ∞.

Consider any γ ∈ (2/3,1) and let λ = γ − 2/3 > 0. The probability that T n is
among the kγ lowest values of {T j ,1 ≤ j ≤ k} is more than kγ /(2k) = (1/2)kγ−1.
Hence, for a fixed n and large k, the probability that T̃ n is among the kγ low-
est values of {T j ,1 ≤ j ≤ k} is more than (1/2)((1/2)kγ−1)3 = (1/16)k3(γ−1) =
(1/16)k−1+3λ. It follows that the probability that there exists a site n such that
1 ≤ n = 3i ≤ k, i ∈ Z and T̃ n is among the kγ lowest values of {T j ,1 ≤ j ≤ k} is
more than 1 − (1 − (1/16)k−1+3λ)k/6. The last quantity goes to 1 as k → ∞.

Let J be the rank of min1≤j≤k T̃ j among the ordered values of {T j ,1 ≤ j ≤ k}.
We have shown that for any 0 < α < 2/3 < γ < 1, we have

lim
k→∞P

(
kα < J < kγ ) = 1.(4.15)

Note that {−T j ,1 ≤ j ≤ k} are i.i.d., with the exponential distribution with
mean 1. Let Y(n) denote the nth order statistic for {−T j ,1 ≤ j ≤ k}. It fol-
lows from [15], Theorem 2.2.1, that for any fixed a ∈ (0,1), random variables
ka/2(Y(k−ka) − (1−a) log k) converge weakly to the standard normal random vari-
able as k → ∞. This and (4.15) easily imply the theorem. �

5. Mass distribution. Section 4 was concerned with the distribution of
craters, that is, sites where the mass Mj is 0. This section will present some results
on the mass distribution at all sites. In other words, we will consider the nonde-
generate part of the mass distribution at a site.

THEOREM 5.1. Suppose that d ≥ 1, and let {Mt , t ≥ 0} = {(M1
t ,M2

t , . . . ,

Mk
t ), t ≥ 0} be the mass process on G = Cd

n (the product of d copies of
the cycle Cn), under the stationary measure Qk (here k = nd). Assume that∑

x∈V Mx
0 = k under Qk . We have

EQk
Mx

0 = 1, x ∈ V,(5.1)

lim
k→∞ VarQk

Mx
0 = 1, x ∈ V,(5.2)

lim
k→∞ CovQk

(
Mx

0 ,M
y
0

) = − 1

2d
, x ↔ y,(5.3)

lim
k→∞ CovQk

(
Mx

0 ,M
y
0

) = 0, x �= y and x �↔ y.(5.4)

PROOF. By symmetry, EQk
Mx

0 = EQk
M

y
0 for all x, y ∈ V . Since∑

x∈V Mx
0 = k under Qk , we must have EQk

Mx
0 = 1 for x ∈ V . This proves (5.1).

We will base our estimates for VarQk
Mx

0 and CovQk
(Mx

0 ,M
y
0 ) on a representa-

tion of Mx
0 using WIMPs. Let Z and Z̃ be defined as Z1 and Z2 in Definition 2.1.

In particular, P(Z0 = x) = P(Z̃0 = x) = Mx
0 /k for x ∈ V .
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Note that since the state space C2d
k for the process (Z, Z̃) is finite, the process

has a stationary distribution. The stationary distribution is unique because all states
communicate. We will estimate the probability that Zt = Z̃t under the stationary
distribution. Let �Zt = Zt − Z̃t . It is easy to see that �Zt is a Markov process (al-
though a function of a Markov process is not necessarily Markov). The state space
for �Zt may be identified with V in the obvious way. Let {πx, x ∈ V } be the set of
stationary probabilities for the discrete time Markov chain Z∗

j embedded in �Zt .
First, we will discuss the case d = 1. We claim that, in this case, for some

c1 > 0, π1 = πn−1 = c1/2 and πj = c1 for j �= 1, n − 1. It is easy to check that
the following equations define the stationary probabilities, and these equations are
satisfied by the probabilities specified above:

π0 = 1
2π0 + 1

2π1 + 1
2πn−1, π1 = 1

2π2, πn−1 = 1
2πn−2,

π2 = 1
2π3 + 1

2π1 + 1
4π0, πn−2 = 1

2πn−3 + 1
2πn−1 + 1

4π0,

πj = 1
2πj−1 + 1

2πj+1, j �= n − 2, n − 1,0,1,2.

Of course, c1 is chosen so that
∑

n πn = 1. The mean holding time for �Zt is 1 in
the state 0 and it is 1/2 in all other states. This and the formulas for πj ’s imply
that

lim
k→∞(k/2)EQk

(Zt = Z̃t ) = lim
k→∞(k/2)EQk

(�Zt = 0) = 1,

lim
k→∞ 2kEQk

(Zt − Z̃t = 1) = lim
k→∞ 2kEQk

(Zt − Z̃t = −1) = 1,(5.5)

lim
k→∞kEQk

(Zt − Z̃t = j) = 1, j �= −1,0,1.

The case d ≥ 2 is similar but requires different notation. Recall that 0 =
(0, . . . ,0). Let a be set of all vertices (a1, . . . , ad) such that |ai | = |aj | = 1 for
some i and j , and am = 0 for all m �= i, j . Let b be set of all vertices (b1, . . . , bd)

such that |bi | = 2 for some i, and bm = 0 for all m �= i. Let h be set of all ver-
tices (h1, . . . , hd) such that |hi | = 1 for some i, and hm = 0 for all m �= i. Let
g = V \ ({0} ∪ a ∪ b ∪ h).

We claim that for some c1 > 0, πx = (1− 1
2d

)c1 for all x ∈ h and πx = c1 for all
other x ∈ V . It is easy to check that the following equations define the stationary
probabilities, and these equations are satisfied by the probabilities specified above:

π0 = 1

2d
π0 + 2d

1

2d
πx, x ∈ h,

πx = 1

2d
πy + (2d − 2)

1

2d
πz, x ∈ h, y ∈ b, z ∈ a,

πx = 2
(

1

2d

)2

π0 + 2
1

2d
πy + (2d − 2)

1

2d
πz, x ∈ a, y ∈ h, z ∈ g,
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πx =
(

1

2d

)2

π0 + 1

2d
πy + (2d − 1)

1

2d
πz, x ∈ b, y ∈ h, z ∈ g,

πx = 2d
1

2d
πy, x ∈ g, y ∈ a ∪ b ∪ g.

Recall that c1 is chosen so that
∑

n πn = 1, the mean holding time for �Zt is 1 in the
state 0 and it is 1/2 in all other states. This and the formulas for πj ’s imply that

lim
k→∞(k/2)EQk

(Zt = Z̃t ) = lim
k→∞(k/2)EQk

(�Zt = 0) = 1,

lim
k→∞

2d

2d − 1
kEQk

(Zt − Z̃t = x) = 1, x ∈ h,(5.6)

lim
k→∞kEQk

(Zt − Z̃t = x) = 1, x /∈ {0} ∪ h.

Let α0 = 2, αx = 1 − 1
2d

for x ∈ h and αx = 1 for all other x. By (5.5) and (5.6),
for any fixed x ∈ V and an arbitrarily small ε > 0, there exists k1 so large that for
any k ≥ k1, the probability that Zt − Z̃t = x under the stationary distribution is in
the interval ((1 − ε)αx/k, (1 + ε)αx/k). Hence, for y ∈ V ,

PQk
(Z0 = y, Z̃0 = y + x) ∈ (

(1 − ε)αx/k2, (1 + ε)αx/k2).(5.7)

Let Gt = σ(Ms,0 ≤ s ≤ t). It is easy to see that

PQk
(Z0 = x|G0) = Mx

0 /k.

The random variables Z0 and Z̃0 are conditionally independent given G0, so

PQk
(Z0 = y, Z̃0 = y + x|G0) = M

y
0 M

y+x
0 /k2.

Thus

EQk

(
M

y
0 M

y+x
0

) = k2
EQk

PQk
(Z0 = y, Z̃0 = y + x|G0)

= k2
PQk

(Z0 = y, Z̃0 = y + x).

This and (5.7) yield, for k > k1,

(1 − ε)αx ≤ EQk

(
M

y
0 M

y+x
0

) ≤ (1 + ε)αx.

Since ε > 0 is arbitrarily small, it follows that

lim
k→∞EQk

(
M

y
0 M

y+x
0

) = αx.

For x = 0, we obtain limk→∞EQk
(M

y
0 )2 = 2. This and (5.1) imply that

lim
k→∞ VarQk

M
y
0 = 1.

For x ∈ h, we have limk→∞EQk
(M

y
0 M

y+x
0 ) = 1 − 1

2d
, so, in view of (5.1),

lim
k→∞ CovQk

(
M

y
0 ,M

y+x
0

) = − 1

2d
.
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Finally, for x /∈ {0} ∪ h, we have limk→∞EQk
(M

y
0 M

y+x
0 ) = 1, and, therefore,

lim
k→∞ CovQk

(
M

y
0 ,M

y+x
0

) = 0.

This completes the proof. �

REMARK 5.2. (i) It has been shown in [6] (a follow-up paper) that the dis-
tributions of M1

0 under the stationary measures Qk converge as k → ∞. We have
neither explicit description nor detailed information about the limit distribution.
We performed a number of long simulations. Figure 1 illustrates some of the nu-
merical results. The figure on the left shows the empirical distribution of masses
{Mj

10,000,000,1 ≤ j ≤ 60,000}, based on a single simulation with ten million jumps
(“meteor hits”) for a circular graph C60,000. The distribution has an atom at 0 of
size about 1/3, as predicted by Theorem 4.1. The distribution does not appear to
have any other atoms. The graph on the right shows the “Q–Q” plot (quantile on
quantile plot) for the continuous component of the empirical distribution of masses
versus the best matching gamma density (in the sense of matching the first two mo-
ments), for a simulation on the graph C6000. The “Q–Q” plot shows convincingly
that the distribution is not in the gamma family. We will return to this point in
part (iii) of this remark.

(ii) An argument similar to that in the proof of Theorem 5.1 leads to a
(nonasymptotic) formula for the third moment of M1

0 , for a fixed circular graph Ck .
The calculation is based on the derivation of the stationary distribution for the
Markov process consisting of three dependent continuous time random walks. The
stationary distribution can be explicitly calculated using computer algebra for low
values of k. The values of the third moment of M1

0 seem to converge to 4.75531 as
k goes to infinity. This value is consistent with the results of computer simulations.

FIG. 1. The figure on the left shows the empirical distribution of masses {Mj
10,000,000,

1 ≤ j ≤ 60,000}, based on a single simulation with ten million jumps (“meteor hits”) for a cir-
cular graph C60,000. The distribution has an atom at 0 of (theoretical) size 1/3. The graph on the
right shows the “Q–Q” plot (quantile on quantile plot) for the continuous component of the empiri-
cal distribution of masses versus the best matching gamma density (in the sense of matching the first
two moments), for a simulation on the graph C6000.
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Calculating the stationary distribution for the Markov chain of three random
walks quickly becomes a time consuming task because the state space of the
Markov chain has k3 elements, assuming that the cycle has size k. To reduce the
size of the state space, we collapsed the states that were images of each other under
symmetries of the cycle. For example, for k = 20, the state space size was reduced
from 203 = 8000 to 44.

(iii) It follows from our estimates that the limiting distribution of the mass size
at a given point, after removing the atom at 0, does not belong to the gamma
family. For a gamma random variable X with density xα−1 exp(−x/β)/(�(α)βα),
we have EXj = βjα(α + 1) · · · (α + j − 1). In particular, EX = βα, EX2 =
β2α(α + 1) and EX3 = β3α(α + 1)(α + 2). Let W be M1

0 conditioned to be
nonzero. In our case, under the stationary distribution Qk , we have EW = 3/2,
EW 2 = 3 and EW 3 ≈ 4.755. If we have EX = 3/2 and EX2 = 3 for a gamma
distribution, then EX3 = 7.5 �= 4.755. There are no values of α and β that would
make the moments of W match the moments of a gamma distribution even in an
approximate sense.

(iv) Numerical calculations suggest that (M1
0 )2 and M

j
0 are asymptotically cor-

related, when k → ∞. Hence, it appears that M1
0 and M

j
0 are asymptotically de-

pendent, when k → ∞. We do not have a heuristic explanation for the lack of
asymptotic correlation of M1

0 and M
j
0 , for j ≥ 3, proved in Theorem 5.1.

(v) When k = 2 or 3, we can provide an explicit description of the stationary
distribution for the mass process Mt on the circular graph Ck . If k = 2, then the
stationary distribution of Mt has two atoms of size 1/2. One atom is the measure
that gives mass 2 to site 1 and mass 0 to site 2. The other atom is the measure that
gives mass 2 to site 2 and mass 0 to site 1.

Suppose that k = 3 and for j = 1,2,3, let μj be the random measure which
gives mass 0 to site j , μj(j + 1) is the uniform random variable on [0,2] and
μj(j +1) = 2−μj(j +2). Then the stationary distribution for Mt is the mixture,
with equal weights, of μj , j = 1,2,3. It is an elementary exercise to check that
the given measures are stationary.

(vi) Consider the meteor process on a circular graph Ck , and let M
1,n
t =∑n

j=1 M
j
t . Then Theorem 5.1 implies that for any fixed n, limk→∞ VarQk

M
1,n
0 = 1.

In other words, although the expected mass in an interval of length n, that is,
EQk

M
1,n
0 = n, grows with n, the variance of this mass does not grow (in the limit

when k → ∞).
More generally, consider the meteor process on the product Cd

n of circular
graphs, and let k = dn. For a set A ⊂ V , let MA

t = ∑
x∈A Mx

t . Let ∂A be the
number of edges joining two vertices of which exactly one is in A. Then Theo-
rem 5.1 implies that for any fixed A, limk→∞ VarQk

MA
0 = |∂A|/(2d). Obviously,

EQk
MA

0 = |A|. The mass enclosed in each of the shapes in Figure 2 has the same
(asymptotic) variance.
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FIG. 2. All curves have the same height and width. They all have the same “boundary length”
|∂A|, where A denotes the set of vertices inside the given closed curve. The asymptotic variance of
the mass enclosed by one of these four curves has the same value as for any other of these curves.

Consider the meteor process on a circular graph Ck with k ≥ 4 and assume that
the mass process {Mt , t ∈ R} is in the stationary regime. We will estimate the
expected value of the height of a crater rim, that is, the expected value of the mass
at a site that is adjacent to a crater. Note that the expected value of the mass at a
uniformly chosen noncrater is 3/2 because the expected value of the mass at a site
is 1 and the probability that a site is a crater is 1/3.

PROPOSITION 5.3. Consider the meteor process on a circular graph Ck with
k ≥ 6, and assume that the mass process {Mt , t ∈ R} is in the stationary regime.
Then

1.625 = 13/8 < EQ

(
M2

0 |M1
0 = 0

)
< 5/3 ≈ 1.667.(5.8)

PROOF. Recall that T j denotes the time of the last jump of Nj before 0,
that is, T j = sup{t ≤ 0 :Nj

t �= N
j
t−}. The event A := {M1

0 = 0} is equivalent to
{T 2 < T 1 > T k}. It is easy to see that the conditional distribution of T 1 given
{T 2 < T 1 > T k} is the same as the distribution of max(T k, T 1, T 2). The density
of −max(T k, T 1, T 2) is 3e−3t .

The conditional distribution of Mt− given A ∩ {T 1 = t} is the stationary distri-
bution because the event A ∩ {T 1 = t} is determined by {Nj

s , t ≤ s ≤ 0}, and the
value of Mt− is determined by {Nj

s , s < t}.
Fix some S > 0, and assume that A ∩ {T 1 = −S} occurred. For t ∈ [0, S], let

F
j
t = E(M

j
−S+t |A ∩ {T 1 = −S}), and note that F 1

0 = 0, F 2
0 = Fk

0 = 3/2 and

F
j
0 = 1 for all other j . Given A ∩ {T 1 = −S}, meteors hit sites 3,4, . . . , k − 1

at a constant rate of 1 hit per unit of time during the time interval (−S,0), so for
t ∈ [0, S],

d

dt
F 2

t = 1

2
F 3

t ,

d

dt
F 3

t = 1

2
F 4

t − F 3
t ,(5.9)

d

dt
F

j
t = 1

2
F

j−1
t + 1

2
F

j+1
t − F

j
t , j = 4, . . . , k − 2.
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These equations and the initial conditions imply that F 3
t > e−t and, therefore,

F 2
t > 3/2 + (1 − e−t )/2 for t ∈ (0, S]. It follows that

EQ

(
M2

0 |M1
0 = 0

)
>

∫ ∞
0

(
3/2 + (

1 − e−s)/2
)
3e−3s ds = 13/8.

We also have F 3
t < 1 and, therefore, F 2

t < 3/2 + t/2 for t ∈ (0, S]. Hence

EQ

(
M2

0 |M1
0 = 0

)
<

∫ ∞
0

(3/2 + s/2)3e−3s ds = 5/3.

This completes the proof. �

REMARK 5.4. Computer simulations show that EQ(M2
0 |M1

0 = 0) ≈ 1.6443.

We note that one can derive sharper estimates for F 2
t using (5.9) and hence

sharper estimates in (5.8).

6. Meteor processes on noncircular graphs. Consider a circular graph Ck ,

and suppose that the total mass
∑k

j=1 M
j
0 is equal to k. Then it is obvious that

EQk
M1

0 = 1 for every k, by symmetry. However, the fact that limk→∞ VarQk
M1

0 =
1, proved in Theorem 5.1, does not seem to be obvious. We will show that under
some structural assumptions on the graph G, the variance of Mx

0 under the station-
ary distribution cannot be too large. We will show that the bound for the variance
of Mx

0 depends mainly on the degree of the vertex.
A graph is called distance-transitive if for any two vertices v and w at any

distance i, and any other two vertices x and y at the same distance, there is an
automorphism of the graph that carries v to x and w to y.

THEOREM 6.1. Assume that G is a distance-transitive ρ-regular graph. As-
sume that

∑
x∈V Mx

0 = |V |. Then under the stationary distribution, for any x ∈ V ,

VarQ Mx
0 ≤ ρ + 1

ρ − 1 + 2ρ/(|V | − 1)
.

PROOF. By symmetry, EQMx
0 = 1, for all x ∈ V .

Let Z and Z̃ be defined as Z1 and Z2 in Definition 2.1. In particular, P(Z0 =
x) = P(Z̃0 = x) = Mx

0 /|V | for x ∈ V .
Note that since the state space V 2 for the process (Z, Z̃) is finite, the process

has a stationary distribution. The stationary distribution is unique because all states
communicate. We will estimate the probability that Zt = Z̃t under the stationary
distribution.

Fix any vertex and label it 0. Let Z1 be a continuous time Markov process on V

defined as follows. We let Z1
0 be a vertex uniformly chosen from all vertices x

with the property that the distance from x to 0 is the same as the distance from
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Z0 to Z̃0. The process Z1 jumps if an only if (Z, Z̃) jumps. At a time t of a jump
of (Z, Z̃), the process Z1 jumps to one of the nearest neighbors of Z1

t−, whose
distance from 0 is the same as the distance between Zt and Z̃t . The process Z1

is a continuous time Markov process on V , with the mean holding time equal to
1/2 at all vertices x �= 0. The mean holding time for Z1 at 0 is (1 − 1/ρ)−1. If
Z1

t = 0, the next jump it will take will be to a vertex at a distance either 1 or 2
from 0. If Z1

t �= 0, then the next jump will be to a neighbor of Z1
t . Let Z2

t be a
continuous time symmetric nearest neighbor random walk on V , with the mean
holding time equal to 1/2 at all vertices x �= 0, and mean holding time at 0 equal
to (1−1/ρ)−1. The only difference between Z1 and Z2 is that Z2 can jump from 0
only to a nearest neighbor while Z1 can jump from 0 to some other vertices.

The long run proportion of time spent by Z2 at 0 is

(1 − 1/ρ)−1

(1 − 1/ρ)−1 + (|V | − 1)/2
= ρ

ρ + (ρ − 1)(|V | − 1)/2
.

After every jump of Z1 from 0, this process will take some time, not necessarily
zero, until it hits a neighbor of 0. Hence, the long run proportion of time spent by
Z1 at 0 is less than or equal to

ρ

ρ + (ρ − 1)(|V | − 1)/2
.

By symmetry, for any x ∈ V , the long run proportion of time spent by (Z, Z̃) at
(x, x) is less than or equal to

ρ

|V |(ρ + (ρ − 1)(|V | − 1)/2)
.

Hence, for any x ∈ V ,

PQ(Z0 = Z̃0 = x) = ρ

|V |(ρ + (ρ − 1)(|V | − 1)/2)
.(6.1)

Let Gt = σ(Ms,0 ≤ s ≤ t). Then, for x ∈ V ,

PQ(Z0 = x|G0) = Mx
0 /|V |.

The random variables Z0 and Z̃0 are conditionally independent given G0, so

PQ(Z0 = Z̃0 = x|G0) = (
Mx

0 /|V |)2
.

Thus

EQ

(
Mx

0
)2 = |V |2EQPQ(Z0 = Z̃0 = x|G0) = |V |2PQk

(Z0 = Z̃0 = x).

This and (6.1) yield

EQ

(
Mx

0
)2 ≤ |V |2ρ

|V |(ρ + (ρ − 1)(|V | − 1)/2)
.
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Since EQMx
0 = 1, we obtain

VarQ Mx
0 ≤ |V |2ρ

|V |(ρ + (ρ − 1)(|V | − 1)/2)
− 1 = ρ + 1

ρ − 1 + 2ρ/(|V | − 1)
.

This completes the proof. �

Recall that T v
t denotes the time of the last jump of Nv on the interval [0, t],

with the convention that T v
t = −1 if there were no jumps on this interval.

THEOREM 6.2. Suppose that G is a complete graph with k vertices
{1,2, . . . , k}, and recall the Poisson processes Nm. Let Qk be the stationary dis-
tribution for the mass process M. When k → ∞, processes {M1

t − M1
0 − t + T 1

t ,

t ≥ 0}, under Qk , converge weakly to the process identically equal to 0 in the
Skorokhod space D([0,∞),R).

COROLLARY 6.3. Under assumptions of Theorem 6.2, we have the follow-
ing:

(i) the distributions of M1
0 under Qk converge to the exponential distribution

with mean 1, when k → ∞;
(ii) there is propagation of chaos; that is, for any finite n ≥ 2, the distributions

of {Mj
t , t ≥ 0}, j = 1, . . . , n, are asymptotically independent, when k → ∞.

PROOF OF THEOREM 6.2. Let x+ = max(x,0). Let Rk
s,t be the mass moved

to state 1 during the time interval [s, t], that is, Rk
s,t = ∑

u∈[s,t](M1
u − M1

u−)+. If
t1 and t2 are any two consecutive jumps of N1, then M1

t1
= 0 and M1

u −M1
t1

= Rk
u,t1

for all u ∈ (t1, t2). Hence it will suffice to prove that for any two fixed rational
numbers 0 < t1, t2 < ∞, Rk

t1,t2
converges to t2 − t1 weakly, as k → ∞.

Let Zj ’s be defined as in Definition 2.1. Let Gt = σ(Ms,0 ≤ s ≤ t). Then for
any t ≥ 0, a.s.,

PQk

(
Z

j
t = 1|Gt

) = M1
t /k.

The processes {Zj
s , s ∈ [0, t]}, j ≥ 1, are conditionally independent given Gt , so

by the law of large numbers, for every t ≥ 0, a.s.,

lim
n→∞

1

n

n∑
j=1

1{Zj
t =1} = M1

t /k.(6.2)

Since the process M1 has only a finite number of jumps on any finite time interval,
the convergence in (6.2) holds uniformly on every interval of the form [t1, t2], with
0 < t1 < t2 < ∞. Fix any 0 < t1 < t2 < ∞ and let

A(k,n) = k

n

∑
u∈[t1,t2]

n∑
j=1

1{Zj
u=1,Z

j
u−�=1}.
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In view of earlier remarks, it will suffice to prove that, in probability,

lim
k→∞ lim

n→∞A(k,n) = t2 − t1.

It will be enough to show that

lim
k→∞ lim

n→∞EQk
A(k,n) = t2 − t1(6.3)

and

lim
k→∞ lim

n→∞ VarQk
A(k,n) = 0.(6.4)

Since all Zj ’s have the same distribution, to prove (6.3), it will suffice to show
that

lim
k→∞kEQk

∑
u∈[t1,t2]

1{Z1
u=1,Z1

u−�=1} = t2 − t1.(6.5)

By symmetry, PQk
(Z1

t1
= 1) = 1/k. After the process Z1 jumps to some other

state, it has probability less than 1 − e−(t2−t1)/(k−1) of jumping to 1 in the remain-
ing time in the interval [t1, t2]. If it jumps back to 1 and then again to another state,
it has, once again, probability less than 1 − e−(t2−t1)/(k−1) of jumping to 1 in the
remaining time in the interval [t1, t2]. A similar argument applies to further possi-
ble jumps to 1. Hence, if we denote consecutive jumps of Z1 to the state 1 on the
interval (t1, t2] by S1, S2, . . . , then

PQk

(
Z1

t1
= 1, Sm ≤ t2

) ≤ 1

k

(
1 − e−(t2−t1)/(k−1))m

(6.6)
≤ (t2 − t1)

m(k − 1)−m−1,

and, therefore,

EQk

∑
u∈(t1,t2]

1{Z1
t1

=1}1{Z1
u=1,Z1

u−�=1} ≤ ∑
m≥1

(t2 − t1)
m(k − 1)−m−1.

This implies that

lim
k→∞kEQk

∑
u∈(t1,t2]

1{Z1
t1

=1}1{Z1
u=1,Z1

u−�=1} = 0.(6.7)

Next consider the case when Z1
t1

�= 1. The probability that the process Z1 jumps
to 1 before t2 is equal to 1 − e−(t2−t1)/(k−1), so

PQk

(
Z1

t1
�= 1, S1 ≤ t2

) = k − 1

k

(
1 − e−(t2−t1)/(k−1)),(6.8)

and, consequently,

lim
k→∞kEQk

(1{Z1
t1

�=1}1{S1≤t2}) = t2 − t1.(6.9)
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By the strong Markov property applied at S1 and (6.7),

lim
k→∞kEQk

∑
m≥2

1{Z1
t1

�=1}1{Sm≤t2} = 0.(6.10)

We combine (6.7) and (6.9)–(6.10) to see that (6.5) holds, and therefore, (6.3) is
true.

Given (6.3), in order to prove (6.4), it is necessary and sufficient to show that

lim
k→∞ lim

n→∞EQk
A(k,n)2 ≤ (t2 − t1)

2.(6.11)

Let S
j
1 , S

j
2 , . . . denote the consecutive jumps of Zj to the state 1 on the interval

(t1, t2]. We have

A(k,n)2 =
(

k

n

)2 ∑
u,v∈[t1,t2]

n∑
i,j=1

1{Zi
u=1,Zi

u−�=1,Z
j
v=1,Z

j
v−�=1}

=
(

k

n

)2 ∑
m,r≥1

n∑
i,j=1

1{Si
m≤t2,S

j
r ≤t2}

=
(

k

n

)2 ∑
m,r≥1

n∑
j=1

1{Sj
m≤t2,S

j
r ≤t2}

(6.12)

+
(

k

n

)2 ∑
m,r≥1

n∑
i,j=1,i �=j

1{Si
m≤t2,S

j
r ≤t2}

≤
(

k

n

)2 n∑
j=1

1{Sj
1 ≤t2} +

(
k

n

)2 ∑
m≥2

2m

n∑
j=1

1{Sj
m≤t2}

+
(

k

n

)2 ∑
m,r≥1

n∑
i,j=1,i �=j

1{Si
m≤t2,S

j
r ≤t2}.

Combining (6.6) and (6.8), we obtain

PQk

(
S1

1 ≤ t2
) ≤ (t2 − t1)(k − 1)−2 + k − 1

k

(
1 − e−(t2−t1)/(k−1)),

which has a finite value for each k, so

lim
k→∞ lim

n→∞EQk

[(
k

n

)2 n∑
j=1

1{Sj
1 ≤t2}

]
= 0.(6.13)

By (6.6) and the strong Markov property applied at S
j
1 , we have for m ≥ 2,

PQk

(
Sj

m ≤ t2
) ≤ (t2 − t1)

m−1(k − 1)−m,
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so

lim
k→∞ lim

n→∞EQk

[(
k

n

)2 ∑
m≥2

2m

n∑
j=1

1{Sj
m≤t2}

]
(6.14)

≤ lim
k→∞ lim

n→∞

[(
k

n

)2 ∑
m≥2

2m

n∑
j=1

(t2 − t1)
m−1(k − 1)−m

]
= 0.

In view of (6.12)–(6.14), to complete the proof of (6.11), it remains to show that

lim
k→∞ lim

n→∞EQk

[(
k

n

)2 ∑
m,r≥1

n∑
i,j=1,i �=j

1{Si
m≤t2,S

j
r ≤t2}

]
≤ (t2 − t1)

2.(6.15)

Since the joint distribution of (Zi,Zj ) does not depend on i and j as long as i �= j ,
(6.15) will follow once we prove

lim
k→∞EQk

[
k2

∑
m,r≥1

1{S1
m≤t2,S

2
r ≤t2}

]
≤ (t2 − t1)

2.(6.16)

We will estimate the proportion of time that Z1 and Z2 spend in the same state.
After the two processes meet, they spend an exponential amount of time together,
with mean one, and then they jump at the same time. They jump to the same state
with probability 1/(k −1) and if they do, they spend another period of exponential
length in the same state. The sequence of jumps to the same state has geometric
length with expectation (k − 1)/(k − 2), so the total time the processes spend
together before they separate has expectation (k − 1)/(k − 2). When the processes
travel through separate states, each one jumps to the state occupied by the other
process at the rate 1/(k − 1), so the waiting time for the next meeting at some state
is exponential with mean (k − 1)/2. It follows that in the long run, the proportion
of time the two processes are in the same state is

(k − 1)/(k − 2)

(k − 1)/(k − 2) + (k − 1)/2
= 2

k
.(6.17)

By symmetry, the proportion of time spent by the two processes in state 1 is 2/k2,
so

PQk

(
Z1

t1
= 1,Z2

t1
= 1

) = 2/k2.

This and the argument given in support of (6.6) can be combined to see that

PQk

(
Z1

t1
= Z2

t1
= 1, S1

m ≤ t2
) ≤ 2

k2

(
1 − e−(t2−t1)/(k−1))m

≤ 2(t2 − t1)
m(k − 1)−m−2,
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and, therefore,

EQk

[
k2

∑
m,r≥1

1{Z1
t1

=Z2
t1

=1,S1
m≤t2,S

2
r ≤t2}

]
≤ 2EQk

[
k2

∑
1≤r≤m

1{Z1
t1

=Z2
t1

=1,S1
m≤t2,S

2
r ≤t2}

]

≤ 2EQk

[
mk2

∑
m≥1

1{Z1
t1

=Z2
t1

=1,S1
m≤t2}

]

≤ 4k2
∑
m≥1

m(t2 − t1)
m(k − 1)−m−2.

This implies that

lim
k→∞EQk

[
k2

∑
m,r≥1

1{Z1
t1

=Z2
t1

=1,S1
m≤t2,S

2
r ≤t2}

]
= 0.(6.18)

We will now estimate PQk
(Z1

t1
= 1, S1

m ≤ t2, S
2
r ≤ t2). By symmetry, PQk

(Z1
t1

=
1) = 1/k. Consider the case m = r = 1, and suppose that Z1

t1
= 1. After the pro-

cess Z1 jumps to some other state, it has probability less than 1 − e−(t2−t1)/(k−1)

of jumping to 1 in the remaining time in the interval [t1, t2]. The probabil-
ity that Z2 will jump to 1 from some other state during [t1, t2] is bounded by
1 − e−(t2−t1)/(k−1), no matter where Z2 is at the time t1. Hence, the probability
that at least one of the processes Z1 or Z2 jumps to 1 from some other state during
[t1, t2] is bounded by 2(1 − e−(t2−t1)/(k−1)). Now we consider two cases. The first
one is that at the time of the first jump of Z1 or Z2 to 1 from some other state;
the other process jumps as well. The conditional probability that the second one
will also jump to 1 is 1/(k − 1). The second case is that the other process does not
jump at the same time. The probability that it will jump to 1 in the remaining time
in [t1, t2] is bounded by 1 − e−(t2−t1)/(k−1). Altogether,

PQk

(
Z1

t1
= 1, S1

1 ≤ t2, S
2
1 ≤ t2

)
≤ 1

k
· 2

(
1 − e−(t2−t1)/(k−1))( 1

k − 1
+ 1 − e−(t2−t1)/(k−1)

)
(6.19)

≤ c(t1, t2)
1

(k − 1)3 .

The same argument that proves (6.6) gives for any n and m ≥ 1,

PQk

(
Z1

t1
= 1, S1

m ≤ t2
) ≤ 1

k

(
1 − e−(t2−t1)/(k−1))m

(6.20)
≤ (t2 − t1)

m(k − 1)−m−1

and

PQk

(
Z1

t1
= 1, S2

m ≤ t2
) ≤ 1

k

(
1 − e−(t2−t1)/(k−1))m

(6.21)
≤ (t2 − t1)

m(k − 1)−m−1.
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We combine (6.19)–(6.21) to see that

EQk

[
k2

∑
m,r≥1

1{Z1
t1

=1,S1
m≤t2,S

2
r ≤t2}

]

≤ EQk

[
k21{Z1

t1
=1,S1

1≤t2,S
2
1≤t2}

]+EQk

[
k2

∑
1≤r≤m,m≥2

1{Z1
t1

=1,S1
m≤t2,S

2
r ≤t2}

]

+EQk

[
k2

∑
1≤m≤r,r≥2

1{Z1
t1

=1,S1
m≤t2,S

2
r ≤t2}

]

≤ EQk

[
k21{Z1

t1
=1,S1

1≤t2,S
2
1≤t2}

]+EQk

[
mk2

∑
m≥2

1{Z1
t1

=1,S1
m≤t2}

]

+EQk

[
rk2

∑
r≥2

1{Z1
t1

=1,S2
r ≤t2}

]

≤ k2c(t1, t2)
1

(k − 1)3 + 2k2
∑
m≥2

m(t2 − t1)
m(k − 1)−m−1.

This implies that

lim
k→∞EQk

[
k2

∑
m,r≥1

1{Z1
t1

=1,S1
m≤t2,S

2
r ≤t2}

]
= 0.(6.22)

By symmetry,

lim
k→∞EQk

[
k2

∑
m,r≥1

1{Z2
t1

=1,S1
m≤t2,S

2
r ≤t2}

]
= 0.(6.23)

It follows from (6.17) that PQk
(Z1

t1
= Z2

t1
�= 1) = 2(k − 1)/k2. The reasoning

completely analogous to that given in the case when Z1
t1

= 1 yields

lim
k→∞EQk

[
k2

∑
m,r≥1

1{Z1
t1

=Z2
t1

�=1,S1
m≤t2,S

2
r ≤t2}

]
= 0.(6.24)

Finally, consider the event F := {Z1
t1

�= Z2
t1
,Z1

t1
�= 1,Z2

t1
�= 1}. The probability

that Z1 will jump to 1 during [t1, t2] is equal to 1 − e−(t2−t1)/(k−1). Let τ = inf{t ≥
t1 :Z1

t = Z2
t } (τ = t2 if the two processes do not meet before t2). We have

PQk

(
F,S1

1 ≤ t2, S
2
1 ≤ t2

)
= PQk

(
F,S1

1 < τ < S2
1 ≤ t2

)+ PQk

(
F,S2

1 < τ < S1
1 ≤ t2

)
(6.25)

+ PQk

(
F, τ < S1

1 ≤ t2, τ < S2
1 ≤ t2

)
+ PQk

(
F,S1

1 ≤ t2, S
2
1 ≤ τ ∧ t2

)
.
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Our usual estimates give

PQk

(
F,S2

1 < τ < S1
1 ≤ t2

) ≤ (
1 − e−(t2−t1)/(k−1))3 ≤ (t2 − t1)

3(k − 1)−3,

so

lim
k→∞EQk

[
k21F∩{S2

1<τ<S1
1≤t2}

] ≤ lim
k→∞k2(t2 − t1)

3(k − 1)−3 = 0,(6.26)

and, by symmetry,

lim
k→∞EQk

[
k21F∩{S1

1<τ<S2
1≤t2}

] = 0.(6.27)

Given {Z1
t , t ∈ [t1, t2]}, the conditional probability that Z2 jumps to 1 before or

at time τ ∧ t2 is bounded by 1 − e−(t2−t1)/(k−1). It follows that

PQk

(
F,S1

1 ≤ t2, S
2
1 ≤ τ ∧ t2

) ≤ (
1 − e−(t2−t1)/(k−1))2 ≤ (t2 − t1)

2(k − 1)−2

and

lim
k→∞EQk

[
k21F∩{S1

1≤t2,S
2
1≤τ∧t2}

] ≤ lim
k→∞k2(t2 − t1)

2(k − 1)−2

(6.28)
= (t2 − t1)

2.

The probability that, given F , the coupling time τ will occur before t2 is
bounded by 1 − e−(t2−t1)/(k−1) ≤ (t2 − t1)/(k − 1), so using the strong Markov
property at τ , the case of F ∩{τ < S1

1 ≤ t2, τ < S2
1 ≤ t2} is reduced to that in (6.24),

and we obtain the following bound:

lim
k→∞EQk

[
k21F∩{τ<S1

1≤t2,τ<S2
1≤t2}

] = 0.(6.29)

In view of (6.25), estimates (6.26)–(6.29) yield

lim
k→∞EQk

[
k21F∩{S1

1≤t2,S
2
1≤t2}

] ≤ (t2 − t1)
2.(6.30)

A similar analysis gives

lim
k→∞EQk

[
k21F∩{S1

2≤t2,S
2
1≤t2}

] = 0(6.31)

and

lim
k→∞EQk

[
k21F∩{S1

1≤t2,S
2
2≤t2}

] = 0.(6.32)

Our usual arguments give for m ≥ 0,

PQk

(
S1

m ≤ t2|F ) ≤ (
1 − e−(t2−t1)/(k−1))m ≤ 2(t2 − t1)

m(k − 1)−m,

so

EQk

[
k2

∑
m,r≥3

1F∩{S1
m≤t2,S

2
r ≤t2}

]
≤ EQk

[
mk2

∑
m≥3

1F∩{S1
m≤t2}

]

≤ mk2
∑
m≥3

2(t2 − t1)
m(k − 1)−m,
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and, therefore,

lim
k→∞EQk

[
k2

∑
m,r≥3

1F∩{S1
m≤t2,S

2
r ≤t2}

]
= 0.

This and (6.30)–(6.32) give

lim
k→∞EQk

[
k2

∑
m,r≥1

1F∩{S1
m≤t2,S

2
r ≤t2}

]
≤ (t2 − t1)

2.

We deduce (6.16) from the last estimate, (6.18) and (6.22)–(6.24). This completes
the proof. �

PROOF OF COROLLARY 6.3. (i) The process {N1
t , t ≥ 0} is Poisson with rate

one. It is routine to check that the exponential distribution with mean 1 is the
stationary distribution for the process t → t − T 1

t . This easily implies part (i) of
the corollary.

(ii) Processes Nj , j = 1, . . . , n, are independent, so processes {t − T
j
t , t ≥ 0},

j = 1, . . . , n, are independent. This and Theorem 6.2 imply part (ii). �

7. Earthworm effect. An “earthworm” model was introduced in [7]. The
model involves a ball moving in a Euclidean torus which pushes “soil particles”
aside. The motion of the center of the ball is that of Brownian motion. The pa-
per [7] contains a result which suggests that in dimensions 3 and higher, the “spher-
ical earthworm” does not compactify the soil on a global scale, assuming that the
torus diameter is much larger than that of the ball (the result is asymptotic, in other
words). The result in [7] does not answer a number of conjectures stated in that
paper. Finishing that research program appears to involve major technical chal-
lenges. In this article, we will present a discrete version of the earthworm model
and a result that is closer to the conjectures stated in [7], at least at the heuristic
level. We will show that if G = Cd

n is a torus with a large diameter, then in the
long run, the soil will be uniformly distributed over G, in an appropriate sense, as
a result of earthworm’s stirring action.

We now present the rigorous version of the “earthworm” model. Given
a graph G with a vertex set V , we will define the mass process Mt =
(M

v1
t ,M

v2
t , . . .), with an evolution different than that in the previous sections of

the paper. Suppose that Bt (the “earthworm”) is a simple random walk on G, that
is, Bt is a Markov process which takes values in V , stays constant for an exponen-
tial (mean 1) amount of time, and jumps to a uniformly chosen nearest neighbor
at the end of the exponential holding time. At the time t of a jump of B , MBt

jumps to 0. At the same time, the mass M
Bt
t− is “distributed” to all adjacent sites,

that is, for every vertex x connected to Bt by an edge, the process Mx increases by
M

Bt
t−/dv , that is, Mx

t = Mx
t− + M

Bt
t−/dv . The processes Mv are constant between
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the jumps of B . The mass Mv can jump only when B jumps to v or a neighbor
of v in the graph G.

Let M be the empirical measure for the process {Mv
t }v∈V , that is, Mt =∑

v∈V δMv
t
, where δx stands for the measure with a unit atom at x (“Dirac’s delta”).

Note that in the following theorem, by the symmetry of the torus, the initial
position of B is irrelevant, so we may assume that B0 = 0 := (0, . . . ,0).

THEOREM 7.1. Fix d ≥ 1, and let Mn
t be the empirical measure process for

the earthworm process on the graph G = Cd
n . Assume that Mv

0 = 1/nd for v ∈ V

(hence
∑

v∈V Mv
0 = 1).

(i) For every n, the random measures Mn
t converge weakly to a random mea-

sure Mn∞, when t → ∞.
(ii) For R ⊂ R

d and a ∈ R, let aR = {x ∈ R
d :x = ay for some y ∈ R} and

M̂n∞(R) = Mn∞(nR). When n → ∞, the random measures M̂n∞ converge weakly
to the random measure equal to, a.s., the uniform probability measure on [0,1]d .

PROOF. (i) The proof of Theorem 3.2 applies in the present case, with some
minor modification accounting for the fact that the mass redistribution mechanism
is given by B rather than Poisson processes Nx . Hence, there exists a unique sta-
tionary distribution Q for (Mt ,Bt ). Under Q, Mn

t has distribution Mn∞.
(ii) Let |R| denote the d-dimensional Lebesgue measure of R ⊂ R

d . To prove
part (ii) of the theorem, it will suffice to show that for every fixed rectangle
R ⊂ [0,1]d with rational vertices, limn→∞ M̂n∞(R) = |R|, in probability. It will
be enough to show that

lim
n→∞EQM̂n∞(R) = |R|(7.1)

and

lim
n→∞ VarQ M̂n∞(R) = 0.(7.2)

By symmetry, EQMx
0 = EQM

y
0 for all x, y ∈ V . Since

∑
x∈V Mx

0 = 1 under Q,
we must have EQMx

0 = 1/nd . By abuse of notation, we give | · | another meaning—
it will denote the cardinality of an (at most) countable set. We have

lim
n→∞EQM̂n∞(R) = lim

n→∞EQMn∞(nR) = lim
n→∞

1

nd
|nR ∩ V | = |R|,

and thus (7.1) is proved.
Let Z and Z̃ be defined as Z1 and Z2 in Definition 2.1. In particular, P(Z0 =

x) = P(Z̃0 = x) = Mx
0 for x ∈ V . However, note that in the present case, the pro-

cess {Zt, t ≥ 0} jumps at a time t if and only if B jumps at the time t and Bt = Zt−.
A similar remark applies to {Z̃t , t ≥ 0}. Note that the jump times of Z and Z̃ are
defined by the same process B .
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The state space for the process (Z, Z̃) is finite, so it has a stationary distribution.
The stationary distribution is unique because all states communicate. We will next
estimate the stationary probabilities, in the asymptotic sense, when n → ∞.

Let �Zt = Zt − Z̃t ∈ V (in the sense of group operations on the Cayley graph).
Although �Zt is not a Markov process (as far as we can tell), it is clear how to define
a discrete time Markov chain {Uj , j ≥ 1} embedded in �Zt .

For x ∈ V , let B(x, r) denote the closed ball in V with center x and radius r ,
relative to the graph distance.

Let h be set of all vertices (f1, . . . , fd) such that |fi | = 1 for some i, and fm = 0
for all m �= i. It has been shown in the proof of Theorem 5.1 that the stationary dis-
tribution {πx, x ∈ V } for U has the following form. For some normalizing constant
c1 > 0, πx = (1 − 1

2d
)c1 for all x ∈ h and πx = c1 for all other x ∈ V .

Although �Z is not a Markov process, (�Z,Z, Z̃) is. We will consider the process
(�Z,Z, Z̃) in the stationary regime. Let �Z have the corresponding marginal distri-
bution. We will estimate the proportion of time that �Z spends in different states.
For each state x, we will estimate the product of πx and the expected amount of
time between the time τ1 of the first jump of �Z to x and the time τ2 of the next
jump. Let us call the random time between these jumps τx = τ2 − τ1. Hence we
will estimate Eτx .

Consider x ∈ B(0,2)c and any two neighbors y and z of x. We have πy = πz,
so the probability that the process �Z jumps to x from y is equal to the probability
that the process �Z jumps to x from z. Hence, P(Bτ1 = x) = P(Bτ1 = y) for any
neighbors x and y of Zτ1 and Z̃τ1 . The time τx is the same as the waiting time for
the first hit of {Zτ1, Z̃τ1} after time τ1, for B .

Let K be the set of all neighbors of Zτ1 and Z̃τ1 . We have shown that the distri-
bution of Bτ1 is uniform on K . It follows from [1], Corollary 24, page 21, Chap-
ter 2, that the expected time until B hits {Zτ1, Z̃τ1} is |V |/2 − 1. This implies that
Eτx = |V |/2 − 1. Thus for any x, y ∈ B(0, n1)

c, we have Eτx = Eτy . This and the
fact that πx = πy imply that, under the stationary distribution, for x, y ∈ B(0,2)c,
P(�Z0 = x) = P(�Z0 = y). Therefore, if x − y ∈ B(0,2)c,

PQ(Z0 = x, Z̃0 = y) = PQ(Z0 = x)PQ(Z̃0 = y).(7.3)

For x ∈ B(0,2) we have a rough bound Eτx ≤ c1n
d , which yields for x − y ∈

B(0,2),

PQ(Z0 = x, Z̃0 = y) ≤ c2PQ(Z0 = x)PQ(Z̃0 = y).(7.4)

Let Gt = σ(Ms,0 ≤ s ≤ t) = σ(M0,Bs,0 ≤ s ≤ t). We have for x ∈ V ,

PQ(Z0 = x|G0) = Mx
0 .

The processes Zt and Z̃t are conditionally independent given Gt , so for x, y ∈ V ,

PQ(Zt = x, Z̃t = y|Gt ) = Mx
t M

y
t .
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By stationarity, for x, y ∈ V ,

PQ(Z0 = x, Z̃0 = y|G0) = Mx
0 M

y
0 .

Thus

EQ

(
Mx

0 M
y
0

) = EQPQ(Z0 = x, Z̃0 = y|G0) = PQ(Z0 = x, Z̃0 = y).

We obtain

EQ

(
Mn∞(nR)

)2 = ∑
x,y∈nR

EQ

(
Mx

0 M
y
0

)
(7.5)

= ∑
x,y∈nR

x−y∈B(0,2)c

EQ

(
Mx

0 M
y
0

)+ ∑
x,y∈nR

x−y∈B(0,2)

EQ

(
Mx

0 M
y
0

)
.

It follows from (7.4) that∑
x,y∈nR

x−y∈B(0,2)

EQ

(
Mx

0 M
y
0

) = ∑
x,y∈nR

x−y∈B(0,2)

PQ(Z0 = x, Z̃0 = y)

≤ ∑
x,y∈nR

x−y∈B(0,2)

c2PQ(Z0 = x)PQ(Z̃0 = y)(7.6)

≤ c3|R|/nd.

We use (7.3) to see that∑
x,y∈nR

x−y∈B(0,2)c

EQ

(
Mx

0 M
y
0

) = ∑
x,y∈nR

x−y∈B(0,2)c

PQ(Z0 = x, Z̃0 = y)

≤ ∑
x,y∈nR

x−y∈B(0,2)c

PQ(Z0 = x)PQ(Z̃0 = y) ≤ |R|2.

This, (7.5) and (7.6) give

lim
n→∞EQ

(
Mn∞(nR)

)2 ≤ lim
n→∞

(
c3|R|/nd + |R|2) = |R|2.

We obtain, limn→∞EQ(Mn∞(nR))2 ≤ |R|2. This shows (7.2), thus completing the
proof. �
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