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Symmetric Groups

Notation.
I Sn is the group of permutations.
I ti ,j = (i ¡ j) = transposition for i < j,
I si = (i ¡ i + 1) = simple transposition for 1 Æ i < n.

Example. w = [3, 4, 1, 2, 5] œ S
5

,

ws
4

= [3, 4, 1, 5, 2] and s
4

w = [3, 5, 1, 2, 4].



Symmetric Groups

Presentation.
Sn is generated by s

1

, s
2

, . . . , sn≠1

with relations

sisi = 1
(sisj)2 = 1 if |i ≠ j| > 1
(sisi+1

)3 = 1

This presentation of Sn by generators and relations is encoded an
edge labeled chain, called a Coxeter graph.
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Symmetric Groups

Notation. Given any w œ Sn write

w = si
1

si
2

· · · sik

in a minimal number of generators. Then
I k is the length of w denoted ¸(w).
I ¸(w) = #{(i < j) | w(i) > w(j)} (inversions).
I si

1

si
2

· · · sik is a reduced expression for w .

Example. w = [2, 1, 4, 3, 7, 6, 5] œ S
7

has 5 inversions, ¸(w) = 5.

w = [2, 1, 4, 3, 7, 6, 5] = s
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Symmetric Groups

Poincaré polynomials. Interesting q-analog of n!:

ÿ

wœSn

q¸(w) = (1+q)(1+q +q2) · · · (1+q +q2 + . . .+qn≠1) = [n]q!.

Examples.
[2]q! = 1 + q
[3]q! = 1 + 2q + 2q2 + q3

[4]q! = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6

Fact. The Poincaré polynomial [n]q! is the Hilbert series for
Hú(GLn/B) and for the coinvariant algebra Z[x

1

, . . . , xn]/Èe
1

, . . .Í.
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Ascent Sets

Def. For w œ Sn, the (right) ascent set of w is

Ascents(w) = {1 Æ i Æ n ≠ 1 | w(i) < w(i + 1)}

= {1 Æ i Æ n ≠ 1 | ¸(w) < ¸(wsi)}.

Similarly, Descents(w) = {1 Æ i Æ n ≠ 1 | w(i) > w(i + 1)}

Example. Ascents([3, 4, 1, 2, 5]) = {1, 3, 4},
Descents([3, 4, 1, 2, 5]) = {2}



Ascent Sets

Eulerian polynomials. Another interesting q-analog of n!:

An(q) =
n≠1ÿ

k=0

An,kqk =
ÿ

wœSn

q#Ascents(w)

where Ascents(w) = {i | w(i) < w(i + 1)}.
See Petersen’s book “Eulerian Numbers.”

Examples. A
2

(q) = 1 + q
A

3

(q) = 1 + 4q + q2

A
4

(q) = 1 + 11q + 11q2 + q3

Theorem. (Holte 1997, Diaconis-Fulman 2009) When adding
together n large randomly chosen numbers in any base, the
probability of carrying a k for 0 Æ k < n is approximately An,k/n!.
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Parabolic Subgroups and Cosets
Defn. For any subset I œ {1, 2, . . . , n ≠ 1} = [n ≠ 1], let WI be
the parabolic subgroup of Sn generated by Èsi | i œ IÍ.

Defn. Sets of permutations of the form wWI (or WIw) are left
(or right) parabolic cosets for WI for any w œ Sn.

Example. Take I = {1, 3, 4} and w = [3, 4, 1, 2, 5]. Then the left
coset wWI includes the 12 permutations

[34125] [34152] [34215] [34512] [34251] [34521]
[43125] [43152] [43215] [43512] [43251] [43521]

Facts.
I Every parabolic coset has a unique minimal and a unique

maximal length element.
I Every parabolic coset for WI has size |WI |.
I Sn is the disjoint union of the n!/|WI | left parabolic cosets

Sn/WI .
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Parabolic Double Cosets

Defn. Let I, J œ [n ≠ 1] and w œ Sn, then the sets of
permutations the form WI · w · WJ are parabolic double cosets.

Example. Take I = {2}, J = {1, 3, 4} and w = [3, 4, 1, 2, 5].
Then the parabolic double coset WIwWJ includes

[34125] [34152] [34215] [34512] [34251] [34521]
[43125] [43152] [43215] [43512] [43251] [43521]

plus

[24135] [24153] [24315] [24513] [24351] [24531]
[42135] [42153] [42315] [42513] [42351] [42531]

Example. WI [4, 5, 1, 2, 3] WJ has 12 elements.
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Parabolic Double Cosets

Facts.
I Parabolic double coset for WI , WJ can have di�erent sizes.

I Sn is the disjoint union of the parabolic double cosets

WI\Sn/WJ = {WIwWJ | w œ Sn}.

I Every parabolic double coset has a unique minimal and a
unique maximal length element.

Thm.(Kobayashi 2011) Every parabolic double coset is an interval
in Bruhat order. The corresponding Poincaré polynomials are
palindromic

PI,w ,J(q) =
ÿ

vœWIwWJ

q¸(v).
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Connection to Richardson Varieties

Thm. The Richardson variety in GLn(C)/B indexed by u < v is
smooth if and only if the following polynomial is palindromic

ÿ

uÆvÆw
q¸(v).

References on smooth Richardson varieties: See book by
Billey-Lakshmibai, and papers by Carrell-Kuttler, Billey-Coskun,
Lam-Knutson-Speyer, Kreiman-Lakshmibai, Knutson-Woo-Yong,
Lenagan-Yakimov and many more.



Connections to Algebra

I Solomon (1976) gives a formula for the structure constants
in his descent algebra basis elements in terms of parabolic
double cosets.

I Garsia-Stanton (1984) use parabolic double cosets in their
construction of basic sets for the Stanley-Reisner Rings of
Coxeter complexes.

I Stembridge (2005) uses parabolic double cosets to
characterize tight quotients and embeddings of Bruhat order
into Rd .



Counting Parabolic Double Cosets

Question 1. For a fixed I, J , how many distinct parabolic double
cosets are there in WI\Sn/WJ?

Question 2. Is there a nice formula for f (n) =
ÿ

I,J
|WI\Sn/WJ |?

Question 3. How many distinct parabolic double cosets are there
in Sn in total?



Counting Double Cosets

I G= finite group
I H, K = subgroups of G
I H\G/K = double cosets of G with respect to H, K

= {HgK : g œ G}

Generlization of Question 1. What is the size of H\G/K?

One Answer..
The size of H\G/K is given by the inner product of the characters
of the two trivial representations on H and K respectively induced
up to G .

Reference: Stanley’s “Enumerative Combinatorics” Ex 7.77a.
Parabolic subgroups are Young subgroups for Sn so this translates
into a symmetric function computation.
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Counting Parabolic Double Cosets

Question 2. Is there a nice formula for f (n) =
ÿ

I,J
|WI\Sn/WJ |?

Data. 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161
(A120733 in OEIS)

This counts the number of “two-way contingency tables” (see
Diaconis-Gangoli 1994), the dimensions of the graded components
of the Hopf algebra MQSym (see Duchamp-Hivert-Thibon 2002),
and the number of cells in a two-sided analogue of the Coxeter
complex (Petersen 2016).



Counting Parabolic Double Cosets

Question 3. How many distinct parabolic double cosets are there
in Sn in total?

Data.: p(n) = |{WIvWJ | v œ Sn, I, J µ [n ≠ 1]}|,
1, 3, 19, 167, 1791, 22715, 334031, 5597524, 105351108, 2200768698

Not formerly in the OEIS! Now, see A260700.



Counting Parabolic Double Cosets

Question 3. How many distinct parabolic double cosets are there
in Sn in total?

Defn. For w œ Sn, let cw be the number of distinct parabolic
double cosets with w minimal.

One Answer. p(n) =
ÿ

wœSn

cw .



Representing Parabolic Double Cosets

Lemma. w is minimal in WIwWJ if and only if ¸(siw) > ¸(w) for
all i œ I and ¸(wsj) > ¸(w) for all j œ J . So

cw = #{WIwWJ | I µ Ascent(w≠1), J µ Ascent(w)}.

Observation. Frequently WIwWJ = WIÕwWJ Õ even if
I, I Õ µ Ascent(w≠1) and J , J Õ µ Ascent(w).

Dilemma. Which representation is best for enumeration?



Representing Parabolic Double Cosets

Example. w = [3, 4, 1, 2, 5] = w≠1, Ascent(w) = {1, 3, 4},

ws
1

= [4, 3, 1, 2, 5] = s
3

w so W{3}wW{} = W{}wW{1}.
ws

4

= [3, 4, 1, 5, 2] ”= siw for any i and
s
4

w = [3, 5, 1, 2, 4] ”= wsi for any i .

Defn. A small ascent for w is an ascent j such that wsj = siw .
Every other ascent is large.

Enumeration Principle. To count distinct parabolic double
cosets WIwWJ with w minimal, J can contain any subset of large
ascents for w , I can contain any subset of large ascents for w≠1,
count the small ascents very carefully!
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Counting Parabolic Double Cosets

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)
1. There is a finite family of 81 integer sequences {bI

m | m Ø 0},
such that for any permutation w , the total number of
parabolic double cosets with minimal element w is equal to

cw = 2| Floats(w)| ÿ

T™Tethers(w)

Q

a
Ÿ

RœRafts(w)

bI(R,T )

|R|

R

b .

2. The sequences bI
m satisfy a linear homogeneous constant

coe�cient recurrence, and thus can be easily computed in
time linear in m.

3. The expected number of tethers for w œ Sn approaches 1

n .
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The Marine Model

Main Formula. For w œ Sn,

cw = 2| Floats(w)| ÿ

T™Tethers(w)

Q

a
Ÿ

RœRafts(w)

bI(R,T )

|R|

R

b .

The w-Ocean.
1. Take 2 parallel copies of the Coxeter graph G of Sn.

2. Connect vertex i œ Ascent(w≠1) and vertex j œ Ascent(w) by
a new edge called a plank whenever wsj = siw .

3. Remove all edges not incident to a small ascent.



The Marine Model

Example. Rafts, tethers, floats and ropes of the w -ocean
w = [1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13].
rope raft tether raft float rope raft raft

float rope tether

The Marine Model Terminology.
1. Raft – a maximal connected component of adjacent planks.
2. Float – a large ascent not adjacent to any rafts.
3. Rope – a large ascent adjacent to exactly one raft.
4. Tether – a large ascent connected to two rafts.



The Marine Model

Example. w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).
rope raft tether raft float rope raft raft

float rope tether

Formula. cw = 2| Floats(w)| ÿ

T™Tethers(w)

Q

a
Ÿ

RœRafts(w)

bI(R,T )

|R|

R

b .

= 22(b(4,8)

2

· b(4,8)

1

· b(4,8)

2

· b(4,8)

4

+ b(4)

2

· b(4)

1

· b(4)

2

· b(4)

4

+b(8)

2

· b(8)

1

· b(8)

2

· b(8)

4

+ b()

2

· b()

1

· b()

2

· b()

4

)
= 22(71280 + 136620 + 144180+245640) = 2, 390, 880
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Proof Sketch

Defn. A presentation (I, w , J) is lex minimal for D = WIwWJ
provided |I| < |I Õ| or |I| = |I Õ| and |J | < |J Õ| for all other
presentations (I Õ, w , J Õ) for D.

Example. w = [2, 3, 4, . . . , 15, 16, 1] œ S
16
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Note. Over the identity, lex-minimal presentations are two-level
versions of the staircase diagrams in [Richmond-Slofstra 2016].
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Key Steps
Lemma. Every parabolic double coset has a unique lex-minimal
presentation.

Lemma. Lex minimal presentations along any one raft correspond
with words in the finite automaton below (loops are omitted),
hence they are enumerated by a rational generating function
PI(x)/Q(x) by the Transfer Matrix Method.



Review
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Coxeter Groups

I G = Coxeter graph with vertices {1, 2, . . . , n},
edges labeled by ZØ3

fi Œ .

•
1

4 •
2

3 •
3

3 •
4

¥ •
1

4 •
2

•
3

•
4

I W = Coxeter group generated by S = {s
1

, s
2

, . . . , sn} with
relations

1. s2

i = 1.
2. sisj = sjsi if i , j not adjacent in G .
3. sisjsi · · ·

¸ ˚˙ ˝
m(i,j) gens

= sjsisj · · ·
¸ ˚˙ ˝
m(i,j) gens

if i , j connected by edge labeled m(i , j).



Examples



Generalizing the notation from Symmetric Groups

I W = Coxeter group generated by S = {s
1

, s
2

, . . . , sn} with
special relations.

I ¸(w) = length of w = length of a reduced expression for w .

I WI = Èsi | i œ IÍ is a parabolic subgroup of W .

I WIwWJ is a parabolic double coset of W for any I, J µ [n],
w œ W .

I cw = number of distinct parabolic double cosets in W with
minimal element w .



Generalizing Main Theorem to Coxeter Groups

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)
1. For every Coxeter group W and w œ W , we have

cw = 2| Floats(w)| ÿ

T™Tethers(w)

W ™Wharfs(w)

Q

a
Ÿ

RœRafts(w)

bI(R,T ,W )

|R|

R

b .

I The w -ocean, floats, planks, rafts and tethers as before.
I Wharf – a small ascent at a branch node of the Coxeter graph,

along with decorations on the local neighborhood around
branch node.

2. The sequences bI(R,T ,W )

m satisfy a similar constant coe�cient,
linear recurrence based on the same automaton for type A.



Examples
Consider the Coxeter group of type D

4

and cid = 72. Up to
symmetry of the 3 leaves around the central vertex, there are 24
distinct types of allowable lex-minimal presentations (I, id , J).



Examples
Types Dn and Bn≠1

. The number of parabolic double cosets
with minimal element id gives rise to the sequence starting
20, 72, 234, 746, 2380, 7614, 24394, 78192 for n = 3, . . . , 10, and
the generating function

t3

!
20 ≠ 28t + 14t2

"

1 ≠ 5t + 7t2 ≠ 4t3

.

Type En. For n = 6, . . . , 10, the analogous sequence starts with
750, 2376, 7566, 24198, 77532, and the generating function is

t4

!
66 ≠ 96t + 42t2

"

1 ≠ 5t + 7t2 ≠ 4t3

.

Type A�ne An. For n = 2, . . . , 10, the analogous sequence
starts with 98, 332, 1080, 3474, 11146, 35738, 114566, 367248, and
the generating function is

2 ≠ 8t + 22t2 ≠ 28t3 + 20t4 ≠ 4t5

(1 ≠ t) (1 ≠ t + t2) (1 ≠ 5t + 7t2 ≠ 4t3) .



Examples

Type F
4

. The total number of distinct parabolic double cosets is
19,959. The number of parabolic double cosets with w minimal in
F

4

is always in this set of 24:

1, 2, 4, 6, 8, 10, 12, 16, 20, 22, 24, 25, 26

30, 31, 32, 36, 38, 40, 44, 48, 52, 64, 66



Open Problems

1. Follow up to Question 3: Is there a simpler or more e�cient
formula for the total number of distinct parabolic double
cosets are there in Sn than the one given here?

2. Follow up to Question 2: Is there a simpler or more e�cient
formula for f (n) =

ÿ

I,J
|WI\Sn/WJ |?

3. What other families of double cosets for Sn and beyond have
interesting enumeration formulas?

4. What further geometrical properties do Richardson varieties
have when indexed by a parabolic double coset?
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