Enumeration of Parabolic Double Cosets for Coxeter Groups

Sara Billey University of Washington

Based on joint work with: Matjaž Konvalinka, T. Kyle Petersen, William Slofstra and Bridget Tenner based on FPSAC 2016 abstract / forthcoming paper

> Algebraic Combinatorics and Group Actions, Herstmonceux Castle June 12, 2016

> > - ロ ト - 4 回 ト - 4 □

Outline

Background on Symmetric Groups

Parabolic Double Cosets

Main Theorem on Enumeration

The Marine Model

Extension to Coxeter Groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Open Problems

Notation.

- ► *S_n* is the group of permutations.
- $t_{i,j} = (i \leftrightarrow j) = \text{transposition for } i < j$,
- ▶ $s_i = (i \leftrightarrow i + 1) = \text{simple transposition for } 1 \le i < n.$

Example. $w = [3, 4, 1, 2, 5] \in S_5$,

 $ws_4 = [3, 4, 1, 5, 2]$ and $s_4w = [3, 5, 1, 2, 4]$.

Presentation.

 S_n is generated by $s_1, s_2, \ldots, s_{n-1}$ with relations

$$egin{aligned} s_i s_i &= 1 \ (s_i s_j)^2 &= 1 \ ext{if } |i-j| > 1 \ (s_i s_{i+1})^3 &= 1 \end{aligned}$$

This presentation of S_n by generators and relations is encoded an edge labeled chain, called a Coxeter graph.

$$S_7 \approx \bullet_1 \frac{3}{\bullet_2} \bullet_2 \frac{3}{\bullet_3} \bullet_3 \frac{3}{\bullet_4} \bullet_4 \frac{3}{\bullet_5} \bullet_5 \frac{3}{\bullet_6} \bullet_6$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Notation. Given any $w \in S_n$ write

$$w = s_{i_1}s_{i_2}\cdots s_{i_k}$$

in a minimal number of generators. Then

- k is the length of w denoted $\ell(w)$.
- ▶ $\ell(w) = \#\{(i < j) | w(i) > w(j)\}$ (inversions).
- $s_{i_1}s_{i_2}\cdots s_{i_k}$ is a reduced expression for w.

Example. $w = [2, 1, 4, 3, 7, 6, 5] \in S_7$ has 5 inversions, $\ell(w) = 5$.

$$w = [2, 1, 4, 3, 7, 6, 5] = s_1 s_3 s_6 s_5 s_6 = s_3 s_1 s_6 s_5 s_6 = s_3 s_1 s_5 s_6 s_5 = \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Poincaré polynomials. Interesting *q*-analog of *n*!:

$$\sum_{w \in S_n} q^{\ell(w)} = (1+q)(1+q+q^2) \cdots (1+q+q^2+\ldots+q^{n-1}) = [n]_q!.$$

Examples.

$$\begin{split} & [2]_q! = 1 + q \\ & [3]_q! = 1 + 2q + 2q^2 + q^3 \\ & [4]_q! = 1 + 3q + 5q^2 + 6q^3 + 5q^4 + 3q^5 + q^6 \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Poincaré polynomials. Interesting *q*-analog of *n*!:

$$\sum_{w \in S_n} q^{\ell(w)} = (1+q)(1+q+q^2) \cdots (1+q+q^2+\ldots+q^{n-1}) = [n]_q!.$$

Examples.

$$\begin{split} & [2]_q! = 1 + q \\ & [3]_q! = 1 + 2q + 2q^2 + q^3 \\ & [4]_q! = 1 + 3q + 5q^2 + 6q^3 + 5q^4 + 3q^5 + q^6 \end{split}$$

Fact. The Poincaré polynomial $[n]_q!$ is the Hilbert series for $H^*(GL_n/B)$ and for the coinvariant algebra $\mathbb{Z}[x_1, \ldots, x_n]/\langle e_1, \ldots \rangle$.

Ascent Sets

Def. For $w \in S_n$, the (right) *ascent set* of w is

$$Ascents(w) = \{1 \le i \le n - 1 \mid w(i) < w(i + 1)\}$$
$$= \{1 \le i \le n - 1 \mid \ell(w) < \ell(ws_i)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Similarly, $Descents(w) = \{1 \le i \le n-1 \mid w(i) > w(i+1)\}$

Example. Ascents(
$$[3, 4, 1, 2, 5]$$
) = $\{1, 3, 4\}$,
Descents($[3, 4, 1, 2, 5]$) = $\{2\}$

Ascent Sets

Eulerian polynomials. Another interesting *q*-analog of *n*!:

$$A_n(q) = \sum_{k=0}^{n-1} A_{n,k} q^k = \sum_{w \in S_n} q^{\#Ascents(w)}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $Ascents(w) = \{i \mid w(i) < w(i+1)\}$. See Petersen's book "Eulerian Numbers."

Examples.
$$A_2(q) = 1 + q$$

 $A_3(q) = 1 + 4q + q^2$
 $A_4(q) = 1 + 11q + 11q^2 + q^3$

Ascent Sets

Eulerian polynomials. Another interesting *q*-analog of *n*!:

$$A_n(q) = \sum_{k=0}^{n-1} A_{n,k} q^k = \sum_{w \in S_n} q^{\#Ascents(w)}$$

where $Ascents(w) = \{i \mid w(i) < w(i+1)\}$. See Petersen's book "Eulerian Numbers."

Examples.
$$A_2(q) = 1 + q$$

 $A_3(q) = 1 + 4q + q^2$
 $A_4(q) = 1 + 11q + 11q^2 + q^3$

Theorem. (Holte 1997, Diaconis-Fulman 2009) When adding together *n* large randomly chosen numbers in any base, the probability of carrying a *k* for $0 \le k < n$ is approximately $A_{n,k}/n!$.

Parabolic Subgroups and Cosets

Defn. For any subset $I \in \{1, 2, ..., n-1\} = [n-1]$, let W_I be the parabolic subgroup of S_n generated by $\langle s_i | i \in I \rangle$.

Defn. Sets of permutations of the form wW_I (or W_Iw) are left (or right) parabolic cosets for W_I for any $w \in S_n$.

Example. Take $I = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the left coset wW_I includes the 12 permutations

[34125]	[34152]	[34215]	[34512]	[34251]	[34521]
[43125]	[43152]	[43215]	[43512]	[43251]	[43521]

Parabolic Subgroups and Cosets

Defn. For any subset $I \in \{1, 2, ..., n-1\} = [n-1]$, let W_I be the parabolic subgroup of S_n generated by $\langle s_i | i \in I \rangle$.

Defn. Sets of permutations of the form wW_I (or W_Iw) are left (or right) parabolic cosets for W_I for any $w \in S_n$.

Example. Take $I = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the left coset wW_I includes the 12 permutations

[34125]	[34152]	[34215]	[34512]	[34251]	[34521]
[43125]	[43152]	[43215]	[43512]	[43251]	[43521]

Facts.

- Every parabolic coset has a unique minimal and a unique maximal length element.
- Every parabolic coset for W_l has size $|W_l|$.
- ► S_n is the disjoint union of the $n!/|W_l|$ left parabolic cosets S_n/W_l .

Defn. Let $I, J \in [n-1]$ and $w \in S_n$, then the sets of permutations the form $W_I \cdot w \cdot W_J$ are parabolic double cosets.

Example. Take $I = \{2\}$, $J = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the parabolic double coset $W_I w W_J$ includes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Defn. Let $I, J \in [n-1]$ and $w \in S_n$, then the sets of permutations the form $W_I \cdot w \cdot W_J$ are parabolic double cosets.

Example. Take $I = \{2\}$, $J = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the parabolic double coset $W_I w W_J$ includes

[24135]	[24153]	[24315]	[24513]	[24351]	[24531]
[42135]	[42153]	[42315]	[42513]	[42351]	[42531]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Defn. Let $I, J \in [n-1]$ and $w \in S_n$, then the sets of permutations the form $W_I \cdot w \cdot W_J$ are parabolic double cosets.

Example. Take $I = \{2\}$, $J = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the parabolic double coset $W_I w W_J$ includes

[24135] [24153] [24315] [24513] [24351] [24531] [42135] [42153] [42315] [42513] [42351] [42531]

Example. W_{I} [4, 5, 1, 2, 3] W_{J} has 12 elements.

Facts.

- Parabolic double coset for W_I, W_J can have different sizes.
- ► *S_n* is the disjoint union of the parabolic double cosets

$$W_I \setminus S_n / W_J = \{ W_I w W_J \mid w \in S_n \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Every parabolic double coset has a unique minimal and a unique maximal length element.

Facts.

- Parabolic double coset for W_I , W_J can have different sizes.
- ► *S_n* is the disjoint union of the parabolic double cosets

$$W_I \setminus S_n / W_J = \{ W_I w W_J \mid w \in S_n \}.$$

 Every parabolic double coset has a unique minimal and a unique maximal length element.

Thm.(Kobayashi 2011) Every parabolic double coset is an interval in Bruhat order. The corresponding Poincaré polynomials are palindromic

$$\mathcal{P}_{I,w,J}(q) = \sum_{v \in W_I w W_J} q^{\ell(v)}.$$

1

Thm. The Richardson variety in $GL_n(\mathbb{C})/B$ indexed by u < v is smooth if and only if the following polynomial is palindromic

$$\sum_{u\leq v\leq w}q^{\ell(v)}.$$

References on smooth Richardson varieties: See book by Billey-Lakshmibai, and papers by Carrell-Kuttler, Billey-Coskun, Lam-Knutson-Speyer, Kreiman-Lakshmibai, Knutson-Woo-Yong, Lenagan-Yakimov and many more.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connections to Algebra

- Solomon (1976) gives a formula for the structure constants in his descent algebra basis elements in terms of parabolic double cosets.
- Garsia-Stanton (1984) use parabolic double cosets in their construction of basic sets for the Stanley-Reisner Rings of Coxeter complexes.
- ► Stembridge (2005) uses parabolic double cosets to characterize tight quotients and embeddings of Bruhat order into ℝ^d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 1. For a fixed *I*, *J*, how many distinct parabolic double cosets are there in $W_I \setminus S_n / W_J$?

Question 2. Is there a nice formula for $f(n) = \sum_{I,J} |W_I \setminus S_n / W_J|$?

Question 3. How many distinct parabolic double cosets are there in S_n in total?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Counting Double Cosets

- ► G= finite group
- H, K = subgroups of G
- ► $H \setminus G/K = double \ cosets$ of G with respect to H, K= { $HgK : g \in G$ }

Generlization of Question 1. What is the size of $H \setminus G/K$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counting Double Cosets

- ► G= finite group
- H, K = subgroups of G
- ► $H \setminus G/K = double \ cosets$ of G with respect to H, K= { $HgK : g \in G$ }

Generlization of Question 1. What is the size of $H \setminus G/K$?

One Answer..

The size of $H \setminus G/K$ is given by the inner product of the characters of the two trivial representations on H and K respectively induced up to G.

Reference: Stanley's "Enumerative Combinatorics" Ex 7.77a. Parabolic subgroups are Young subgroups for S_n so this translates into a symmetric function computation.

Question 2. Is there a nice formula for $f(n) = \sum_{I,J} |W_I \setminus S_n / W_J|$?

Data. 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161 (A120733 in OEIS)

This counts the number of "two-way contingency tables" (see Diaconis-Gangoli 1994), the dimensions of the graded components of the Hopf algebra MQSym (see Duchamp-Hivert-Thibon 2002), and the number of cells in a two-sided analogue of the Coxeter complex (Petersen 2016).

Question 3. How many distinct parabolic double cosets are there in S_n in total?

Data.:
$$p(n) = |\{W_I v W_J \mid v \in S_n, I, J \subset [n-1]\}|,$$

1, 3, 19, 167, 1791, 22715, 334031, 5597524, 105351108, 2200768698

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Not formerly in the OEIS! Now, see A260700.

Question 3. How many distinct parabolic double cosets are there in S_n in total?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Defn. For $w \in S_n$, let c_w be the number of distinct parabolic double cosets with w minimal.

One Answer.
$$p(n) = \sum_{w \in S_n} c_w$$
.

Lemma. w is minimal in $W_I w W_J$ if and only if $\ell(s_i w) > \ell(w)$ for all $i \in I$ and $\ell(ws_j) > \ell(w)$ for all $j \in J$. So

$$c_w = \#\{W_I w W_J \mid I \subset Ascent(w^{-1}), J \subset Ascent(w)\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Observation. Frequently $W_I w W_J = W_{I'} w W_{J'}$ even if $I, I' \subset Ascent(w^{-1})$ and $J, J' \subset Ascent(w)$.

Dilemma. Which representation is best for enumeration?

Example. $w = [3, 4, 1, 2, 5] = w^{-1}$, Ascent $(w) = \{1, 3, 4\}$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example.
$$w = [3, 4, 1, 2, 5] = w^{-1}$$
, $Ascent(w) = \{1, 3, 4\}$, $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} w W_{\{\}} = W_{\{\}} w W_{\{1\}}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example. $w = [3, 4, 1, 2, 5] = w^{-1}$, $Ascent(w) = \{1, 3, 4\}$, $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} wW_{\{\}} = W_{\{\}} wW_{\{1\}}$. $ws_4 = [3, 4, 1, 5, 2] \neq s_i w$ for any *i* and $s_4 w = [3, 5, 1, 2, 4] \neq ws_i$ for any *i*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example.
$$w = [3, 4, 1, 2, 5] = w^{-1}$$
, $Ascent(w) = \{1, 3, 4\}$,
 $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} w W_{\{\}} = W_{\{\}} w W_{\{1\}}$.
 $ws_4 = [3, 4, 1, 5, 2] \neq s_i w$ for any *i* and
 $s_4 w = [3, 5, 1, 2, 4] \neq ws_i$ for any *i*.

Defn. A small ascent for w is an ascent j such that $ws_j = s_i w$. Every other ascent is large.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example.
$$w = [3, 4, 1, 2, 5] = w^{-1}$$
, $Ascent(w) = \{1, 3, 4\}$,
 $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} w W_{\{\}} = W_{\{\}} w W_{\{1\}}$.
 $ws_4 = [3, 4, 1, 5, 2] \neq s_i w$ for any *i* and
 $s_4 w = [3, 5, 1, 2, 4] \neq ws_i$ for any *i*.

Defn. A small ascent for w is an ascent j such that $ws_j = s_i w$. Every other ascent is large.

Enumeration Principle. To count distinct parabolic double cosets $W_I w W_J$ with w minimal, J can contain any subset of large ascents for w, I can contain any subset of large ascents for w^{-1} , count the small ascents very carefully!

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right)$$

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)}
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. The sequences $b_m^{\mathcal{I}}$ satisfy a linear homogeneous constant coefficient recurrence, and thus can be easily computed in time linear in m.

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)}
ight)$$

- 2. The sequences $b_m^{\mathcal{I}}$ satisfy a linear homogeneous constant coefficient recurrence, and thus can be easily computed in time linear in m.
- 3. The expected number of tethers for $w \in S_n$ approaches $\frac{1}{n}$.

The Marine Model

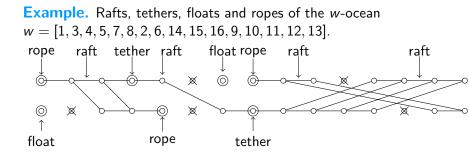
Main Formula. For $w \in S_n$,

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)}
ight)$$

The *w*-Ocean.

- 1. Take 2 parallel copies of the Coxeter graph G of S_n .
- 2. Connect vertex $i \in Ascent(w^{-1})$ and vertex $j \in Ascent(w)$ by a new edge called a plank whenever $ws_j = s_i w$.
- 3. Remove all edges not incident to a small ascent.

The Marine Model



The Marine Model Terminology.

- 1. Raft a maximal connected component of adjacent planks.
- 2. Float a large ascent not adjacent to any rafts.
- 3. Rope a large ascent adjacent to exactly one raft.
- 4. Tether a large ascent connected to two rafts.

The Marine Model

Example. w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).raft tether raft float rope rope raft raft X Ó \bigcirc \odot X X 8 float rope tether Formula. $c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

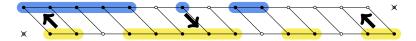
The Marine Model

Example. w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).tether raft float rope rope raft raft raft X Ó 0 ⊚ ↑ X X float rope tether Formula. $c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right).$ $=2^{2}(b_{2}^{(4,8)} \cdot b_{1}^{(4,8)} \cdot b_{2}^{(4,8)} \cdot b_{4}^{(4,8)} + b_{2}^{(4)} \cdot b_{1}^{(4)} \cdot b_{2}^{(4)} \cdot b_{4}^{(4)}$ $+b_{2}^{(8)} \cdot b_{1}^{(8)} \cdot b_{2}^{(8)} \cdot b_{4}^{(8)} + b_{2}^{()} \cdot b_{1}^{()} \cdot b_{2}^{()} \cdot b_{4}^{()})$ $= 2^{2}(71280 + 136620 + 144180 + 245640) = 2,390,880$

Proof Sketch

Defn. A presentation (I, w, J) is lex minimal for $D = W_I w W_J$ provided |I| < |I'| or |I| = |I'| and |J| < |J'| for all other presentations (I', w, J') for D.

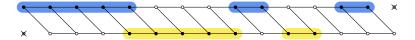
Example. $w = [2, 3, 4, \dots, 15, 16, 1] \in S_{16}$



Proof Sketch

Defn. A presentation (I, w, J) is lex minimal for $D = W_I w W_J$ provided |I| < |I'| or |I| = |I'| and |J| < |J'| for all other presentations (I', w, J') for D.

Example. $w = [2, 3, 4, \dots, 15, 16, 1] \in S_{16}$

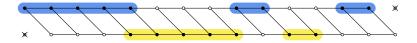


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof Sketch

Defn. A presentation (I, w, J) is lex minimal for $D = W_I w W_J$ provided |I| < |I'| or |I| = |I'| and |J| < |J'| for all other presentations (I', w, J') for D.

Example.
$$w = [2, 3, 4, \dots, 15, 16, 1] \in S_{16}$$



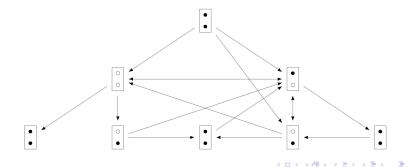
Note. Over the identity, lex-minimal presentations are two-level versions of the staircase diagrams in [Richmond-Slofstra 2016].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Key Steps

Lemma. Every parabolic double coset has a unique lex-minimal presentation.

Lemma. Lex minimal presentations along any one raft correspond with words in the finite automaton below (loops are omitted), hence they are enumerated by a rational generating function $P^{\mathcal{I}}(x)/Q(x)$ by the Transfer Matrix Method.



Review

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. The sequences $b_m^{\mathcal{I}}$ satisfy a linear homogeneous constant coefficient recurrence, and thus can be easily computed in time linear in m.

Review

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right).$$

- 2. The sequences $b_m^{\mathcal{I}}$ satisfy a linear homogeneous constant coefficient recurrence, and thus can be easily computed in time linear in m.
- 3. The expected number of tethers for $w \in S_n$ approaches $\frac{1}{n}$.

Coxeter Groups

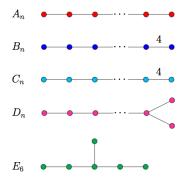
G = Coxeter graph with vertices {1,2,...,n}, edges labeled by Z≥3 ∪∞.

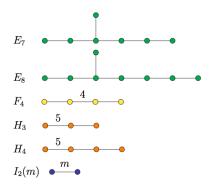
$$\bullet_1 \xrightarrow{4} \bullet_2 \xrightarrow{3} \bullet_3 \xrightarrow{3} \bullet_4 \quad \approx \quad \bullet_1 \xrightarrow{4} \bullet_2 \longrightarrow \bullet_3 \longrightarrow \bullet_4$$

• W = Coxeter group generated by $S = \{s_1, s_2, \dots, s_n\}$ with relations

1.
$$s_i^2 = 1$$
.
2. $s_i s_j = s_j s_i$ if i, j not adjacent in G .
3. $\underbrace{s_i s_j s_i \cdots}_{m(i,j) \text{ gens}} = \underbrace{s_j s_i s_j \cdots}_{m(i,j) \text{ gens}}$ if i, j connected by edge labeled $m(i, j)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣。

Generalizing the notation from Symmetric Groups

- ► W = Coxeter group generated by S = {s₁, s₂,..., s_n} with special relations.
- ▶ l(w) = length of w = length of a reduced expression for w.
- $W_I = \langle s_i \mid i \in I \rangle$ is a parabolic subgroup of W.
- W_IwW_J is a parabolic double coset of W for any I, J ⊂ [n], w ∈ W.
- ► c_w = number of distinct parabolic double cosets in W with minimal element w.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

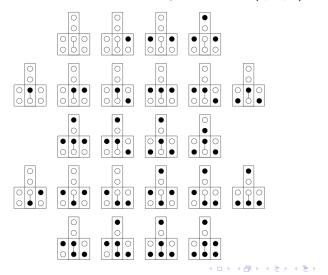
Generalizing Main Theorem to Coxeter Groups

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner) 1. For every Coxeter group W and $w \in W$, we have

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{\substack{T \subseteq \operatorname{Tethers}(w) \\ W \subseteq \operatorname{Wharfs}(w)}} \left(\prod_{\substack{R \in \operatorname{Rafts}(w) \\ R \mid }} b_{|R|}^{\mathcal{I}(R,T,W)} \right)$$

- ▶ The *w*-ocean, floats, planks, rafts and tethers as before.
- Wharf a small ascent at a branch node of the Coxeter graph, along with decorations on the local neighborhood around branch node.
- 2. The sequences $b_m^{\mathcal{I}(R,T,W)}$ satisfy a similar constant coefficient, linear recurrence based on the same automaton for type A.

Consider the Coxeter group of type D_4 and $c_{id} = 72$. Up to symmetry of the 3 leaves around the central vertex, there are 24 distinct types of allowable lex-minimal presentations (I, id, J).



Types D_n and B_{n-1} . The number of parabolic double cosets with minimal element id gives rise to the sequence starting 20, 72, 234, 746, 2380, 7614, 24394, 78192 for n = 3, ..., 10, and the generating function

$$\frac{t^3 \left(20 - 28t + 14t^2\right)}{1 - 5t + 7t^2 - 4t^3}$$

Type E_n . For n = 6, ..., 10, the analogous sequence starts with 750, 2376, 7566, 24198, 77532, and the generating function is

$$\frac{t^4 \left(66 - 96t + 42t^2\right)}{1 - 5t + 7t^2 - 4t^3}.$$

Type Affine A_n . For n = 2, ..., 10, the analogous sequence starts with 98, 332, 1080, 3474, 11146, 35738, 114566, 367248, and the generating function is

$$\frac{2-8t+22t^2-28t^3+20t^4-4t^5}{(1-t)\left(1-t+t^2\right)\left(1-5t+7t^2-4t^3\right)}.$$

Type F_4 . The total number of distinct parabolic double cosets is 19,959. The number of parabolic double cosets with w minimal in F_4 is always in this set of 24:

1, 2, 4, 6, 8, 10, 12, 16, 20, 22, 24, 25, 26 30, 31, 32, 36, 38, 40, 44, 48, 52, 64, 66

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Open Problems

- 1. Follow up to Question 3: Is there a simpler or more efficient formula for the total number of distinct parabolic double cosets are there in S_n than the one given here?
- 2. Follow up to Question 2: Is there a simpler or more efficient formula for $f(n) = \sum_{I,J} |W_I \setminus S_n / W_J|$?
- 3. What other families of double cosets for S_n and beyond have interesting enumeration formulas?
- 4. What further geometrical properties do Richardson varieties have when indexed by a parabolic double coset?