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Motivating Example: q-enumeration of SYT’s via major index

Generalized q-hook length formulas

Moduli space of limiting distributions for SSYTs and forests

Open Problems



Standard Young Tableaux

Defn. A standard Young tableau of shape λ is a bijective filling of
λ such that every row is increasing from left to right and every
column is increasing from top to bottom.

1 3 6 7 9
2 5 8
4

Important Fact. The standard Young tableaux of shape λ,
denoted SYT(λ), index a basis of the irreducible Sn representation
indexed by λ.



Counting Standard Young Tableaux

Hook Length Formula.(Frame-Robinson-Thrall, 1954)
If λ is a partition of n, then

#SYT (λ) = n!
∏c∈λ hc

where hc is the hook length of the cell c, i.e. the number of cells
directly to the right of c or below c, including c.

Example. Filling cells of λ = (5,3,1) ⊢ 9 by hook lengths:

7 5 4 2 1
4 2 1
1

So, #SYT (5,3,1) = 9!
7⋅5⋅4⋅2⋅4⋅2 = 162.

Remark. Notable other proofs by Greene-Nijenhuis-Wilf ’79
(probabilistic), Eriksson ’93 (bijective), Krattenthaler ’95
(bijective), Novelli -Pak -Stoyanovskii’97 (bijective), Bandlow’08,



q-Counting Standard Young Tableaux
Def. The descent set of a standard Young tableau T , denoted
D(T ), is the set of positive integers i such that i + 1 lies in a row
strictly below the cell containing i in T .

The major index of T is the sum of its descents:

maj(T ) = ∑
i∈D(T)

i .

Example. The descent set of T is D(T ) = {1,3,4,7} so
maj(T ) = 15 for T = 1 3 6 7 9

2 4 8
5

.

Def. The major index generating function for λ is

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T)



q-Counting Standard Young Tableaux

Example. λ = (5,3,1)

SYT(λ)maj(q) ∶= ∑T∈SYT(λ) qmaj(T) =

q23 + 2q22 + 4q21 + 5q20 + 8q19 + 10q18 + 13q17 + 14q16 + 16q15

+16q14 + 16q13 + 14q12 + 13q11 + 10q10 + 8q9 + 5q8 + 4q7 + 2q6 + q5

Note, at q = 1, we get back 162.



“Fast” Computation of SYT(λ)maj(q)
Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

where
▸ b(λ) ∶= ∑(i − 1)λi
▸ hc is the hook length of the cell c
▸ [n]q ∶= 1 + q +⋯ + qn−1 = qn−1

q−1
▸ [n]q! ∶= [n]q[n − 1]q⋯[1]q

The Trick. Each q-integer [n]q factors into a product of
cyclotomic polynomials Φd(q),

[n]q = 1 + q +⋯ + qn−1 =∏
d ∣n

Φd(q).

Cancel all of the factors from the denominator of SYT(λ)maj(q)
from the numerator, and then expand the remaining product.



“Fast” Computation of SYT(λ)maj(q)
Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

where
▸ b(λ) ∶= ∑(i − 1)λi
▸ hc is the hook length of the cell c
▸ [n]q ∶= 1 + q +⋯ + qn−1 = qn−1

q−1
▸ [n]q! ∶= [n]q[n − 1]q⋯[1]q

The Trick. Each q-integer [n]q factors into a product of
cyclotomic polynomials Φd(q),

[n]q = 1 + q +⋯ + qn−1 =∏
d ∣n

Φd(q).

Cancel all of the factors from the denominator of SYT(λ)maj(q)
from the numerator, and then expand the remaining product.



Corollaries of Stanley’s formula

Thm.(Stanley’s q-analog of the Hook Length Formula for λ ⊢ n)

SYT(λ)maj(q) =
qb(λ)[n]q!
∏c∈λ[hc]q

Corollaries.
1. SYT(λ)maj(q) = qb(λ)−b(λ′) SYT(λ′)maj(q).
2. The coefficients of SYT(λ)maj(q) are symmetric.
3. There is a unique min-maj and max-maj tableau of shape λ.



Motivation for q-Counting Standard Young Tableaux

Thm.(Lusztig-Stanley 1979) Given a partition λ ⊢ n, say

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T) = ∑
k≥0

bλ,kqk .

Then bλ,k ∶= #{T ∈ SYT(λ) ∶ maj(T ) = k} is the number of times
the irreducible Sn module indexed by λ appears in the
decomposition of the coinvariant algebra Z[x1, x2, . . . , xn]/I+ in the
homogeneous component of degree k.



Key Questions for SYT(λ)maj(q)

Recall SYT(λ)maj(q) = ∑
T∈SYT(λ)

qmaj(T) =∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Distribution Question. What patterns do the coefficients in
the list (bλ,0,bλ,1, . . .) exhibit?

Unimodality Question. For which λ, are the coefficients of
SYT(λ)maj(q) unimodal , meaning

bλ,0 ≤ bλ,1 ≤ . . . ≤ bλ,m ≥ bλ,m+1 ≥ . . .?



q-Counting Standard Young Tableaux

Example. λ = (5,3,1)

SYT(λ)maj(q) ∶= ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk =

q23 + 2q22 + 4q21 + 5q20 + 8q19 + 10q18 + 13q17 + 14q16 + 16q15

+16q14 + 16q13 + 14q12 + 13q11 + 10q10 + 8q9 + 5q8 + 4q7 + 2q6 + q5

Notation: (00000 1 2 4 5 8 10 13 14 16 16 16 14 13 10 8 5 4 2 1)



q-Counting Standard Young Tableaux
Examples. (2,2) ⊢ 4: (0 0 1 0 1)

(5,3,1): (00000 1 2 4 5 8 10 13 14 16 16 16 14 13 10 8 5 4 2 1)

(6,4) ⊢ 10: (0 0 0 0 1 1 2 2 4 4 6 6 8 7 8 7 8 6 6 4 4 2 2 1 1)

(6,6) ⊢ 12: (0 0 0 0 0 0 1 0 1 1 2 2 4 3 5 5 7 6 9 7 9 8 9 7 9 6 7 5
5 3 4 2 2 1 1 0 1)

(11,5,3,1) ⊢ 20: (1 3 8 16 32 57 99 160 254 386 576 832 1184
1645 2255 3031 4027 5265 6811 8689 10979 13706 16959 20758
25200 30296 36143 42734 50163 58399 67523 77470 88305 99925
112370 125492 139307 153624 168431 183493 198778 214017
229161 243913 258222 271780 284542 296200 306733 315853
323571 329629 334085 336727 337662 336727 334085 329629
323571 315853 306733 296200 284542 271780 258222 243913
229161 214017 198778 183493 168431 153624 139307 125492
112370 99925 88305 77470 67523 58399 50163 42734 36143
30296 25200 20758 16959 13706 10979 8689 6811 5265 4027
3031 2255 1645 1184 832 576 386 254 160 99 57 32 16 8 3 1)



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(5,3,1)maj(q):

(1,2,4,5,8,10,13,14,16,16,16,14,13,10,8,5,4,2,1)



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(11,5,3,1)maj(q).

Question. What type of curve is that?



Visualizing Major Index Generating Functions
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Visualizing the coefficients of SYT(10,6,1)maj(q) along with the
Normal distribution with µ = 34 and σ2 = 98.



Visualizing Major Index Generating Functions

200 300 400 500 600 700 800 900 1000
0

5e24

1e25

1.5e25

2e25

Visualizing the coefficients of SYT(8,8,7,6,5,5,5,2,2)maj(q)
along with the corresponding normal distribution.



Existence Question: Classifying All Nonzero Fake Degrees

Recall SYT(λ)maj(q) = ∑T∈SYT(λ) qmaj(T) = ∑bλ,kqk .

Existence Question. For which λ, k does bλ,k = 0 ?

Thm.(Billey-Konvalinka-Swanson, 2018 )
For any partition λ which is not a rectangle,

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T)

has no internal zeros. If λ is a rectangle with at least two rows and
columns, SYT(λ)maj(q) has exactly two internal zeros, one at
degree b(λ) + 1 and the other at degree maxmaj(λ) − 1.
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Classifying All Nonzero Fake Degrees

Proof Outline. We identify block and rotation rules on tableaux
giving rise to two posets on SYT(λ)− exceptional cases for
rectangles which is ranked according to maj.

Note, these posets are different from those considered by Taskin,
Poirier-Reutenuer, and Kosakowska-Schmidmeier-Thomas.



Strong and Weak Poset on SYT(3,2,1)

          Strong       

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5)(5 4 6 1 2 3)

(3 2 6 1 4 5)(5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(6 2 5 1 3 4) (4 3 6 1 2 5)

(6 3 5 1 2 4)

     Weak            

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5) (5 4 6 1 2 3)

(3 2 6 1 4 5) (5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(4 3 6 1 2 5)(6 2 5 1 3 4)

(6 3 5 1 2 4)



Classifying All Nonzero Fake Degrees

Cor. The irreducible Sn-module indexed by λ appears in the
decomposition of the degree k component of the coinvariant
algebra if and only if bλ,k > 0 as characterized above.

Similar results hold for all Shepard-Todd groups G(m,d ,n).

See arXiv:1809.07386 for more details.



Converting q-Enumeration to Discrete Probability

Distribution Question. What is the limiting distribution(s) for
the coefficients in SYT(λ)maj(q)?

From Combinatorics to Probability.
If f (q) = a0 + a1q + a2q2 +⋯ + anqn where ai are nonnegative
integers, then construct the random variable Xf with discrete
probability distribution

P(Xf = k) = ak

∑j aj
= ak

f (1)
.

If f is part of a family of q-analog of an integer sequence, we can
study the limiting distributions.



Converting q-Enumeration to Discrete Probability

Example. For SYT(λ)maj(q) = ∑bλ,kqk , define the integer
random variable Xλ[maj] with discrete probability distribution

P(Xλ[maj] = k) =
bλ,k

∣SYT(λ)∣
.

We claim the distribution of Xλ[maj] “usually” is approximately
normal for most shapes λ. Let’s make that precise!



Standardization

Thm.(Adin-Roichman, 2001)
For any partition λ, the mean and variance of Xλ[maj] are

µλ =
(∣λ∣2 ) − b(λ′) + b(λ)

2
= b(λ) + 1

2

⎡⎢⎢⎢⎢⎣

∣λ∣
∑
j=1

j −∑
c∈λ

hc

⎤⎥⎥⎥⎥⎦
,

and

σ2
λ =

1
12

⎡⎢⎢⎢⎢⎣

∣λ∣
∑
j=1

j2 −∑
c∈λ

h2
c

⎤⎥⎥⎥⎥⎦
.

Def. The standardization of Xλ[maj] is

X∗
λ [maj] = Xλ[maj] − µλ

σλ
.

So X∗
λ [maj] has mean 0 and variance 1 for any λ.



Asymptotic Normality

Def. Let X1,X2, . . . be a sequence of real-valued random variables
with standardized cumulative distribution functions
F1(t),F2(t), . . .. The sequence is asymptotically normal if

∀t ∈ R, lim
n→∞

Fn(t) = 1√
2π ∫

t

−∞
e−x2/2 = P(N < t)

where N is a Normal random variable with mean 0 and variance 1.

Question. In what way can a sequence of partitions approach
infinity?
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The Aft Statistic

Def. Given a partition λ = (λ1, . . . , λk) ⊢ n, let

aft(λ) ∶= n −max{λ1, k}.

Example. λ = (5,3,1) then aft(λ) = 4.

● ● ●
●

Look it up: Aft is now on FindStat as St001214



Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)

Suppose λ(1), λ(2), . . . is a sequence of partitions, and let
XN ∶= Xλ(N)[maj] be the corresponding random variables for the
maj statistic. Then, the sequence X1,X2, . . . is asymptotically
normal if and only if aft(λ(N))→∞ as N →∞.

Question. What happens if aft(λ(N)) does not go to infinity as
N →∞?



Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)

Suppose λ(1), λ(2), . . . is a sequence of partitions, and let
XN ∶= Xλ(N)[maj] be the corresponding random variables for the
maj statistic. Then, the sequence X1,X2, . . . is asymptotically
normal if and only if aft(λ(N))→∞ as N →∞.

Question. What happens if aft(λ(N)) does not go to infinity as
N →∞?



Distribution Question: From Combinatorics to Probability

Thm.(Billey-Konvalinka-Swanson, 2019)
Let λ(1), λ(2), . . . be a sequence of partitions. Then (Xλ(N)[maj]∗)
converges in distribution if and only if

(i) aft(λ(N))→∞; or
(ii) ∣λ(N)∣→∞ and aft(λ(N)) is eventually constant; or

(iii) the distribution of X∗
λ(N)

[maj] is eventually constant.
The limit law is N (0,1) in case (i), IH∗

M in case (ii), and discrete
in case (iii).

Here IHM denotes the sum of M independent identically
distributed uniform [0,1] random variables, known as the
Irwin–Hall distribution or the uniform sum distribution.



Distribution Question: From Combinatorics to Probability

Example. λ = (100,2) looks like the distribution of the sum of
two independent uniform random variables on [0,1]:

0 50 100 150 200
0

10

20

30

40

50



Distribution Question: From Combinatorics to Probability

Example. λ = (100,2,1) looks like the distribution of the sum of
three independent uniform random variables on [0,1]:

50 100 150 200 250 300
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1000

1500
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2500



Distribution Question: From Combinatorics to Probability

Example. λ = (100,3,2) looks like the normal distribution, but
not quite!

100 200 300 400 500

5e5

1e6

1.5e6

2e6

2.5e6



Proof ideas: Characterize the Moments and Cumulants

Definitions.
▸ For d ∈ Z≥0, the dth moment

µd ∶= E[X d]

▸ The moment-generating function of X is

MX(t) ∶= E[etX ] =
∞
∑
d=0

µd
td

d!
,

▸ The cumulants κ1, κ2, . . . of X are defined to be the
coefficients of the exponential generating function

KX(t) ∶=
∞
∑
d=1

κd
td

d!
∶= log MX(t) = logE[etX ].



Nice Properties of Cumulants

1. (Familiar Values) The first two cumulants are κ1 = µ, and
κ2 = σ2.

2. (Shift Invariance) The second and higher cumulants of X
agree with those for X − c for any c ∈ R.

3. (Homogeneity) The dth cumulant of cX is cdκd for c ∈ R.

4. (Additivity) The cumulants of the sum of independent
random variables are the sums of the cumulants.

5. (Polynomial Equivalence) The cumulants and moments are
determined by polynomials in the other sequence.



Examples of Cumulants and Moments

Example. Let X = N (µ,σ2) be the normal random variable with
mean µ and variance σ2. Then the cumulants are

κd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ d = 1,
σ2 d = 2,
0 d ≥ 3.

and for d > 1,

µd =
⎧⎪⎪⎨⎪⎪⎩

0 if d is odd,
σd(d − 1)!! if d is even.

.

Example. For a Poisson random variable X with mean µ, the
cumulants are all κd = µ, while the moments are µd = ∑d

i=1 µi Si ,d .



Cumulants for Major Index Generating Functions

Thm.(Billey-Konvalinka-Swanson, 2019)
Let λ ⊢ n and d ∈ Z>1. If κλd is the dth cumulant of Xλ[maj], then

κλd = Bd
d

⎡⎢⎢⎢⎢⎣

n
∑
j=1

jd −∑
c∈λ

hd
c

⎤⎥⎥⎥⎥⎦
(1)

where B0,B1,B2, . . . = 1, 1
2 ,

1
6 ,0,−

1
30 ,0,

1
42 ,0, . . . are the Bernoulli

numbers (OEIS A164555 / OEIS A027642).

Remark. We use this theorem to prove that as aft approaches
infinity the standardized cumulants for d ≥ 3 all go to 0 proving the
Asymptotic Normality Theorem.

Remark. Note, κλ2 is exactly the Adin-Roichman variance formula.
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Cumulants of certain q-analogs
Thm.(Chen–Wang–Wang-2008 and Hwang–Zacharovas-2015)
Suppose {a1, . . . , am} and {b1, . . . ,bm} are multisets of positive
integers such that

f (q) =
∏m

j=1[aj]q

∏m
j=1[bj]q

=∑ ckqk ∈ Z≥0[q]
.
Let X be a discrete random variable with P(X = k) = ck/f (1).
Then the dth cumulant of X is

κd = Bd
d

m
∑
j=1

(ad
j − bd

j )

where Bd is the dth Bernoulli number (with B1 = 1
2 ).

Example. This theorem applies to

SYT(λ)maj(q) ∶= ∑
T∈SYT(λ)

qmaj(T) =
qb(λ)[n]q!
∏c∈λ[hc]q



Cyclotomic Generating Functions

Def. A polynomial f (q) with nonnegative integer coefficients is a
cyclotomic generating function provided it satisfies one of the
following equivalent conditions:

(i) (Rational form.) There are multisets {a1, . . . , am} and
{b1, . . . ,bm} of positive integers and α,β ∈ Z≥0 such that

f (q) = αqβ ⋅
m
∏
j=1

[aj]q

[bj]q
= αqβ ⋅

m
∏
j=1

1 − qaj

1 − qbj
. (2)

(ii) (Cyclotomic form.) The polynomial f (q) can be written as a
non-negative integer times a product of cyclotomic
polynomials and factors of q.

(iii) (Complex form.) The complex roots of f (q) are each either a
root of unity or zero.
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Cyclotomic Generating Functions

More examples of cyclotomic generating functions, aka
q-hook length type formulas..

1. Stanley: sλ(1,q,q2, . . . ,qm).

2. Björner-Wachs: q-hook length formula for forests.

3. Macaulay: Hilbert series of polynomial quotients
k[x1, . . . , xn]/(θ1, θ2, . . . , θn) where deg(xi) = bi , deg(θi) = ai ,
and (θ1, θ2, . . . , θn) is a homogeneous system of parameters.

4. Chevalley: Length generating function restricted to minimum
length coset representatives of a finite reflection group modulo
a parabolic subgroup.

5. Iwahori-Matsumoto, Stembridge-Waugh, Zabrocki: Coxeter
length generating function restricted to coset representatives
of the extended affine Weyl group of type An−1 mod
translations by coroots. The associated statistic is baj − inv.



Cyclotomic Generating Functions

Remark. Corresponding with each cyclotomic generating function
f (q), there is a discrete random variable Xf supported on Z≥0 with
probability generating function f (q)/f (1) and higher cumulants for
d ≥ 2,

κf
d = Bd

d

m
∑
j=1

(ad
j − bd

j ).

Therefore, we can study asymptotics for interesting sequences of
cyclotomic generating functions much like SYT.



Recent Progress based on joint work with Josh Swanson

1. MacMahon: q-counting plane partitions in box.

2. Stanley-Littlewood: sλ(1,q,q2, . . . ,qm).

3. Björner-Wachs: q-hook length formula for forests



MacMahon: q-counting plane partitions in box.

Let PP(a × b × c) be the set of all plane partitions that fit inside
an a × b × c box. Plane partitions can be represented by tableaux
with decreasing rows and columns. The size of a plane partition is
the sum of the numbers in the tableau.

MacMahon’s Formula.

∑
T∈PP(a×b×c)

q∣T ∣ =
a
∏
i=1

b
∏
j=1

c
∏
k=1

[i + j + k − 1]q

[i + j + k − 2]q
.

MacMahon’s Formula is a cyclotomic generating function. Let
Xa×b×c[size]∗ the corresponding random variable.
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with decreasing rows and columns. The size of a plane partition is
the sum of the numbers in the tableau.

MacMahon’s Formula.

∑
T∈PP(a×b×c)

q∣T ∣ =
a
∏
i=1

b
∏
j=1

c
∏
k=1

[i + j + k − 1]q

[i + j + k − 2]q
.

MacMahon’s Formula is a cyclotomic generating function. Let
Xa×b×c[size]∗ the corresponding random variable.



Recent Progress based on joint work with Josh Swanson

Recall, N (0,1) is the standard normal distribution, and
IHM = ∑M

i=1 U[0,1] is the Irwin-Hall distribution.

Theorem. Let a,b, c each be a sequence of positive integers.
(i) Xa×b×c[size]∗ ⇒ N (0,1) if and only if median{a,b, c}→∞.
(ii) Xa×b×c[size]∗ ⇒ IHM if ab →M <∞ and c →∞.

The limit of the median value determines the limiting distribution
for plane partitions, just like aft determined the limiting
distribution for SYTs.



Moduli space of standardized distributions

Motivating Philosophy. By the Central Limit Theorem,
limM→∞ IH∗

M ⇒ N (0,1), so instead of parametrizing the
Irwin-Hall distributions by {n ∈ Z≥1}, use the parameter space

PIH ∶= {1
n
∶ n ∈ Z≥1} ⊂ R

to get a related topological structure.

Def. The moduli space of Irwin-Hall distributions is

MIH ∶= {IH∗
M ∶ M ∈ Z≥0},

Endow MIH with the topology characterized by convergence in
distribution using the Lévy metric.
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Moduli space of standardized distributions

Conclusions.
1. PIH = PIH ⊔ {0}.

2. MIH = MIH ∪ {N (0,1)}.

3. The bijection PIH →MIH given by 1
M+1 ↦ IH

∗
M and

0↦ N (0,1) is a homeomorphism.



Moduli space of plane partition distributions

Def. The moduli space of plane partition distributions is

MPP ∶= {Xa×b×c[size]∗ ∶ a,b, c ∈ Z≥1}

with the topology characterized by convergence in distribution.

Corollary. In the Lévy metric,

MPP = MPP ⊔MIH,

which is compact. Moreover, the set of limit points of MPP is
exactly MIH.



Moduli space of SYT distributions

Def. The moduli space of SYT distributions is

MSYT ∶= {Xλ[maj]∗ ∶ λ ∈ Par,#SYT (λ) > 1}

with the topology characterized by convergence in distribution.

Corollary. In the Lévy metric,

MSYT = MSYT ⊔MIH,

which is compact. Moreover, the set of limit points of MSYT is
exactly MIH.
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Semistandard tableaux and Schur functions

Defn. A semistandard Young tableau of shape λ is filling of λ
such that every row is weakly increasing from left to right and
every column is strictly increasing from top to bottom.

T = 1 3 3 3 3
2 5 5
9

xT = x1x2x4
3 x2

5 x9 rank(T ) = 28

Associate a monomial to each semistandard tableau,
T ↦ xT = xα1

1 xα2
2 ⋯ where αi is the number of i ’s in T . Let

rank(T ) = ∑(i − 1)αi .

Def. The Schur polynomial indexed by λ on (x1, . . . , xm) is

sλ(x1, x2, . . . , xm) =∑ xT

summed over all semistandard Young tableaux of shape λ filled
with numbers in {1,2, . . . ,m}, denoted SSYT≤m(λ).



Semistandard tableaux and Schur functions

Stanley+Littlewood. The principle specialization of the Schur
polynomial is a cyclotomic generating function

sλ(1,q,q2, . . . ,qm−1) = ∑
T∈SSYT≤m(λ)

qrank(T)

=qb(λ)∏
u∈λ

[m + cu]q

[hu]q

=qb(λ) ∏
1≤i<j≤m

[λi − λj + j − i]q

[j − i]q

where cu = j − i is the content of cell u = (i , j) and hu is the hook
length of u.



Moduli Space of SSYT Distributions

Def. Let Xλ;m[rank] denote the random variable associated with
the rank statistic on SSYT≤m(λ), sampled uniformly at random.

Def. The moduli space of SSYT distributions is

MSSYT ∶= {Xλ;m[rank]∗ ∶ λ ∈ Par, `(λ) ≤ m}

Open Problem. Describe MSSYT in the Lévy metric. What are
all possible limit points?
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Toward Limit Laws of SSYT Distributions

Def. Given a finite multiset t = {t1 ≥ t2 ≥ ⋅ ⋅ ⋅ ≥ tm} of non-negative
real numbers, let

St ∶=∑
t∈t
U [− t

2
,

t
2
] , (3)

where we assume the summands are independent and U[a,b]
denotes the continuous uniform distribution supported on [a,b].
We say St is a finite generalized uniform sum distribution.

Example. If t consists of M copies of 1, then St + M
2 is the

Irwin-Hall distribution IHM .



Distance Multisets

Def. The distance multiset of t = {t1 ≥ t2 ≥ ⋯ ≥ tm} is the
multiset

∆t ∶= {ti − tj ∶ 1 ≤ i < j ≤ m}.

Theorem. Let λ be an infinite sequence of partitions with
`(λ) < m where λ1/m3 →∞. Let t(λ) = (t1, . . . , tm) ∈ [0,1]m be
the finite multiset with tk ∶= λk

λ1
for 1 ≤ k ≤ m. Then Xλ;m[rank]∗

converges in distribution if and only if the multisets ∆t(λ)
converge pointwise.

In that case, the limit distribution is N (0,1) if m →∞ and S∗d
where ∆t(λ)→ d if m is bounded.



Moduli Space of Distance Distributions

Def. The moduli space of distance distributions is

MDIST ∶= ⋃
m≥2

{S∗∆t ∶ t = {1 = t1 ≥ ⋯ ≥ tm = 0}}

and its associated parameter space PDIST is a renormalized
variation on {∆t ∶ t = {1 = t1 ≥ ⋯ ≥ tm = 0}}.

Conclusions/Thm.
1. PDIST = PDIST ⊔ {0} where 0 is the infinite sequence of 0’s.
2. MDIST = MDIST ⊔ {N (0,1)}.
3. The map PDIST →MDIST given by d↦ S∗d and 0↦ N (0,1) is

a homeomorphism between compact spaces.



Moduli Space of SSYT Distributions

Corollary. For any fixed ε > 0, let

MεSSYT ∶= {Xλ;m[rank]∗ ∶ `(λ) < m and λ1/m3 > (∣λ∣+m)ε} ⊂ MSSYT.

Then
MεSSYT = MεSSYT ⊔MDIST,

which is compact. Moreover, the set of limit points of MεSSYT is
MDIST.

Corollary. For the moduli space of limit laws for StanleyâĂŹs
q-hook-content formula, we have shown

MSSYT ∪MDIST ∪MIH ∪ {N (0,1)} ⊂ MSSYT.
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Moduli Space of Generalized Sum Distributions

The limiting distributions q-hook length formulas for linear
extensions of forests due to Björner–Wachs include all countably
infinite generalized uniform sum distributions with finite variance,
which is closely related to the 2-norm of the indexing multiset.

Theorem. The limit laws for all possible standardized general
uniform sum distributions MSUMS ∶ {S∗t ∶ t ∈ ̃̀2} is exactly the
moduli space of DUSTPAN distributions,

MSUMS = MDUST ∶= {St +N (0, σ2) ∶ ∣t∣22/12 + σ2 = 1}.

The nomenclature DUSTPAN refers to a distribution associated to
a uniform sum for t plus an independent normal distribution.
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The moduli space of limit laws for q-hook formulas

Let MForest be the moduli space of standardized distributions
associated to forests. We know MForest ∪MDUST ⊂ MForest,
implying there are an uncountable number of possible limit laws for
distributions associated to forests.

Open Problem. Describe MForest in the Lévy metric. What are
all possible limit points?

Open Problem. Describe MCGF in the Lévy metric. What are
all possible limit points? Is MCGF ∪MDUST the moduli space of
limit laws for q-hook formulas?



Conclusion

Many Thanks!
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