Recent advances in symmetric functions and tableaux combinatorics

Sara Billey University of Washington http://www.math.washington.edu/~billey

UW: Current Problems Seminar March 1, 2012

Outline

- 1. Tale of Two Rings: Symmetric Functions and Quasisymmetric Functions
- 2. Schur functions, LLT polynomials and Macdonald polynomials
- 3. *k*-Schur functions
- 4. Affine dual equivalence graphs

New results based on joint work with Sami Assaf (preprint on arXiv).

Tale of Two Rings

Power Series Ring.: $\mathbb{Z}[[X]]$ over a a finite or countably infinite alphabet $X = \{x_1, x_2, \dots, x_n\}$ or $X = \{x_1, x_2, \dots\}$.

Two subrings. of $\mathbb{Z}[[X]]$:

- Symmetric Functions (SYM)
- Quasisymmetric Functions (QSYM)

Ring of Symmetric Functions

Defn. $f(x_1, x_2, ...) \in \mathbb{Z}[[X]]$ is a symmetric function if for all i $f(..., x_i, x_{i+1}, ...) = f(..., x_{i+1}, x_i, ...).$

Example. $x_1^2x_2 + x_1^2x_3 + x_2^2x_1 + x_2^2x_3 + \dots$

Ring of Symmetric Functions

Defn. $f(x_1, x_2, ...) \in \mathbb{Z}[[X]]$ is a *symmetric function* if for all i $f(\ldots, x_i, x_{i+1}, \ldots) = f(\ldots, x_{i+1}, x_i, \ldots).$

Example. $x_1^2x_2 + x_1^2x_3 + x_2^2x_1 + x_2^2x_3 + \dots$

Defn. $f(x_1, x_2, ...) \in \mathbb{Z}[[X]]$ is a quasisymmetric function if $\operatorname{coef}(f; x_1^{\alpha_1} x_2^{\alpha_2} \dots x_k^{\alpha_k}) = \operatorname{coef}(f; x_a^{\alpha_1} x_b^{\alpha_2} \dots x_c^{\alpha_k})$ for all $1 < a < b < \dots < c$.

Example. $f(X) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + \dots$

Why study SYM and QSYM?

- Symmetric Functions (SYM): Used in representation theory, combinatorics, algebraic geometry over past 200+ years.
- Quasisymmetric Functions (QSYM): 0-Hecke algebra representation theory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert calculus.

Take Math: 583A to find out more about the applications.

Monomial Basis of SYM

Defn. A *partition* of a number n is a weakly decreasing sequence of positive integers

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$$

such that $n=\sum \lambda_i = |\lambda|.$

Partitions can be visualized by their Ferrers diagram

Defn/Thm. The monomial symmetric functions indexed by partitions of n

 $m_{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_k^{\lambda_k} + x_2^{\lambda_1} x_1^{\lambda_2} \cdots x_k^{\lambda_k} + \text{all other perms of vars}$

form a basis for SYM_n = homogeneous symmetric functions of degree n.

Fact. dim $SYM_n = p(n) =$ number of partitions of n.

Monomial Basis of QSYM

Defn. A *composition* of a number n is a sequence of positive integers

$$lpha = (lpha_1, lpha_2, \dots, lpha_k)$$

such that $n = \sum lpha_i = |lpha|$.

 $\frac{\text{Defn}}{\text{Thm}}$. The monomial quasisymmetric functions indexed by compositions of n

 $M_{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k} + x_2^{\alpha_1} x_3^{\alpha_2} \cdots x_{k+1}^{\alpha_k} + \text{all other shifts}$

form a basis for $QSYM_n$ = homogeneous quasisymmetric functions of deg n.

Fact. dim $QSYM_n$ = number of compositions of $n = 2^{n-1}$.

Monomial Basis of QSYM

Fact. dim $QSYM_n$ = number of compositions of $n = 2^{n-1}$. Bijection:

$$(lpha_1, lpha_2, \dots, lpha_k) \longrightarrow \{lpha_1, \ lpha_1 + lpha_2, \ lpha_1 + lpha_2 + lpha_3, \ \dots \ lpha_1 + lpha_2 + \dots + lpha_{k-1}\}$$

Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan)

$$p(n) \approx \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$$

Schur basis for SYM

Let $X = \{x_1, x_2, \dots, x_m\}$ be a finite alphabet.

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$ and $\lambda_p = 0$ for p > k.

Defn. The following are equivalent definitions for the Schur functions $S_{\lambda}(X)$:

1.
$$S_{\lambda} = rac{\det(x_i^{\lambda_j+n-j})}{\det(x_i^{n-j})}$$
 with indices $1 \leq i,j \leq m$

2. $S_{\lambda} = \sum x^{T}$ summed over all column strict tableaux T of shape λ .

Defn. T is *column strict* if entries strictly increase along columns and weakly increase along rows.

Example. A column strict tableau of shape (5, 3, 1)

$$T = \begin{bmatrix} 7 & & x^T = x_2^2 x_3 x_4^2 x_7^3 x_8 \\ \hline 4 & 7 & 7 \\ \hline 2 & 2 & 3 & 4 & 8 \end{bmatrix}$$

Multiplying Schur Functions

Littlewood-Richardson Coefficients.

$$S_{\lambda}(X) \cdot S_{\mu}(X) = \sum_{|\nu|=|\lambda|+|\mu|} c^{\nu}_{\lambda,\mu} S_{\nu}(X)$$

 $c_{\lambda,\mu}^{\nu}=\#$ skew tableaux of shape u/λ such that $x^T=x^{\mu}$ and the reverse reading word is a lattice word.

 ${f Example.}$ If u=(4,3,2) , $\lambda=(2,1)$, $\lambda=(3,2,1)$ then

readingword = 231211

Fundamental basis for QSYM

Defn. Let $A \subset [p-1] = \{1, 2, \dots, p-1\}$. The fundamental quasisymmetric function

$$F_A(X) = \sum x_{i_1} \cdots x_{i_p}$$

summed over all $1 \leq i_1 \leq \ldots \leq i_p$ such that $i_j < i_{j+1}$ whenever $j \not\in A$.

Example. $F_{++-+} = x_1 x_1 x_1 x_2 x_2 + x_1 x_2 x_2 x_3 x_3 + x_1 x_2 x_3 x_4 x_5 + \dots$

Here $++-+=\{1,2,4\}\subset\{1,2,3,4\}.$

Other bases of QSYM: quasi Schur basis (Haglund-Luoto-Mason-vanWilligenburg), matroid friendly basis (Luoto)

A Poset on Partitions

Defn. A *partial order* or a *poset* is a reflexive, anti-symmetric, and transitive relation on a set.

Defn. Young's Lattice on all partitions is the poset defined by the relation $\lambda \subset \mu$ if the Ferrers diagram for λ fits inside the Ferrers diagram for μ .

Defns. A standard tableau T of shape λ is a saturated chain in Young's lattice from \emptyset to λ .

Example.
$$T = \begin{bmatrix} 7 \\ 4 & 5 & 9 \\ 1 & 2 & 3 & 6 & 8 \end{bmatrix}$$

Schur functions

Thm.(Gessel,1984) For all partitions λ ,

$$S_{\lambda}(X) = \sum F_{D(T)}(X)$$

summed over all standard tableaux T of shape λ .

Defn. The descent set of T, denoted D(T), is the set of indices i such that i + 1 appears northwest of i.

Example. Expand $S_{(3,2)}$ in the fundamental basis

Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr 2005)

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{w \in S_n} q^{inv_{\mu}(w)} t^{maj_{\mu}(w)} F_{D(w^{-1})}$$

where D(w) is the descent set of w in one-line notation.

Thm. (Haiman 2001) Expanding $\widetilde{H}_{\mu}(X;q,t)$ into Schur functions

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{i} \sum_{j} \sum_{|\lambda| = |\mu|} c_{i,j,\lambda} q^{i} t^{j} S_{\lambda},$$

the coefficients $c_{i,j,\lambda}$ are all non-negative integers.

Open I. Find a "nice" combinatorial algorithm to compute $c_{i,j,\lambda}$ showing these are non-negative integers.

Lascoux-Leclerc-Thibon Polynomials

Defn. Let $\bar{\mu} = (\mu^{(1)}, \mu^{(1)}, \dots, \mu^{(k)})$ be a list of partitions.

$$LLT_{\bar{\mu}}(X;q) = \sum q^{inv_{\mu}(T)}F_{D(w^{-1})}$$

summed over all bijective fillings w of $\bar{\mu}$ where each $\mu^{(i)}$ filled with rows and columns increasing. Each w is recorded as the permutation given by the content reading word of the filling.

Thm. For all $\bar{\mu} = (\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(k)})$ 1. $LLT_{\bar{\mu}}(X;q)$ is symmetric. (Lascoux-Leclerc-Thibon) 2. $LLT_{\bar{\mu}}(X;q)$ is Schur positive. (Assaf**)

****** Proof still in revision/verification stage.

Lascoux-Leclerc-Thibon Polynomials

Open II. Find a "nice" combinatorial algorithm to compute the expansion coefficients for LLT's to Schurs.

Known. Each $\widetilde{H}_{\mu}(X;q,t)$ expands as a positive sum of LLT's so Open II implies Open I. (Haiman-Haglund-Loehr)

k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

$$S^{(k)}_\lambda(X;q) = \sum_{S^*\in SST(\mu,k)} q^{\operatorname{spin}(S^*)} F_{D(S^*)}.$$

Nice Properties.: Consider $\{S_{\lambda}^{(k)}(X;q=1)\}$

- 1. These are a Schubert basis for the homology ring of the affine Grassmannian of type A_k . (Lam)
- 2. Structure constants are related to Gromov-Witten invariants of flag manifolds (Lapointe-Morse, Peterson, Lam-Shimozono).
- 3. There exists a *k*-Schur analog the Murnaghan-Nakayma rule. (Bandlow-Schilling-Zabrocki)

k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

$$S^{(k)}_\lambda(X;q) = \sum_{S^*\in SST(\mu,k)} q^{\operatorname{spin}(S^*)} F_{D(S^*)}.$$

Nice Conjectures.: Consider $\{S_{\lambda}^{(k)}(X;q)\}$ with q an indeterminate

- 1. Macdonald polynomials expand as a positive sum of k-Schurs. (LLLMS)
- 2. LLT's expand as a positive sum of k-Schurs (Assaf-Haiman)

Schur Positivity of k-Schurs

Theorem. (Lam-Lapointe-Morse-Shimozono, 2011) At q = 1, $\{S_{\lambda}^{(k)}(X;1)\}$ is Schur positive. In fact, each k-Schur expands as a positive sum of k + 1-Schurs.

Conjecture. (see Assaf-Billey preprint) Using this definition the k-Schur function $S_{\lambda}^{(k)}(X;q)$ expands as a positive sum of Schur functions.

Benefits.

- Significantly reduces number of terms in the expansion so easier to store and manipulate.
- Simplifies computations of products in the homology ring.
- Each k-Schur can be associated to an S_n -module.

n-core poset

Defn. A partition λ is an *n*-core if it has no hooks of length *n*.

Example. (3,3,1,1) is a 4-core:

Defn. The *n*-core poset is the partial order on *n*-cores ordered by containment of Ferrers diagrams.

Thm. (Lascoux) The *n*-core poset is isomorphic to Bruhat order on \widetilde{S}_n/S_n .

n-core poset

Defn. A *strong tableau* is a saturated chain of inclusions in the *n*-core poset.

n-core poset

Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

Strong tableaux in the n-core poset

Defn. A *strong tableau* is a saturated chain of inclusions in the *n*-core poset.

Starred Strong tableaux

Defn. A starred strong tableau $S^* \in SST(\mu, n)$ is a strong tableau S along with a choice of *i*-ribbon for each $i \in S$. Place * in SE corner of the "starred" *i*-ribbon.

Example. All SST's for n = 3 and $\mu = (2, 2, 1, 1)$

Starred Strong tableaux

Defn. A starred strong tableau $S^* \in SST(\lambda, n)$ is a strong tableau S of shape λ along with a choice of *i*-ribbon for each $i \in S$. Place * in SE corner of the "starred" *i*-ribbon.

Example. All SST's for n = 3 and $\mu = (2, 2, 1, 1)$

 $D(S^*) := \{i \; : \; (i+1)^* \text{lies NW of } i^* \text{in} S^* \}$

k-Schur Functions

Definition.

$$S^{(k)}_{\lambda}(X;q) = \sum_{S^* \in SST(\lambda,k)} q^{\operatorname{spin}(S^*)} F_{D(S^*)}.$$

SST= Starred Strong Tableaux on the *n*-core poset. Here n = k + 1.

$$D(S^*) = \mathsf{Descent} \; \mathsf{Set} \; \mathsf{of} \; S^*$$

$$ext{spin}(S^*) = \sum_{i \in S} n(i) [h(i) - 1] + d(i)$$

- n(i) = number of connected *i*-ribbons in S
- h(i) =height of i^* -ribbon
- d(i) = number of *i*-ribbons NW of *i**-ribbon

Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions of size n with edges given by *dual equivalence* has exactly one connected component for each partition of n.

Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions of size n with edges given by *dual equivalence* has exactly one connected component for each partition of n.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be characterized by 6 axioms.

Affine Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions of size n with edges given by *dual equivalence* has exactly one connected component for each partition of n.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be characterized by 6 axioms.

Theorem. (Assaf-Billey) There exists an analogous graph structure on starred strong tableaux that satisfy the first 3 of Assaf's axioms and every vertex in a connected component of the graph has the same spin.

Attempted Proof for Schur Positivity

Assaf Machine.

Goal: Given any
$$G(V) = \sum_{T \in V} F_{D(T)}$$
, show $G(V)$ is Schur positive.

- 1. Impose a graph structure on V by finding a family of involutions ϕ_i for 1 < i < n. Set $E_i = \{(x, \phi(x)) : x \in V, \phi(x) \neq x\}$. Each (V, E_i) is a matching.
- 2. Show graph satisfies Assaf's axioms including local Schur positivity on every connected component of $(V, E_{i-1} \cup E_i \cup E_{i+1})$.

Update: Computer verification of local Schur positivity for the graphs on k-Schur functions needs to find all possible graph isomorphism types for n = 2, ..., 9. So far n = 2, 3, 4, 5 finished. Case n = 6 running on 8 processors. There are 15,041 interval bottoms to check. Many take minutes, some have taken a week.

http://www.math.washington.edu/~billey/kschur/d-graphs-11-2011.pdf

Computer Assisted Proofs

Questions.

- 1. What is the value of a computer proof?
- 2. What data needs to be stored to convince reader that computer verification is complete?
- 3. How long is too long?
- 4. What are the standards for publishing a computer assisted proof?

Big Picture

Geometry	Combinatorics	Rep Theory
Grassmannians	Schur functions	$old S_n, GL_n$ irreducible reps
Affine Grassmannians	<i>k</i> -Schur	???? (Li-Chung Chen + Haiman)
Hilbert Schemes of points in plane	Macdonald polynomials	Garsia-Haiman module (n!-theorem)

Big Picture

Geometry	Combinatorics	Rep Theory
Grassmannians	Schur functions ↑	S_n, GL_n irreducible reps
Affine Grassmannians	k-Schur	???? (Li-Chung Chen + Haiman)
Hilbert Schemes of points in plane	↑ Macdonald polynomials	Garsia-Haiman module (n!-theorem)

Theorem.(A-B) *k*-Schur functions are Schur positive.

Conjecture. (Lapointe-Morse) Macdonald polynomials are k-Schur positive for the right k.

Open. Find a direct geometric connection from Hilbert Schemes to Affine Grassmannians.