Recent advances in symmetric functions and tableaux combinatorics

Sara Billey
University of Washington
http://www.math.washington.edu/~billey

UW: Current Problems Seminar
March 1, 2012

Outline

1. Tale of Two Rings: Symmetric Functions and Quasisymmetric Functions
2. Schur functions, LLT polynomials and Macdonald polynomials
3. \boldsymbol{k}-Schur functions
4. Affine dual equivalence graphs

New results based on joint work with Sami Assaf (preprint on arXiv).

Tale of Two Rings

Power Series Ring.: $\mathbb{Z}[[\boldsymbol{X}]]$ over a a finite or countably infinite alphabet $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ or $\boldsymbol{X}=\left\{x_{1}, x_{2}, \ldots\right\}$.

Two sulbrings. of $\mathbb{Z}[[\boldsymbol{X}]]$:

- Symmetric Functions (SYM)
- Quasisymmetric Functions (QSYM)

Ring of Symmetric Functions

Defn. $f\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}[[\boldsymbol{X}]]$ is a symmetric function if for all i

$$
f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)=f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)
$$

Example. $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+\ldots$

Ring of Symmetric Functions

Defn. $f\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}[[X]]$ is a symmetric function if for all i

$$
f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)=f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)
$$

Example. $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+\ldots$

Defn. $f\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}[[\boldsymbol{X}]]$ is a quasisymmetric function if

$$
\operatorname{coef}\left(f ; x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{k}^{\alpha_{k}}\right)=\operatorname{coef}\left(f ; x_{a}^{\alpha_{1}} x_{b}^{\alpha_{2}} \ldots x_{c}^{\alpha_{k}}\right)
$$

for all $1<a<b<\cdots<c$.
Example. $f(X)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+\ldots$

Why study SYM and QSYM?

- Symmetric Functions (SYM): Used in representation theory, combinatorics, algebraic geometry over past 200+ years.
- Quasisymmetric Functions (QSYM): 0-Hecke algebra representation theory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert calculus.

Take Math: 583A to find out more about the applications.

Monomial Basis of SYM

Defn. A partition of a number n is a weakly decreasing sequence of positive integers

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)
$$

such that $n=\sum \boldsymbol{\lambda}_{i}=|\lambda|$.
Partitions can be visualized by their Ferrers diagram

Defn/Thm. The monomial symmetric functions indexed by partitions of n $m_{\lambda}=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}+x_{2}^{\lambda_{1}} x_{1}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}+$ all other perms of vars form a basis for $S Y M_{n}=$ homogeneous symmetric functions of degree \boldsymbol{n}.

Fact. $\operatorname{dim} S Y M_{n}=p(n)=$ number of partitions of n.

Monomial Basis of QSYM

Defn. A composition of a number \boldsymbol{n} is a sequence of positive integers

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)
$$

such that $n=\sum \alpha_{i}=|\boldsymbol{\alpha}|$.

Defn/Thm. The monomial quasisymmetric functions indexed by compositions of \boldsymbol{n}

$$
M_{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}+x_{2}^{\alpha_{1}} x_{3}^{\alpha_{2}} \cdots x_{k+1}^{\alpha_{k}}+\text { all other shifts }
$$

form a basis for $\boldsymbol{Q} \boldsymbol{S} \boldsymbol{Y} \boldsymbol{M}_{\boldsymbol{n}}=$ homogeneous quasisymmetric functions of deg \boldsymbol{n}.
Fact. $\operatorname{dim} Q S Y M_{n}=$ number of compositions of $n=2^{n-1}$.

Monomial Basis of QSYM

Fact. $\operatorname{dimQSY} M_{n}=$ number of compositions of $n=2^{n-1}$.
Bijection:

$$
\begin{aligned}
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \longrightarrow\{ & \alpha_{1} \\
& \alpha_{1}+\alpha_{2} \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

$$
\left.\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k-1}\right\}
$$

Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan)

$$
p(n) \approx \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}}
$$

Schur basis for SYM

Let $\boldsymbol{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a finite alphabet.
Let $\boldsymbol{\lambda}=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)$ and $\lambda_{p}=0$ for $p>\boldsymbol{k}$.
Defn. The following are equivalent definitions for the Schur functions $\boldsymbol{S}_{\boldsymbol{\lambda}}(\boldsymbol{X})$:

1. $S_{\lambda}=\frac{\operatorname{det}\left(x_{i}^{\lambda_{i}+n-j}\right)}{\operatorname{det}\left(x_{i}^{n-j}\right)}$ with indices $1 \leq i, j \leq m$.
2. $S_{\lambda}=\sum \boldsymbol{x}^{T}$ summed over all column strict tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.

Defn. \boldsymbol{T} is column strict if entries strictly increase along columns and weakly increase along rows.

Example. A column strict tableau of shape $(5,3,1)$

$$
T=\begin{array}{|l|l|lll}
\hline 7 & & & \\
\hline 4 & 7 & 7 & & \\
\hline 2 & 2 & 3 & 4 & 8 \\
\hline
\end{array}
$$

Multiplying Schur Functions

Littlewood-Richardson Coefficients.

$$
S_{\lambda}(X) \cdot S_{\mu}(X)=\sum_{|\nu|=|\lambda|+|\mu|} c_{\lambda, \mu}^{\nu} S_{\nu}(X)
$$

$c_{\lambda, \mu}^{\nu}=\#$ skew tableaux of shape ν / λ such that $x^{T}=x^{\mu}$ and the reverse reading word is a lattice word.

Example. If $\nu=(4,3,2), \boldsymbol{\lambda}=(2,1), \boldsymbol{\lambda}=(3,2,1)$ then

Fundamental basis for QSYM

Defn. Let $A \subset[p-1]=\{1,2, \ldots, p-1\}$. The fundamental quasisymmetric function

$$
F_{A}(X)=\sum x_{i_{1}} \cdots x_{i_{p}}
$$

summed over all $1 \leq i_{1} \leq \ldots \leq i_{p}$ such that $i_{j}<i_{j+1}$ whenever $\boldsymbol{j} \notin \boldsymbol{A}$.
Example. $F_{++-+}=x_{1} x_{1} x_{1} x_{2} x_{2}+x_{1} x_{2} x_{2} x_{3} x_{3}+x_{1} x_{2} x_{3} x_{4} x_{5}+\ldots$
Here $++-+=\{1,2,4\} \subset\{1,2,3,4\}$.

Other bases of QSYM: quasi Schur basis (Haglund-Luoto-Mason-vanWilligenburg), matroid friendly basis (Luoto)

A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive relation on a set.

Defn. Young's Lattice on all partitions is the poset defined by the relation $\boldsymbol{\lambda} \subset \boldsymbol{\mu}$ if the Ferrers diagram for $\boldsymbol{\lambda}$ fits inside the Ferrers diagram for $\boldsymbol{\mu}$.

Defns. A standard tableau \boldsymbol{T} of shape $\boldsymbol{\lambda}$ is a saturated chain in Young's lattice from \emptyset to $\boldsymbol{\lambda}$.

Example. $T=$| 7 | | |
| :--- | :--- | :--- |
| 4 | $\|l\| l\|l\|$ | |
| 1 | 2 | 9 |

Schur functions

Thm.(Gessel,1984) For all partitions $\boldsymbol{\lambda}$,

$$
S_{\lambda}(X)=\sum F_{D(T)}(X)
$$

summed over all standard tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.

Defn. The descent set of T, denoted $D(T)$, is the set of indices i such that $i+1$ appears northwest of i.

Example. Expand $S_{(3,2)}$ in the fundamental basis

45	35	${ }^{3} 44$	25	${ }_{2} 24$
1123	1)24	1 2 5		1/3)5

$S_{(3,2)}(\boldsymbol{X})=\boldsymbol{F}_{++-+}(\boldsymbol{X})+\boldsymbol{F}_{+-+-}(\boldsymbol{X})+\boldsymbol{F}_{+-++}(\boldsymbol{X})+\boldsymbol{F}_{-++-}(\boldsymbol{X})+\boldsymbol{F}_{-+-+}$

Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr 2005)

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{w \in S_{n}} q^{i n v_{\mu}(w)} t^{m a j_{\mu}(w)} F_{D\left(w^{-1}\right)}
$$

where $\boldsymbol{D}(\boldsymbol{w})$ is the descent set of w in one-line notation.

Thm. (Haiman 2001) Expanding $\widetilde{\boldsymbol{H}}_{\mu}(\boldsymbol{X} ; \boldsymbol{q}, \boldsymbol{t})$ into Schur functions

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{i} \sum_{j} \sum_{|\lambda|=|\mu|} c_{i, j, \lambda} q^{i} t^{j} S_{\lambda},
$$

the coefficients $c_{i, j, \lambda}$ are all non-negative integers.
\Longrightarrow Macdonald polynomials are Schur positive,
Open I. Find a "nice" combinatorial algorithm to compute $c_{i, j, \lambda}$ showing these are non-negative integers.

Lascoux-Leclerc-Thibon Polynomials

Defn. Let $\bar{\mu}=\left(\mu^{(1)}, \mu^{(1)}, \ldots, \mu^{(k)}\right)$ be a list of partitions.

$$
L L T_{\bar{\mu}}(X ; q)=\sum q^{i n v_{\mu}(T)} F_{D\left(w^{-1}\right)}
$$

summed over all bijective fillings \boldsymbol{w} of $\bar{\mu}$ where each $\boldsymbol{\mu}^{(i)}$ filled with rows and columns increasing. Each \boldsymbol{w} is recorded as the permutation given by the content reading word of the filling.

Thm. For all $\bar{\mu}=\left(\mu^{(1)}, \mu^{(2)}, \ldots, \mu^{(k)}\right)$

1. $\boldsymbol{L L} \boldsymbol{T}_{\bar{\mu}}(\boldsymbol{X} ; \boldsymbol{q})$ is symmetric. (Lascoux-Leclerc-Thibon)
2. $\boldsymbol{L L T} T_{\bar{\mu}}(X ; q)$ is Schur positive. (Assaf**)
** Proof still in revision/verification stage.

Lascoux-Leclerc-Thibon Polynomials

Open II. Find a "nice" combinatorial algorithm to compute the expansion coefficients for $\boldsymbol{L L T}$'s to Schurs.

Known. Each $\widetilde{\boldsymbol{H}}_{\mu}(\boldsymbol{X} ; \boldsymbol{q}, \boldsymbol{t})$ expands as a positive sum of LLT's so Open II implies Open I. (Haiman-Haglund-Loehr)

k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

$$
S_{\lambda}^{(k)}(X ; q)=\sum_{S^{*} \in S S T(\mu, k)} q^{\operatorname{spin}\left(S^{*}\right)} F_{D\left(S^{*}\right)}
$$

Nice Properties.: Consider $\left\{S_{\lambda}^{(k)}(X ; q=1)\right\}$

1. These are a Schubert basis for the homology ring of the affine Grassmannian of type $\boldsymbol{A}_{\boldsymbol{k}}$. (Lam)
2. Structure constants are related to Gromov-Witten invariants of flag manifolds (Lapointe-Morse,Peterson, Lam-Shimozono).
3. There exists a \boldsymbol{k}-Schur analog the Murnaghan-Nakayma rule. (Bandlow-Schilling-Zabrocki)

k-Schur Functions

Defn. (Lam-Lapointe-Morse-Shimozono + Lascoux, 2003-2010)

$$
S_{\lambda}^{(k)}(X ; q)=\sum_{S^{*} \in S S T(\mu, k)} q^{\operatorname{spin}\left(S^{*}\right)} F_{D\left(S^{*}\right)}
$$

Nice Conjectures.: Consider $\left\{S_{\lambda}^{(k)}(\boldsymbol{X} ; q)\right\}$ with q an indeterminate

1. Macdonald polynomials expand as a positive sum of \boldsymbol{k}-Schurs. (LLLMS)
2. LLT's expand as a positive sum of \boldsymbol{k}-Schurs (Assaf-Haiman)

Schur Positivity of \boldsymbol{k}-Schurs

Theorem. (Lam-Lapointe-Morse-Shimozono, 2011) At $q=1,\left\{S_{\lambda}^{(k)}(X ; 1)\right\}$ is Schur positive. In fact, each k-Schur expands as a positive sum of $k+1$ Schurs.

Conjecture. (see Assaf-Billey preprint) Using this definition the k-Schur function $S_{\lambda}^{(k)}(\boldsymbol{X} ; \boldsymbol{q})$ expands as a positive sum of Schur functions.

Benefits.

- Significantly reduces number of terms in the expansion so easier to store and manipulate.
- Simplifies computations of products in the homology ring.
- Each \boldsymbol{k}-Schur can be associated to an $\boldsymbol{S}_{\boldsymbol{n}}$-module.

n-core poset

Defn. A partition $\boldsymbol{\lambda}$ is an n-core if it has no hooks of length n.
Example. $(3,3,1,1)$ is a 4 -core:

1		
2		
5	2	
	1	
6	3	

Defn. The \boldsymbol{n}-core poset is the partial order on \boldsymbol{n}-cores ordered by containment of Ferrers diagrams.

Thm. (Lascoux) The n-core poset is isomorphic to Bruhat order on $\widetilde{S}_{n} / \boldsymbol{S}_{n}$.

n-core poset

Defn. A strong tableau is a saturated chain of inclusions in the \boldsymbol{n}-core poset.

Example. $n=3: \quad \emptyset \subset \square \subset \square \subset \square \subset \square \square \square \square \square \square \square$

n-core poset

Defn. A strong tableau is a saturated chain of inclusions in the \boldsymbol{n}-core poset.

Example. $n=3: \quad \emptyset \subset \square \subset \square \subset \square \subset \square \rightarrow \square \square$| \square | \square |
| :--- | :--- |
| | \square |
| 2 | 4 |
| 1 | 3 |

Strong tableaux in the \boldsymbol{n}-core poset

Defn. A strong tableau is a saturated chain of inclusions in the n-core poset.

$n=4:$

Note, \boldsymbol{i} 's live in connected, identical ribbons, shifted in diagonal with offset \boldsymbol{n}.

Starred Strong tableaux

Defn. A starred strong tableau $S^{*} \in \operatorname{SST}(\mu, n)$ is a strong tableau S along with a choice of i-ribbon for each $i \in S$. Place $*$ in SE corner of the "starred" i-ribbon.

Example. All SST's for $n=3$ and $\mu=(2,2,1,1)$

Starred Strong tableaux

Defn. A starred strong tableau $S^{*} \in \operatorname{SST}(\boldsymbol{\lambda}, n)$ is a strong tableau S of shape $\boldsymbol{\lambda}$ along with a choice of \boldsymbol{i}-ribbon for each $\boldsymbol{i} \in \boldsymbol{S}$. Place $*$ in SE corner of the "starred" i-ribbon.

Example. All SST's for $n=3$ and $\mu=(2,2,1,1)$

$D\left(S^{*}\right):=\left\{i:(i+1)^{*}\right.$ lies NW of $\left.i^{*}{ }_{\text {in }} S^{*}\right\}$

k-Schur Functions

Definition.

$$
S_{\lambda}^{(k)}(X ; q)=\sum_{S^{*} \in S S T(\lambda, k)} q^{\operatorname{spin}\left(S^{*}\right)} F_{D\left(S^{*}\right)}
$$

SST $=$ Starred Strong Tableaux on the \boldsymbol{n}-core poset. Here $n=k+1$.
$D\left(S^{*}\right)=$ Descent Set of S^{*}
$\operatorname{spin}\left(S^{*}\right)=\sum_{i \in S} n(i)[h(i)-1]+d(i)$

- $n(i)=$ number of connected i-ribbons in S
- $h(i)=$ height of i^{*}-ribbon
- $d(i)=$ number of i-ribbons NW of i^{*}-ribbon

Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions of size \boldsymbol{n} with edges given by dual equivalence has exactly one connected component for each partition of \boldsymbol{n}.

Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions of size \boldsymbol{n} with edges given by dual equivalence has exactly one connected component for each partition of \boldsymbol{n}.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be characterized by 6 axioms.

Affine Dual Equivalence Graphs

Theorem. (Haiman 1992) The graph on all standard tableaux on partitions of size \boldsymbol{n} with edges given by dual equivalence has exactly one connected component for each partition of \boldsymbol{n}.

Theorem. (Assaf, preprint) The standard dual equivalence graphs can be characterized by 6 axioms.

Theorem. (Assaf-Billey) There exists an analogous graph structure on starred strong tableaux that satisfy the first 3 of Assaf's axioms and every vertex in a connected component of the graph has the same spin.

Attempted Proof for Schur Positivity

Assaf Machine.

Goal: Given any $G(V)=\sum_{T \in V} F_{D(T)}$, show $G(V)$ is Schur positive.

1. Impose a graph structure on V by finding a family of involutions ϕ_{i} for $1<i<n$. Set $\boldsymbol{E}_{i}=\{(x, \phi(x)): x \in V, \phi(x) \neq x\}$. Each $\left(V, E_{i}\right)$ is a matching.
2. Show graph satisfies Assaf's axioms including local Schur positivity on every connected component of $\left(\boldsymbol{V}, \boldsymbol{E}_{i-1} \cup \boldsymbol{E}_{\boldsymbol{i}} \cup \boldsymbol{E}_{i+1}\right)$.

Update: Computer verification of local Schur positivity for the graphs on \boldsymbol{k}-Schur functions needs to find all possible graph isomorphism types for $n=2, \ldots, 9$. So far $n=2,3,4,5$ finished. Case $n=6$ running on 8 processors. There are 15,041 interval bottoms to check. Many take minutes, some have taken a week.
http://www.math.washington.edu/~billey/kschur/d-graphs-11-2011.pdf

Computer Assisted Proofs

Questions.

1. What is the value of a computer proof?
2. What data needs to be stored to convince reader that computer verification is complete?
3. How long is too long?
4. What are the standards for publishing a computer assisted proof?

Big Picture

Geometry	Combinatorics	Rep Theory
Grassmannians	Schur functions	$S_{n}, \boldsymbol{G} \boldsymbol{L}_{n}$ irreducible reps
Affine Grassmannians	\boldsymbol{k}-Schur	(Li-Chung Che? + Haiman)
Hilbert Schemes of points in plane	Macdonald polynomials	Garsia-Haiman module (n!-theorem)

Big Picture
Geometry Combinatorics Rep Theory

Grassmannians	Schur functions	$\boldsymbol{S}_{\boldsymbol{n}}, G \boldsymbol{L}_{\boldsymbol{n}}$ irreducible reps
Affine Grassmannians	\boldsymbol{k}-Schur	????
Hilbert Schemes of points in plane	Macdonald polynomials	(Li-Chung Chen + Haiman)
Garsia-Haiman module		
(n!-theorem)		

Theorem.(A-B) k-Schur functions are Schur positive.
Conjecture.(Lapointe-Morse) Macdonald polynomials are \boldsymbol{k}-Schur positive for the right \boldsymbol{k}.

Open. Find a direct geometric connection from Hilbert Schemes to Affine Grassmannians.

