
Rank Varieties

Sara Billey

University of Washington

Canadian Math Society, Winter Meeting
December 5, 2010



Outline

1. Background and history of Grassmannians

2. Rank Varieties and connections to q-Stirling numbers

3. Relating Rank Varieties to Richardson Varieties (Motivation)

Based on joint work with Izzet Coskun (arXiv:1008.2785).



The Grassmannian Manifolds

Definition. Fix a vector space V over C (or R, Z2,. . . ) with basis B =
{e1, . . . , en}. The Grassmannian manifold/variety

G(k, n) = {k-dimensional subspaces of V }.

Question.

How can we impose the structure of a variety or a manifold on this set?



The Grassmannian Manifolds

Answer. Relate G(k, n) to the set of k × n matrices.

U =span〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4〉 ∈ G(3, 4)

MU =





6 3 0 0
4 0 2 0
9 0 1 1





• U ∈ G(k, n) ⇐⇒ rows of MU are independent vectors in V ⇐⇒
some k × k minor of MU is NOT zero.



The Grassmannian Manifolds

Canonical Form. Every subspace in G(k, n) can be represented by a
unique matrix in row echelon form.

Example.

U =span〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4〉 ∈ G(3, 4)

≈





6 3 0 0
4 0 2 0
9 0 1 1



 =





3 0 0
0 2 0
0 1 1









2 1 0 0
2 0 1 0
7 0 0 1





≈〈2e1 + e2, 2e1 + e3, 7e1 + e4〉



Subspaces and Subsets

Example.

U = RowSpan





5 9 h1 0 0 0 0 0 0 0
5 8 0 9 7 9 h1 0 0 0
4 6 0 2 6 4 0 3 h1 0



 ∈ G(3, 10).

position(U) = {3, 7, 9}

Definition.

If U ∈ G(k, n) and MU is the corresponding matrix in canonical form then
the columns of the leading 1’s of the rows of MU determine a subset of size k

in {1, 2, . . . , n} := [n]. There are 0’s to the right of each leading 1 and 0’s
above and below each leading 1. This k-subset determines the position of U
with respect to the fixed basis.



The Schubert Cell Cj in G(k, n)

Defn. Let j = {j1 < j2 < · · · < jk} ∈ [n]. A Schubert cell is

Cj = {U ∈ G(k, n) | position(U) = {j1, . . . , jk}}

Example. C{3,7,9} =











∗ ∗ h1 0 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ ∗ h1 0 0 0
∗ ∗ 0 ∗ ∗ ∗ 0 ∗ h1 0











⊂ G(3, 10).

Observations.
• dim(C{3,7,9}) = 2 + 5 + 6 = 13.

• In general, dim(Cj) =
∑

ji − i.

• G(k, n) =
⋃

Cj over all k-subsets of [n].

• Summing qdim(Cj) over all Schubert cells equals the q-analog of ( n
k ).



Schubert Varieties in G(k, n)

Defn. Given j = {j1 < j2 < · · · < jk} ∈ [n], the Schubert variety is

Xj = Closure of Cj under Zariski topology.

Question. In G(3, 10), which minors vanish on C{3,7,9}?

C{3,7,9} =











∗ ∗ h1 0 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ ∗ h1 0 0 0
∗ ∗ 0 ∗ ∗ ∗ 0 ∗ h1 0











Answer. All minors fj1,j2,j3 with







4 ≤ j1 ≤ 8
or j1 = 3 and 8 ≤ j2 ≤ 9

or j1 = 3, j2 = 7 and j3 = 10







In other words, the canonical form for any subspace in XjCj has 0’s to the right
of column ji in each row i.



Rank Varieties in G(k, n)

Recall we have fixed a basis e1, e2, . . . , en for Cn.

Let W be the span of a non-empty collection of consecutive basis vectors:
W = span(ei, . . . , ej). Say ℓ(W ) = i and r(W ) = j.

Defn. InG(k, n), a rank set M = {W1, . . . ,Wk} is a collection of k vector
spaces in C

n such that each Wi is the span of consecutive basis elements and
ℓ(Wi) 6= ℓ(Wj) and r(Wi) 6= r(Wj) for all i 6= j.

Defn. A rank variety X(M) in G(k, n) is the closure of the set of all
U ∈ G(k, n) such that U has a basis u1, . . . , uk where each ui ∈ Wi ∈ M .



Rank Varieties in G(k, n)

Example. In G(3, 6), M = {〈e1, e2, e3〉, 〈e2, e3, e4, e5, e6〉, 〈e3, e4〉}
is a rank set. X(M) is the closure of the set of 3-planes specified by rank 3
matrices of the form











∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ 0 0











Example. G(3, 6) is a rank variety itself associated to











∗ ∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗3 ∗













Rank Varieties in G(k, n)

Other examples of rank varieties .

• Every G(k, n) is a rank variety.

• Every Schubert variety in G(k, n) is a rank variety.

• Every Richardson variety in G(k, n) is a rank variety.

There are many more rank varieties than Schubert varieties in G(k, n) in gen-
eral. For example, in G(2, 4) there are ( 4

2 ) = 6 Schubert varieties and 25 rank
varieties.



Dimensions of Rank Varieties

Lemma. Let M = {W1, . . . ,Wk} be a rank set. Then

dim X(M) =

k
∑

i=1

dim(Wi) −

k
∑

i=1

#{Wj ∈ M : Wj ⊂ Wi}.



Dimensions of Rank Varieties

Lemma. Let M = {W1, . . . ,Wk} be a rank set. Then

dimX(M) =

k
∑

i=1

dim(Wi) −

k
∑

i=1

#{Wj ∈ M : Wj ⊂ Wi}.

Example. In G(3, 6), M = {〈e1, e2, e3〉, 〈e2, e3, e4, e5, e6〉, 〈e3, e4〉},
X(M) is the closure of the set of 3-planes specified by rank 3 matrices of the
form











∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ 0 0











dim(X(M)) = 3 + 5 + 2 − 1 − 2 − 1 = 6



Dimensions of Rank Varieties

Defn. Consider the sum over all rank sets for G(k, n)

g[k, n] =
∑

M

qdim(X(M)).



Dimensions of Rank Varieties

Defn. Consider the sum over all rank sets for G(k, n)

g[k, n] =
∑

M

qdim(X(M).

Example. g[2, 4] = 6 + 8q + 7q2 + 3q3 + q4.

dim ranksets

0 : (2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)
1 : (23, 1), (34, 1), (3, 12), (4, 12), (2, 123), (34, 2), (4, 23), (3, 234)
2 : (234, 1), (23, 12), (34, 12), (4, 123), (2, 1234), (3, 1234), (34, 23)
3 : (234, 12), (34, 123), (23, 1234)
4 : (234, 123)



Dimensions of Rank Varieties

Defn. Consider the sum over all rank sets for G(k, n)

g[k, n] =
∑

M

qdim(X(M).

Lemma. Let [k] = 1 + q + · · · + qk−1. Then

g[k, n] = g[k, n − 1] + [n − k + 1]g[k − 1, n − 1].

Proof: Partition the rank sets for G(k, n) according to whether or not en
appears as a right hand endpoint for some subspace in the set.



q-Stirling numbers

Defn. The Stirling numbers of the 2nd kind are

S(n, k) = # set partitions of {1, ..., n} into k nonempty blocks.

Define
S[n, k] = qk−1S[n − 1, k − 1] + [k]S[n − 1, k]

with boundary conditions S[0, 0] = 1, S[n, 0] = 0 for n > 0, S[n, k] = 0

for k > n. Note, S[n, k] is divisible by q(
k
2 ).

S[n, k] q-counts sets partitions by crossing number in juggling patterns in work
of Ehrenborg-Readdy. See also [Garsia-Remmel, Milne, Wachs-White].



q-Stirling numbers

Defn. The Stirling numbers of the 2nd kind are

S(n, k) = # set partitions of {1, ..., n} into k nonempty blocks.

Define
S[n, k] = qk−1S[n − 1, k − 1] + [k]S[n − 1, k]

with boundary conditions S[0, 0] = 1, S[n, 0] = 0 for n > 0, S[n, k] = 0

for k > n. Note, S[n, k] is divisible by q(
k
2 ).

Cor. g[k, n] =
∑

M

qdim(X(M)) =
S[n + 1, n − k + 1]

q

(

n−k+1
2

) .



Motivation: Projecting Richardson Varieties

Schubert varieties Xw can be defined in any partial flag manifold

FL(k1 < · · · < kd;C
n) = {V1 ⊂ V2 ⊂ · · · ⊂ Vd : dim(Vi) = ki}.

Defn. A Richardson variety R(u, v) is Xu ∩ gXv where g generic.

We have a natural projection mapping a flag to its biggest subspace

π : FL(k1 < · · · < kd;C
n) −→ G(kd, n).

Question. What is π(R(u, v)) ?

(Related question studied by Lusztig, Postnikov, Rietsch, Brown-Goodearl-Yakimov,
Bergeron-Sottile, Lam-Knutson-Speyer)



Motivation: Projecting Richardson Varieties

Theorem. X is a projected Richardson variety inG(k, n) under the “biggest
subspace map” if and only if X is a rank variety.

Cor. Let X be a rank variety with rank set M . The following are equivalent.
1. X is smooth.

2. X is a Segre product of linearly embedded sub-Grassmannians.

3. M is a union of 1-dimensional subspaces and rank sets on disjoint intervals
which correspond with sub-Grassmannians after quotienting out by the 1-
dimensional subspaces.

Cor. Xsing is the set of all x ∈ X such that either π−1|R(u,v)(x) ∈
R(u, v) is singular or π−1|R(u,v)(x) is positive dimensional.

Theorem (via Kleiman Transversality).

R(u, v)sing = (Xsing
u ∩ Xv) ∪ (Xu ∩ Xv

sing).



Open Problems on Rank Varieties

• Relate rank varieties to Lusztig’s canonical bases.

• Give a nice expression for the cohomology class of a rank variety in terms
of Schur functions.

• Is there a nice parameterization of an arbitrary Richardson variety similar
to the rank sets?


