Rank Varieties

Sara Billey
University of Washington

Canadian Math Society, Winter Meeting
December 5, 2010

Outline

1. Background and history of Grassmannians
2. Rank Varieties and connections to q-Stirling numbers
3. Relating Rank Varieties to Richardson Varieties (Motivation)

Based on joint work with Izzet Coskun (arXiv:1008.2785).

The Grassmannian Manifolds

Definition. Fix a vector space \boldsymbol{V} over $\mathbb{C}\left(\right.$ or $\left.\mathbb{R}, \mathbb{Z}_{2}, \ldots\right)$ with basis $B=$ $\left\{e_{1}, \ldots, e_{n}\right\}$. The Grassmannian manifold/variety

$$
G(k, n)=\{k \text {-dimensional subspaces of } V\} \text {. }
$$

Question.

How can we impose the structure of a variety or a manifold on this set?

The Grassmannian Manifolds

Answer. Relate $G(\boldsymbol{k}, \boldsymbol{n})$ to the set of $\boldsymbol{k} \times \boldsymbol{n}$ matrices.

$$
\begin{aligned}
U & =\operatorname{span}\left\langle 6 e_{1}+3 e_{2}, 4 e_{1}+2 e_{3}, \quad 9 e_{1}+e_{3}+e_{4}\right\rangle \in G(3,4) \\
M_{U} & =\left[\begin{array}{llll}
6 & 3 & 0 & 0 \\
4 & 0 & 2 & 0 \\
9 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

- $U \in G(k, n) \Longleftrightarrow$ rows of M_{U} are independent vectors in V some $\boldsymbol{k} \times \boldsymbol{k}$ minor of M_{U} is NOT zero.

The Grassmannian Manifolds

Canonical Form. Every subspace in $G(k, n)$ can be represented by a unique matrix in row echelon form.

Example.

$$
\begin{aligned}
U & =\operatorname{span}\left\langle 6 e_{1}+3 e_{2}, 4 e_{1}+2 e_{3}, 9 e_{1}+e_{3}+e_{4}\right\rangle \in G(3,4) \\
& \approx\left[\begin{array}{llll}
6 & 3 & 0 & 0 \\
4 & 0 & 2 & 0 \\
9 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
7 & 0 & 0 & 1
\end{array}\right] \\
& \approx\left\langle 2 e_{1}+e_{2}, 2 e_{1}+e_{3}, 7 e_{1}+e_{4}\right\rangle
\end{aligned}
$$

Subspaces and Subsets

Example.

$$
\begin{gathered}
U=\text { RowSpan }\left[\begin{array}{cccccccccc}
5 & 9 & (1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 8 & 0 & 9 & 7 & 9 & (1) & 0 & 0 & 0 \\
4 & 6 & 0 & 2 & 6 & 4 & 0 & 3 & (1) & 0
\end{array}\right] \in G(3,10) . \\
\operatorname{position}(U)=\{3,7,9\}
\end{gathered}
$$

Definition.

If $U \in G(k, n)$ and M_{U} is the corresponding matrix in canonical form then the columns of the leading 1's of the rows of $M_{\boldsymbol{U}}$ determine a subset of size \boldsymbol{k} in $\{1,2, \ldots, n\}:=[n]$. There are 0 's to the right of each leading 1 and 0 's above and below each leading 1 . This k-subset determines the position of \boldsymbol{U} with respect to the fixed basis.

The Schubert Cell C_{j} in $G(k, n)$

Defn. Let $\mathbf{j}=\left\{j_{1}<j_{2}<\cdots<j_{k}\right\} \in[n]$. A Schubert cell is

$$
C_{\mathrm{j}}=\left\{U \in G(k, n) \mid \operatorname{position}(U)=\left\{j_{1}, \ldots, j_{k}\right\}\right\}
$$

Example. $C_{\{3,7,9\}}=\left\{\left[\begin{array}{llllllllll}* & * & (1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & * & 0 & * & * & * & 1 & 0 & 0 & 0 \\ * & * & 0 & * & * & * & 0 & * & (1) & 0\end{array}\right]\right\} \subset G(3,10)$.

Observations.

- $\operatorname{dim}\left(C_{\{3,7,9\}}\right)=2+5+6=13$.
- In general, $\operatorname{dim}\left(C_{\mathrm{j}}\right)=\sum j_{i}-i$.
- $G(k, n)=\bigcup C_{\mathrm{j}}$ over all k-subsets of $[n]$.
- Summing $q^{\operatorname{dim}\left(C_{\mathrm{j}}\right)}$ over all Schubert cells equals the q-analog of $\binom{n}{k}$.

Schubert Varieties in $G(k, n)$

Defn. Given $\mathrm{j}=\left\{j_{1}<j_{2}<\cdots<j_{k}\right\} \in[n]$, the Schubert variety is $\boldsymbol{X}_{\mathrm{j}}=$ Closure of $\boldsymbol{C}_{\mathrm{j}}$ under Zariski topology.

Question. In $G(3,10)$, which minors vanish on $C_{\{3,7,9\}}$?

$$
C_{\{3,7,9\}}=\left\{\left[\begin{array}{llllllllll}
* & * & (1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & * & * & * & (1) & 0 & 0 & 0 \\
* & * & 0 & * & * & * & 0 & * & (1) & 0
\end{array}\right]\right\}
$$

Answer. All minors $f_{j_{1}, j_{2}, j_{3}}$ with $\left\{\begin{array}{c}4 \leq j_{1} \leq 8 \\ \text { or } j_{1}=3 \text { and } 8 \leq j_{2} \leq 9 \\ \text { or } j_{1}=3, j_{2}=7 \text { and } j_{3}=10\end{array}\right\}$
In other words, the canonical form for any subspace in $\boldsymbol{X}_{\mathrm{j}} \overline{\bar{C}_{\mathrm{j}}}$ has 0's to the right of column $\boldsymbol{j}_{\boldsymbol{i}}$ in each row \boldsymbol{i}.

Rank Varieties in $G(k, n)$

Recall we have fixed a basis $e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{C}^{n}.
Let \boldsymbol{W} be the span of a non-empty collection of consecutive basis vectors: $W=\operatorname{span}\left(e_{i}, \ldots, e_{j}\right)$. Say $\ell(W)=i$ and $r(W)=j$.

Defn. In $G(k, n)$, a rankset $M=\left\{W_{1}, \ldots, W_{k}\right\}$ is a collection of k vector spaces in \mathbb{C}^{n} such that each \boldsymbol{W}_{i} is the span of consecutive basis elements and $\ell\left(\boldsymbol{W}_{\boldsymbol{i}}\right) \neq \ell\left(\boldsymbol{W}_{j}\right)$ and $r\left(\boldsymbol{W}_{\boldsymbol{i}}\right) \neq r\left(\boldsymbol{W}_{j}\right)$ for all $i \neq j$.

Defn. A rank variety $\boldsymbol{X}(M)$ in $G(k, n)$ is the closure of the set of all $U \in G(k, n)$ such that U has a basis u_{1}, \ldots, u_{k} where each $u_{i} \in W_{i} \in M$.

Rank Varieties in $G(k, n)$

Example. In $G(3,6), M=\left\{\left\langle e_{1}, e_{2}, e_{3}\right\rangle,\left\langle e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\rangle,\left\langle e_{3}, e_{4}\right\rangle\right\}$ is a rank set. $\boldsymbol{X}(M)$ is the closure of the set of 3 -planes specified by rank 3 matrices of the form

$$
\left\{\left[\begin{array}{llllll}
* & * & * & 0 & 0 & 0 \\
0 & * & * & * & * & * \\
0 & 0 & * & * & 0 & 0
\end{array}\right]\right\}
$$

Example. $G(3,6)$ is a rank variety itself associated to

$$
\left\{\left[\begin{array}{cccccc}
* & * & * & * & 0 & 0 \\
0 & * & * & * & * & 0 \\
0 & 0 & * & * & * 3 & *
\end{array}\right]\right\}
$$

Rank Varieties in $G(k, n)$

Other examples of rank varieties .

- Every $G(k, n)$ is a rank variety.
- Every Schubert variety in $G(k, n)$ is a rank variety.
- Every Richardson variety in $G(\boldsymbol{k}, \boldsymbol{n})$ is a rank variety.

There are many more rank varieties than Schubert varieties in $G(k, n)$ in general. For example, in $G(2,4)$ there are $\binom{4}{2}=6$ Schubert varieties and 25 rank varieties.

Dimensions of Rank Varieties

Lemma. Let $M=\left\{\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\boldsymbol{k}}\right\}$ be a rank set. Then

$$
\operatorname{dim} X(M)=\sum_{i=1}^{k} \operatorname{dim}\left(W_{i}\right)-\sum_{i=1}^{k} \#\left\{W_{j} \in M: W_{j} \subset W_{i}\right\} .
$$

Dimensions of Rank Varieties

Lemma. Let $M=\left\{\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\boldsymbol{k}}\right\}$ be a rank set. Then

$$
\operatorname{dim} X(M)=\sum_{i=1}^{k} \operatorname{dim}\left(W_{i}\right)-\sum_{i=1}^{k} \#\left\{W_{j} \in M: W_{j} \subset W_{i}\right\} .
$$

Example. In $G(3,6), M=\left\{\left\langle e_{1}, e_{2}, e_{3}\right\rangle,\left\langle e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\rangle,\left\langle e_{3}, e_{4}\right\rangle\right\}$, $\boldsymbol{X}(\boldsymbol{M})$ is the closure of the set of 3 -planes specified by rank 3 matrices of the form

$$
\left\{\left[\begin{array}{llllll}
* & * & * & 0 & 0 & 0 \\
0 & * & * & * & * & * \\
0 & 0 & * & * & 0 & 0
\end{array}\right]\right\}
$$

$$
\operatorname{dim}(X(M))=3+5+2-1-2-1=6
$$

Dimensions of Rank Varieties

Defn. Consider the sum over all rank sets for $G(k, n)$

$$
g[k, n]=\sum_{M} q^{\operatorname{dim}(X(M))}
$$

Dimensions of Rank Varieties

Defn. Consider the sum over all rank sets for $G(k, n)$

$$
g[k, n]=\sum_{M} q^{\operatorname{dim}(X(M)}
$$

Example. $g[2,4]=6+8 q+7 q^{2}+3 q^{3}+q^{4}$.

```
dim ranksets
    0: (2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)
    1: (23, 1), (34, 1), (3, 12), (4, 12), (2, 123), (34, 2), (4, 23), (3, 234)
    2 : (234, 1), (23, 12), (34, 12), (4, 123), (2, 1234), (3, 1234), (34, 23)
    3: (234, 12),(34, 123), (23, 1234)
    4: (234, 123)
```


Dimensions of Rank Varieties

Defn. Consider the sum over all rank sets for $G(k, n)$

$$
g[k, n]=\sum_{M} q^{\operatorname{dim}(X(M)}
$$

Lemma. Let $[k]=1+q+\cdots+q^{k-1}$. Then

$$
g[k, n]=g[k, n-1]+[n-k+1] g[k-1, n-1] .
$$

Proof: Partition the rank sets for $G(k, n)$ according to whether or not e_{n} appears as a right hand endpoint for some subspace in the set.

q-Stirling numbers

Defn. The Stirling numbers of the $2 n d$ kind are

$$
S(n, k)=\# \text { set partitions of }\{1, \ldots, n\} \text { into } k \text { nonempty blocks. }
$$

Define

$$
S[n, k]=q^{k-1} S[n-1, k-1]+[k] S[n-1, k]
$$

with boundary conditions $S[0,0]=1, S[n, 0]=0$ for $n>0, S[n, k]=0$ for $k>n$. Note, $S[n, k]$ is divisible by $q^{\binom{k}{2}}$.
$S[n, k] q$-counts sets partitions by crossing number in juggling patterns in work of Ehrenborg-Readdy. See also [Garsia-Remmel, Milne, Wachs-White].

q-Stirling numbers

Defn. The Stirling numbers of the 2nd kind are

$$
S(n, k)=\# \text { set partitions of }\{1, \ldots, n\} \text { into } k \text { nonempty blocks. }
$$

Define

$$
S[n, k]=q^{k-1} S[n-1, k-1]+[k] S[n-1, k]
$$

with boundary conditions $S[0,0]=1, S[n, 0]=0$ for $n>0, S[n, k]=0$ for $k>n$. Note, $S[n, k]$ is divisible by $q^{\binom{k}{2}}$.

Cor. $g[k, n]=\sum_{M} q^{\operatorname{dim}(X(M))}=\frac{S[n+1, n-k+1]}{q^{\binom{n-k+1}{2}}}$.

Motivation: Projecting Richardson Varieties

Schubert varieties $\boldsymbol{X}_{\boldsymbol{w}}$ can be defined in any partial flag manifold

$$
F L\left(k_{1}<\cdots<k_{d} ; \mathbb{C}^{n}\right)=\left\{V_{1} \subset V_{2} \subset \cdots \subset V_{d}: \operatorname{dim}\left(V_{i}\right)=k_{i}\right\}
$$

Defn. A Richardson variety $\boldsymbol{R}(\boldsymbol{u}, \boldsymbol{v})$ is $\boldsymbol{X}_{\boldsymbol{u}} \cap \boldsymbol{g} \boldsymbol{X}_{\boldsymbol{v}}$ where \boldsymbol{g} generic.
We have a natural projection mapping a flag to its biggest subspace

$$
\pi: F L\left(k_{1}<\cdots<k_{d} ; \mathbb{C}^{n}\right) \longrightarrow G\left(k_{d}, n\right) .
$$

Question. What is $\pi(R(u, v)) ?$
(Related question studied by Lusztig, Postnikov, Rietsch, Brown-Goodearl-Yakimov, Bergeron-Sottile, Lam-Knutson-Speyer)

Motivation: Projecting Richardson Varieties

Theorem. \boldsymbol{X} is a projected Richardson variety in $\boldsymbol{G}(\boldsymbol{k}, \boldsymbol{n})$ under the "biggest subspace map" if and only if \boldsymbol{X} is a rank variety.

Cor. Let \boldsymbol{X} be a rank variety with rank set \boldsymbol{M}. The following are equivalent.

1. \boldsymbol{X} is smooth.
2. \boldsymbol{X} is a Segre product of linearly embedded sub-Grassmannians.
3. M is a union of 1 -dimensional subspaces and rank sets on disjoint intervals which correspond with sub-Grassmannians after quotienting out by the 1dimensional subspaces.

Cor. $X^{\text {sing }}$ is the set of all $x \in X$ such that either $\left.\pi^{-1}\right|_{R(u, v)}(x) \in$ $R(u, v)$ is singular or $\left.\pi^{-1}\right|_{R(u, v)}(x)$ is positive dimensional.

Theorem (via Kleiman Transversality).

$$
R(u, v)^{s i n g}=\left(X_{u}^{s i n g} \cap X^{v}\right) \cup\left(X_{u} \cap X_{\text {sing }}^{v}\right) .
$$

Open Problems on Rank Varieties

- Relate rank varieties to Lusztig's canonical bases.
- Give a nice expression for the cohomology class of a rank variety in terms of Schur functions.
- Is there a nice parameterization of an arbitrary Richardson variety similar to the rank sets?

