Patterns in permutations and diagrams

with applications to Stanley symmetric functions and Schubert calculus

Sara Billey
University of Washington
http://www.math.washington.edu/~billey

ICERM, Sage Days February 11-15, 2013

Combinatorics, Number Theory, and Sage

High Level Goals.

- Find some applications of quasisymmetric functions and permutation patterns in terms of Whittaker functions, multiple Dirichlet series, Eisenstein series, automorphic forms, etc.
- Learn/Expand new Sage tools for quasisymmetric function expansions (Bandlow-Berg-Saliola).
- Learn/Expand new Sage tools for permutation pattern recognition (Magnusson-Úlfarsson).

Possible path. via Stanley symmetric functions and Schubert calculus.

Outline

1. Symmetric Functions and Quasisymmetric Functions
2. Stanley Symmetric Functions
3. 3 properties of SSF's characterized by permutation patterns
4. Applications to Schubert calculus and Liu's conjecture
5. Sage Demo

Based on joint work with Brendan Pawlowski at the University of Washington.

Tale of Two Rings

Power Series Ring.: $\mathbb{Z}[[\boldsymbol{X}]]$ over a finite or countably infinite alphabet $\boldsymbol{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ or $\boldsymbol{X}=\left\{x_{1}, x_{2}, \ldots\right\}$.

Two sulbrings. of $\mathbb{Z}[[X]]$:

- Symmetric Functions (SYM)
- Quasisymmetric Functions (QSYM)

Ring of Symmetric Functions

Defn. $f\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}[[\boldsymbol{X}]]$ is a symmetric function if for all i

$$
f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)=f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)
$$

Example. $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+\ldots$

Ring of Symmetric Functions

Defn. $f\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}[[\boldsymbol{X}]]$ is a symmetric function if for all i

$$
f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)=f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)
$$

Example. $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+\ldots$

Defn. $f\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}[[\boldsymbol{X}]]$ is a quasisymmetric function if

$$
\operatorname{coef}\left(f ; x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{k}^{\alpha_{k}}\right)=\operatorname{coef}\left(f ; x_{a}^{\alpha_{1}} x_{b}^{\alpha_{2}} \ldots x_{c}^{\alpha_{k}}\right)
$$

for all $1<a<b<\cdots<c$.
Example. $f(X)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+\ldots$

Why study SYM and QSYM?

- Symmetric Functions (SYM): Used in representation theory, combinatorics, algebraic geometry over past $200+$ years. And now in number theory!
- Quasisymmetric Functions (QSYM): 0-Hecke algebra representation theory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert calculus.
- QSYM now in Sage!

Monomial Basis of SYM

Defn. A partition of a number n is a weakly decreasing sequence of positive integers

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)
$$

such that $n=\sum \lambda_{i}=|\lambda|$.
Partitions can be visualized by their Ferrers diagram

Defn/Thm. The monomial symmetric functions

$$
m_{\lambda}=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}+x_{2}^{\lambda_{1}} x_{1}^{\lambda_{2}} \cdots x_{k}^{\lambda_{k}}+\text { all other perms of vars }
$$

form a basis for $S Y M_{n}=$ homogeneous symmetric functions of degree \boldsymbol{n}.
Fact. $\operatorname{dim} S Y M_{n}=p(n)=$ number of partitions of n.

Monomial Basis of QSYM

Defn. A composition of a number \boldsymbol{n} is a sequence of positive integers

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)
$$

such that $n=\sum \alpha_{i}=|\boldsymbol{\alpha}|$.

Defn/Thm. The monomial quasisymmetric functions

$$
M_{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}+x_{2}^{\alpha_{1}} x_{3}^{\alpha_{2}} \cdots x_{k+1}^{\alpha_{k}}+\text { all other shifts }
$$

form a basis for $\boldsymbol{Q} \boldsymbol{S} \boldsymbol{Y} \boldsymbol{M}_{\boldsymbol{n}}=$ homogeneous quasisymmetric functions of deg \boldsymbol{n}.
Fact. $\operatorname{dim} Q S Y M_{n}=$ number of compositions of $n=2^{n-1}$.

Monomial Basis of QSYM

Fact. $\operatorname{dimQSY} M_{n}=$ number of compositions of $n=2^{n-1}$.
Bijection:

$$
\begin{aligned}
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \longrightarrow\{ & \alpha_{1} \\
& \alpha_{1}+\alpha_{2} \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

$$
\left.\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k-1}\right\}
$$

Counting Partitions

Asymptotic Formula:。 (Hardy-Ramanujan)

$$
p(n) \approx \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}}
$$

Schur basis for SYM

Let $\boldsymbol{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a finite alphabet.
Let $\boldsymbol{\lambda}=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)$ and $\lambda_{p}=0$ for $p>\boldsymbol{k}$.
Defn. The following are equivalent definitions for the Schur functions $\boldsymbol{S}_{\boldsymbol{\lambda}}(\boldsymbol{X})$:

1. $S_{\lambda}=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+m-j}\right)}{\operatorname{det}\left(x_{i}^{j}\right)}$ with indices $1 \leq i, j \leq m$.
2. $S_{\lambda}=\sum \boldsymbol{x}^{T}$ summed over all column strict tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.

Defn. \boldsymbol{T} is column strict if entries strictly increase along columns and weakly increase along rows.

Example. A column strict tableau of shape (5, 3, 1)

$$
T=\begin{array}{|l|l|lll}
\hline 7 & & & \\
\hline 4 & 7 & 7 & & \\
\hline 2 & 2 & 3 & 4 & 8 \\
\hline
\end{array}
$$

Multiplying Schur Functions

Littlewood-Richardson Coefficients.

$$
S_{\lambda}(X) \cdot S_{\mu}(X)=\sum_{|\nu|=|\lambda|+|\mu|} c_{\lambda, \mu}^{\nu} S_{\nu}(X)
$$

$c_{\lambda, \mu}^{\nu}=\#$ skew tableaux of shape ν / λ such that $x^{T}=x^{\mu}$ and the reverse reading word is a lattice word.

Example. If $\nu=(4,3,2), \boldsymbol{\lambda}=(2,1), \boldsymbol{\lambda}=(3,2,1)$ then

Fundamental basis for QSYM

Defn. Let $A \subset[p-1]=\{1,2, \ldots, p-1\}$.
The fundamental quasisymmetric function

$$
F_{A}(X)=\sum x_{i_{1}} \cdots x_{i_{p}}
$$

summed over all $1 \leq i_{1} \leq \ldots \leq i_{p}$ such that $i_{j}<i_{j+1}$ whenever $\boldsymbol{j} \notin \boldsymbol{A}$.

Example. $F_{++-+}=x_{1} x_{1} x_{1} x_{2} x_{2}+x_{1} x_{2} x_{2} x_{3} x_{3}+x_{1} x_{2} x_{3} x_{4} x_{5}+\ldots$
Here $++-+=\{1,2,4\} \subset\{1,2,3,4\}$.

Other bases of QSYM. quasi Schur basis (Haglund-Luoto-Mason-vanWillige matroid friendly basis (Luoto)

A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive relation on a set.

Defn. Young's Lattice on all partitions is the poset defined by the relation $\boldsymbol{\lambda} \subset \boldsymbol{\mu}$ if the Ferrers diagram for $\boldsymbol{\lambda}$ fits inside the Ferrers diagram for $\boldsymbol{\mu}$.

Defn. A standard tableau \boldsymbol{T} of shape $\boldsymbol{\lambda}$ is a saturated chain in Young's lattice from \emptyset to λ.

Schur functions

Thm.(Gessel,1984) For all partitions $\boldsymbol{\lambda}$,

$$
S_{\lambda}(X)=\sum F_{D(T)}(X)
$$

summed over all standard tableaux \boldsymbol{T} of shape $\boldsymbol{\lambda}$.

Defn. The descent set of \boldsymbol{T}, denoted $\boldsymbol{D}(\boldsymbol{T})$, is the set of indices i such that $i+1$ appears northwest of i.

Example. Expand $S_{(3,2)}$ in the fundamental basis

45	35	${ }^{3} 44$	25	${ }_{2} 24$
1123	1)24	1 2 5		1/3)5

$S_{(3,2)}(\boldsymbol{X})=\boldsymbol{F}_{++-+}(\boldsymbol{X})+\boldsymbol{F}_{+-+-}(\boldsymbol{X})+\boldsymbol{F}_{+-++}(\boldsymbol{X})+\boldsymbol{F}_{-++-}(\boldsymbol{X})+\boldsymbol{F}_{-+-+}$

Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr, 2005)

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{w \in S_{n}} q^{i n v_{\mu}(w)} t^{m a j_{\mu}(w)} F_{D\left(w^{-1}\right)}
$$

where $\boldsymbol{D}(\boldsymbol{w})$ is the descent set of w in one-line notation.

Thm. (Haiman) Expanding $\widetilde{\boldsymbol{H}}_{\mu}(\boldsymbol{X} ; \boldsymbol{q}, t)$ into Schur functions

$$
\widetilde{H}_{\mu}(X ; q, t)=\sum_{i} \sum_{j} \sum_{|\lambda|=|\mu|} c_{i, j, \lambda} q^{i} t^{j} S_{\lambda},
$$

the coefficients $c_{i, j, \lambda}$ are all non-negative integers.
\Longrightarrow Macdonald polynomials are Schur positive,
Open I. Find a "nice" combinatorial algorithm to compute $c_{i, j, \lambda}$ showing these are non-negative integers.

Lascoux-Leclerc-Thibon Polynomials

Defn. Let $\bar{\mu}=\left(\mu^{(1)}, \mu^{(1)}, \ldots, \mu^{(k)}\right)$ be a list of partitions.

$$
L L T_{\bar{\mu}}(X ; q)=\sum q^{i n v_{\mu}(T)} F_{D\left(w^{-1}\right)}
$$

summed over all bijective fillings \boldsymbol{w} of $\bar{\mu}$ where each $\boldsymbol{\mu}^{(i)}$ filled with rows and columns increasing. Each \boldsymbol{w} is recorded as the permutation given by the content reading word of the filling.

Thm. For all $\bar{\mu}=\left(\mu^{(1)}, \mu^{(2)}, \ldots, \mu^{(k)}\right)$

1. $\boldsymbol{L L} T_{\bar{\mu}}(\boldsymbol{X} ; \boldsymbol{q})$ is symmetric. (Lascoux-Leclerc-Thibon)

Lascoux-Leclerc-Thibon Polynomials

Open II. Find a "nice" combinatorial algorithm to compute the expansion coefficients for $\boldsymbol{L L T}$'s to Schurs.

Known. Each $\widetilde{\boldsymbol{H}}_{\mu}(\boldsymbol{X} ; \boldsymbol{q}, \boldsymbol{t})$ expands as a positive sum of LLT's so Open II implies Open I. (Haiman-Haglund-Loehr)

Plethysm of Schur Functions

Defn. Given $f, g \in \mathbb{Z}_{+}[[X]]$ with $g=x^{\alpha}+x^{\beta}+x^{\gamma}+\ldots$, the Plethysm of f, g is

$$
f[g]=f\left(x^{\alpha}, x^{\beta}, x^{\gamma}, \ldots\right)
$$

Thm.[Loehr-Warrington (2012)] For all partitions $\boldsymbol{\lambda}, \boldsymbol{\mu}$ and compositions α, the plethysm

$$
\begin{aligned}
s_{\lambda}\left[\boldsymbol{F}_{\alpha}\right] & =\sum_{A \in M(\lambda, \alpha)} \boldsymbol{F}_{D(w(A))} \\
s_{\lambda}\left[s_{\mu}\right] & =\sum_{A \in M(\lambda, \mu)} \boldsymbol{F}_{D(w(A))}
\end{aligned}
$$

Stanley symmetric functions

Background.

- Every permutation \boldsymbol{w} can be written as a product of adjacent transpositions $s_{i}=(i, i+1)$.
- A minimal length expression for \boldsymbol{w} is said to be reduced.
- Let $\boldsymbol{R}(\boldsymbol{w})$ be the set of all sequences $\mathrm{a}=\left(a_{1}, \ldots, a_{p}\right)$ such that $w=$ $s_{a_{1}} \cdots s_{a_{p}}$ is reduced.

Def. For $\boldsymbol{w} \in S_{n}$, the Stanley symmetric function is

$$
F_{w}=\sum_{\mathrm{a} \in R(w)} F_{A(\mathrm{a})}
$$

where $\boldsymbol{A}(\mathrm{a})$ is the set of positions i where $a_{i}<a_{i+1}$.

Stanley symmetric functions

Background.

- Every permutation \boldsymbol{w} can be written as a product of adjacent transpositions $s_{i}=(i, i+1)$.
- A minimal length expression for \boldsymbol{w} is said to be reduced.
- Let $R(w)$ be the set of all sequences $\mathbf{a}=\left(a_{1}, \ldots a_{p}\right)$ such that $w=$ $s_{a_{1}} \cdots s_{a_{p}}$ is reduced.

Def. For $\boldsymbol{w} \in S_{n}$, the Stanley symmetric function is

$$
\boldsymbol{F}_{w}=\sum_{\mathrm{a} \in R(w)} \boldsymbol{F}_{A(\mathrm{a})}=\lim _{m \rightarrow \infty} \mathfrak{S}_{1^{m} \times w}
$$

where \mathfrak{S}_{w} is a Schubert polynomial and $1 \times w=\left[1, w_{1}+1, \ldots, w_{n}+1\right]$.

Stanley symmetric functions

Thm.[Stanley, Edelman-Greene] $\boldsymbol{F}_{\boldsymbol{w}}$ is symmetric and has Schur expansion:

$$
F_{w}=\sum_{\lambda} a_{\lambda, w} S_{\lambda}, \quad a_{\lambda, w} \in \mathbb{N}
$$

Cor. $|R(w)|=\sum_{\lambda} a_{\lambda, w} f^{\lambda}$ where f^{λ} is the number of standard tableaux of shape $\boldsymbol{\lambda}$.

Nice cases.

1. If $w=[n, n-1, \ldots, 1]=w_{0}$ then $\boldsymbol{F}_{\boldsymbol{w}}=S_{\delta}$ where δ is the staircase shape with $n-1$ rows.
2. $\boldsymbol{F}_{\boldsymbol{w}}=s_{\boldsymbol{\lambda}(w)}$ iff \boldsymbol{w} is 2143-avoiding iff \boldsymbol{w} is vexillary.

Vexillary Permutations

Def. A permutation is vexillary iff $\boldsymbol{F}_{\boldsymbol{w}}=s_{\boldsymbol{\lambda}(\boldsymbol{w})}$ iff \boldsymbol{w} is 2143-avoiding.

Properties.

- Schubert polynomial is a flagged Schur function (Wachs).
- Kazhdan-Lusztig polynomials have a combinatorial formula (Lascoux-Schützen
- The enumeration is the same as 1234 -avoiding permutations (Gessel).
- Easy to find a uniformly random reduced expression using Robinson-SchenstedKnuth correspondence and the hook-walk algorithm (Greene-NijenhuisWilf).

Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff $\boldsymbol{F}_{\boldsymbol{w}}=\sum \boldsymbol{a}_{\lambda, \boldsymbol{w}} s_{\lambda}$ and $\sum_{a_{\lambda, w}} \leq \boldsymbol{k}$.

Example. $F_{214365}=S_{(3)}+2 S_{(2,1)}+S_{(1,1,1)}$
so 214365 is 4 -vexillary, but not 3 -vexillary.

Generalizing Vexillary Permutations

Def. A permutation is \boldsymbol{k}-vexillary iff $\boldsymbol{F}_{\boldsymbol{w}}=\sum \boldsymbol{a}_{\boldsymbol{\lambda}, \boldsymbol{w}} s_{\boldsymbol{\lambda}}$ and $\sum_{a_{\lambda, w}} \leq \boldsymbol{k}$.

Thm. (Billey-Pawlowski) A permutation \boldsymbol{w} is \boldsymbol{k}-vexillary iff \boldsymbol{w} avoids a finite set of patterns V_{k} for all $k \in \mathbb{N}$.

$$
\begin{array}{ll}
k=1 & V_{1}=\{2143\}, \\
k=2 & \left|V_{2}\right|=35, \text { all in } S_{5} \cup S_{6} \cup S_{7} \cup S_{8} \\
k=3 & \left|V_{3}\right|=91, \text { all in } S_{5} \cup S_{6} \cup S_{7} \cup S_{8} \\
k=4 & \text { conjecture }\left|V_{4}\right|=2346, \text { all in } S_{5} \cup \cdots \cup S_{12} .
\end{array}
$$

Generalizing Vexillary Permutations

Def. A permutation is \boldsymbol{k}-vexillary iff $\boldsymbol{F}_{\boldsymbol{w}}=\sum \boldsymbol{a}_{\lambda, \boldsymbol{w}} s_{\lambda}$ and $\sum_{a_{\lambda, w}} \leq \boldsymbol{k}$.
Properties.

- 2 -vex perms have easy expansion: $\boldsymbol{F}_{\boldsymbol{w}}=\boldsymbol{S}_{\boldsymbol{\lambda}(\boldsymbol{w})}+\boldsymbol{S}_{\boldsymbol{\lambda}\left(\boldsymbol{w}^{-1}\right)^{\prime}}$.
- 3-vex perms are multiplicity free: $\boldsymbol{F}_{\boldsymbol{w}}=\boldsymbol{S}_{\boldsymbol{\lambda}(\boldsymbol{w})}+\boldsymbol{S}_{\mu}+\boldsymbol{S}_{\boldsymbol{\lambda}\left(\boldsymbol{w}^{-1}\right)^{\prime}}$ for some $\boldsymbol{\mu}$ between first and second shape in dominance order.
- 3-vex perms have a nice essential set.

Outline of Proof

Thm. (Billey-Pawlowski) A permutation \boldsymbol{w} is \boldsymbol{k}-vexillary iff \boldsymbol{w} avoids a finite set of patterns V_{k} for all $k \in \mathbb{N}$.

Proof.

1. (James-Peel) Use generalized Specht modules S^{D} for $D \in \mathbb{N} \times \mathbb{N}$.
2. (Kraśkiewicz, Reiner-Shimozono) For $\boldsymbol{D}(\boldsymbol{w})=$ diagram of permutation \boldsymbol{w},

$$
S^{D(w)}=\bigoplus\left(S^{\lambda}\right)^{a_{\lambda, w}} .
$$

3. Compare Lascoux-Schützenberger transition tree and James-Peel moves.
4. If \boldsymbol{w} contains \boldsymbol{v} as a pattern, then the James-Peel moves used to expand $S^{D(v)}$ into irreducibles will also apply to $D(w)$ in a way that respects shape inclusion and multiplicity.

Another permutation filtration

Def. A permutation \boldsymbol{w} is multiplicity free if $\boldsymbol{F}_{\boldsymbol{w}}$ has a multiplicity free Schur expansion.

Def. A permutation \boldsymbol{w} is \boldsymbol{k}-multiplicity bounded if $\left\langle\boldsymbol{F}_{\boldsymbol{w}}, \boldsymbol{S}_{\boldsymbol{\lambda}}\right\rangle \leq \boldsymbol{k}$ for all partitions λ.

Cor. If \boldsymbol{w} is \boldsymbol{k}-multiplicity bounded and \boldsymbol{w} contains \boldsymbol{v} as a pattern, then \boldsymbol{v} is k-multiplicity bounded for all k.

Conjecture. The multiplicity free permutations are characterized by 198 pattern up through S_{11}.

Motivation

Let $D \subset \mathbb{N} \times \mathbb{N}$. Let $S^{D}=\oplus\left(S^{\boldsymbol{\lambda}}\right)^{c_{\lambda, D}}$ expanded into irreducibles.
In the Grassmannian $\operatorname{Gr}(\boldsymbol{k}, \boldsymbol{n})$, consider the row spans of the matrices

$$
\left\{\left(I_{k} \mid A\right): A \in M_{k \times(n-k)}, A_{i j}=0 \text { if }(i, j) \in D\right\}
$$

Let Ω_{D} be the closure of this set in $\operatorname{Gr}(\boldsymbol{k}, \boldsymbol{n})$. Let σ_{D} be the cohomology class associated to this variety.

Liu's Conjecture. The Schur expansion of $\sigma_{D}=\sum c_{\lambda, D} S_{\boldsymbol{\lambda}}$.
True for "forests" (Liu) and permutation diagrams (Knutson-Lam-Speyer, Pawlowski)

Summary of Conjectures/Goals

Conjectures.

1. The 4-vexillary permutations are characterized by 2346 patterns in \boldsymbol{S}_{12}.
2. The multiplicity free permutations are characterized by 198 pattern up through S_{11}.
3. Liu's conjecture: The Schur expansion of $\sigma_{D}=\sum c_{\lambda, D} S_{\boldsymbol{\lambda}}$.

High Level Goals.

- Find some applications of quasisymmetric functions and permutation patterns in terms of Whittaker functions, multiple Dirichlet series, Eisenstein series, automorphic forms, etc.
- Learn/Expand new Sage tools for quasisymmetric function expansions (Bandlow-Berg-Saliola).
- Learn/Expand new Sage tools for permutation pattern recognition (Magnusson-Úlfarsson)

