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Combinatorics, Number Theory, and Sage

High Level Goals.
• Find some applications of quasisymmetric functions and permutation pat-
terns in terms of Whittaker functions, multiple Dirichlet series, Eisenstein
series, automorphic forms, etc.

• Learn/Expand new Sage tools for quasisymmetric function expansions
(Bandlow-Berg-Saliola).

• Learn/Expand new Sage tools for permutation pattern recognition
(Magnusson-Úlfarsson).

Possible path. via Stanley symmetric functions and Schubert calculus.



Outline

1. Symmetric Functions and Quasisymmetric Functions

2. Stanley Symmetric Functions

3. 3 properties of SSF’s characterized by permutation patterns

4. Applications to Schubert calculus and Liu’s conjecture

5. Sage Demo

Based on joint work with Brendan Pawlowski at the University of Washington.



Tale of Two Rings

Power Series Ring.: Z[[X]] over a finite or countably infinite alphabet
X = {x1, x2, . . . , xn} or X = {x1, x2, . . . }.

Two subrings. of Z[[X]]:

• Symmetric Functions (SYM)

• Quasisymmetric Functions (QSYM)



Ring of Symmetric Functions

Defn. f(x1, x2, . . . ) ∈ Z[[X]] is a symmetric function if for all i

f(. . . , xi, xi+1, . . . ) = f(. . . , xi+1, xi, . . . ).

Example. x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + . . .



Ring of Symmetric Functions

Defn. f(x1, x2, . . . ) ∈ Z[[X]] is a symmetric function if for all i

f(. . . , xi, xi+1, . . . ) = f(. . . , xi+1, xi, . . . ).

Example. x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + . . .

Defn. f(x1, x2, . . . ) ∈ Z[[X]] is a quasisymmetric function if

coef(f ;xα1

1 xα2

2 . . . xαk

k ) = coef(f ;xα1

a xα2

b . . . xαk

c )

for all 1 < a < b < · · · < c.

Example. f(X) = x2
1x2 + x2

1x3 + x2
2x3 + . . .



Why study SYM and QSYM?

• Symmetric Functions (SYM): Used in representation theory, combina-
torics, algebraic geometry over past 200+ years. And now in number
theory!

• Quasisymmetric Functions (QSYM): 0-Hecke algebra representation the-
ory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert
calculus.

• QSYM now in Sage!



Monomial Basis of SYM

Defn. A partition of a number n is a weakly decreasing sequence of positive
integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0)

such that n =
∑

λi = |λ|.

Partitions can be visualized by their Ferrers diagram

(6, 5, 2) −→

Defn/Thm. The monomial symmetric functions

mλ = xλ1

1 xλ2

2 · · ·xλk

k + xλ1

2 xλ2

1 · · ·xλk

k + all other perms of vars

form a basis for SY Mn = homogeneous symmetric functions of degree n.

Fact. dimSY Mn = p(n) = number of partitions of n.



Monomial Basis of QSYM

Defn. A composition of a number n is a sequence of positive integers

α = (α1, α2, . . . , αk)

such that n =
∑

αi = |α|.

Defn/Thm. The monomial quasisymmetric functions

Mα = xα1

1 xα2

2 · · ·xαk

k + xα1

2 xα2

3 · · ·xαk

k+1 + all other shifts

form a basis for QSY Mn = homogeneous quasisymmetric functions of deg n.

Fact. dimQSY Mn = number of compositions of n = 2n−1.



Monomial Basis of QSYM

Fact. dimQSY Mn = number of compositions of n = 2n−1.

Bijection:

(α1, α2, . . . , αk) −→ {α1,

α1 + α2,

α1 + α2 + α3,

. . .

α1 + α2 + · · · + αk−1}



Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan)

p(n) ≈ 1

4n
√
3
eπ

√
2n
3



Schur basis for SYM

Let X = {x1, x2, . . . , xm} be a finite alphabet.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) and λp = 0 for p > k.

Defn. The following are equivalent definitions for the Schur functions Sλ(X):

1. Sλ =
det(x

λj+m−j

i
)

det(xj

i
)

with indices 1 ≤ i, j ≤ m.

2. Sλ =
∑

xT summed over all column strict tableaux T of shape λ.

Defn. T is column strict if entries strictly increase along columns and weakly
increase along rows.

Example. A column strict tableau of shape (5, 3, 1)

T = 7
4 7 7
2 2 3 4 8

xT = x2
2x3x

2
4x

3
7x8



Multiplying Schur Functions

Littlewood-Richardson Coefficients.

Sλ(X) · Sµ(X) =
∑

|ν|=|λ|+|µ|

cνλ,µSν(X)

cνλ,µ = # skew tableaux of shape ν/λ such that xT = xµ and the reverse
reading word is a lattice word.

Example. If ν = (4, 3, 2) , λ = (2, 1), λ = (3, 2, 1) then

2 3
1 2

1 1

readingword = 231211



Fundamental basis for QSYM

Defn. Let A ⊂ [p − 1] = {1, 2, . . . , p − 1}.
The fundamental quasisymmetric function

FA(X) =
∑

xi1 · · ·xip

summed over all 1 ≤ i1 ≤ . . . ≤ ip such that ij < ij+1 whenever j 6∈ A.

Example. F++−+ = x1x1x1x2x2+x1x2x2x3x3+x1x2x3x4x5+. . .

Here + + −+ = {1, 2, 4} ⊂ {1, 2, 3, 4}.

Other bases of QSYM. quasi Schur basis (Haglund-Luoto-Mason-vanWilligenburg),
matroid friendly basis (Luoto)



A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive
relation on a set.

Defn. Young’s Lattice on all partitions is the poset defined by the relation
λ ⊂ µ if the Ferrers diagram for λ fits inside the Ferrers diagram for µ.

⊂ ⊂

Defn. A standard tableau T of shape λ is a saturated chain in Young’s lattice
from ∅ to λ.

Example. T = 7
4 5 9
1 2 3 6 8



Schur functions

Thm.(Gessel,1984) For all partitions λ,

Sλ(X) =
∑

FD(T )(X)

summed over all standard tableaux T of shape λ.

Defn. The descent set of T , denoted D(T ), is the set of indices i such that
i + 1 appears northwest of i.

Example. Expand S(3,2) in the fundamental basis

4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5

S(3,2)(X) = F++−+(X)+F+−+−(X)+F+−++(X)+F−++−(X)+F−+−+



Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr, 2005)

H̃µ(X; q, t) =
∑

w∈Sn

qinvµ(w)tmajµ(w)FD(w−1)

where D(w) is the descent set of w in one-line notation.

Thm. (Haiman) Expanding H̃µ(X; q, t) into Schur functions

H̃µ(X; q, t) =
∑

i

∑

j

∑

|λ|=|µ|

ci,j,λq
itjSλ,

the coefficients ci,j,λ are all non-negative integers.

=⇒ Macdonald polynomials are Schur positive,

Open I. Find a “nice” combinatorial algorithm to compute ci,j,λ showing
these are non-negative integers.



Lascoux-Leclerc-Thibon Polynomials

Defn. Let µ̄ = (µ(1), µ(1), . . . , µ(k)) be a list of partitions.

LLTµ̄(X; q) =
∑

qinvµ(T )FD(w−1)

summed over all bijective fillings w of µ̄ where each µ(i) filled with rows and
columns increasing. Each w is recorded as the permutation given by the content
reading word of the filling.

Thm. For all µ̄ = (µ(1), µ(2), . . . , µ(k))
1. LLTµ̄(X; q) is symmetric. (Lascoux-Leclerc-Thibon)



Lascoux-Leclerc-Thibon Polynomials

Open II. Find a “nice” combinatorial algorithm to compute the expansion
coefficients for LLT ’s to Schurs.

Known. Each H̃µ(X; q, t) expands as a positive sum of LLT’s so Open II
implies Open I. (Haiman-Haglund-Loehr)



Plethysm of Schur Functions

Defn. Given f, g ∈ Z+[[X]] with g = xα + xβ + xγ + . . ., the Plethysm

of f, g is
f [g] = f(xα, xβ, xγ , . . .)

Thm.[Loehr-Warrington (2012)] For all partitions λ, µ and compositions α,
the plethysm

sλ[Fα] =
∑

A∈M(λ,α)

FD(w(A))

sλ[sµ] =
∑

A∈M(λ,µ)

FD(w(A))



Stanley symmetric functions

Background.
• Every permutation w can be written as a product of adjacent transposi-
tions si = (i, i + 1).

• A minimal length expression for w is said to be reduced .

• Let R(w) be the set of all sequences a = (a1, . . . , ap) such that w =
sa1

· · · sap
is reduced.

Def. For w ∈ Sn, the Stanley symmetric function is

Fw =
∑

a∈R(w)

FA(a)

where A(a) is the set of positions i where ai < ai+1.



Stanley symmetric functions

Background.
• Every permutation w can be written as a product of adjacent transposi-
tions si = (i, i + 1).

• A minimal length expression for w is said to be reduced .

• Let R(w) be the set of all sequences a = (a1, . . . ap) such that w =
sa1

· · · sap
is reduced.

Def. For w ∈ Sn, the Stanley symmetric function is

Fw =
∑

a∈R(w)

FA(a) = lim
m→∞S1m×w.

where Sw is a Schubert polynomial and 1 × w = [1, w1 + 1, . . . , wn + 1].



Stanley symmetric functions

Thm.[Stanley, Edelman-Greene] Fw is symmetric and has Schur expansion:

Fw =
∑

λ

aλ,wSλ, aλ,w ∈ N.

Cor. |R(w)| = ∑
λ aλ,wfλ where fλ is the number of standard tableaux

of shape λ.

Nice cases.
1. If w = [n, n− 1, . . . , 1] = w0 then Fw = Sδ where δ is the staircase

shape with n − 1 rows.

2. Fw = sλ(w) iff w is 2143-avoiding iff w is vexillary .



Vexillary Permutations

Def. A permutation is vexillary iff Fw = sλ(w) iff w is 2143-avoiding.

Properties.
• Schubert polynomial is a flagged Schur function (Wachs).

• Kazhdan-Lusztig polynomials have a combinatorial formula (Lascoux-Schützenb

• The enumeration is the same as 1234-avoiding permutations (Gessel).

• Easy to find a uniformly random reduced expression using Robinson-Schensted-
Knuth correspondence and the hook-walk algorithm (Greene-Nijenhuis-
Wilf).



Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff Fw =
∑

aλ,wsλ and
∑

aλ,w
≤ k.

Example. F214365 = S(3) + 2S(2,1) + S(1,1,1)

so 214365 is 4-vexillary, but not 3-vexillary.



Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff Fw =
∑

aλ,wsλ and
∑

aλ,w
≤ k.

Thm. (Billey-Pawlowski) A permutation w is k-vexillary iff w avoids a finite
set of patterns Vk for all k ∈ N.

k = 1 V1 = {2143},
k = 2 |V2| = 35, all in S5 ∪ S6 ∪ S7 ∪ S8

k = 3 |V3| = 91, all in S5 ∪ S6 ∪ S7 ∪ S8

k = 4 conjecture |V4| = 2346, all in S5 ∪ · · · ∪ S12.



Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff Fw =
∑

aλ,wsλ and
∑

aλ,w
≤ k.

Properties.
• 2-vex perms have easy expansion: Fw = Sλ(w) + Sλ(w−1)′ .

• 3-vex perms are multiplicity free: Fw = Sλ(w) + Sµ + Sλ(w−1)′ for
some µ between first and second shape in dominance order.

• 3-vex perms have a nice essential set.



Outline of Proof

Thm. (Billey-Pawlowski) A permutation w is k-vexillary iff w avoids a finite
set of patterns Vk for all k ∈ N.

Proof.
1. (James-Peel) Use generalized Specht modules SD for D ∈ N × N.

2. (Kraśkiewicz, Reiner-Shimozono) For D(w)=diagram of permutation w,

SD(w) =
⊕

(Sλ)aλ,w .

3. Compare Lascoux-Schützenberger transition tree and James-Peel moves.

4. If w contains v as a pattern, then the James-Peel moves used to expand
SD(v) into irreducibles will also apply to D(w) in a way that respects
shape inclusion and multiplicity.



Another permutation filtration

Def. A permutation w is multiplicity free if Fw has a multiplicity free Schur
expansion.

Def. A permutation w is k-multiplicity bounded if 〈Fw, Sλ〉 ≤ k for all
partitions λ.

Cor. If w is k-multiplicity bounded and w contains v as a pattern, then v is
k-multiplicity bounded for all k.

Conjecture. The multiplicity free permutations are characterized by 198
pattern up through S11.



Motivation

Let D ⊂ N × N. Let SD =
⊕

(Sλ)cλ,D expanded into irreducibles.

In the Grassmannian Gr(k, n), consider the row spans of the matrices

{(Ik|A) : A ∈ Mk×(n−k), Aij = 0 if (i, j) ∈ D}.

Let ΩD be the closure of this set in Gr(k, n). Let σD be the cohomology
class associated to this variety.

Liu’s Conjecture. The Schur expansion of σD =
∑

cλ,DSλ.

True for ”forests” (Liu) and permutation diagrams (Knutson-Lam-Speyer, Pawlowski).



Summary of Conjectures/Goals

Conjectures.
1. The 4-vexillary permutations are characterized by 2346 patterns in S12.

2. The multiplicity free permutations are characterized by 198 pattern up
through S11.

3. Liu’s conjecture: The Schur expansion of σD =
∑

cλ,DSλ.

High Level Goals.

• Find some applications of quasisymmetric functions and permutation pat-
terns in terms of Whittaker functions, multiple Dirichlet series, Eisenstein
series, automorphic forms, etc.

• Learn/Expand new Sage tools for quasisymmetric function expansions
(Bandlow-Berg-Saliola).

• Learn/Expand new Sage tools for permutation pattern recognition
(Magnusson-Úlfarsson)


