Patterns in permutations and diagrams

with applications to Stanley symmetric functions and Schubert calculus

Sara Billey University of Washington http://www.math.washington.edu/~billey

ICERM, Sage Days February 11-15, 2013

Combinatorics, Number Theory, and Sage

High Level Goals.

- Find some applications of quasisymmetric functions and permutation patterns in terms of Whittaker functions, multiple Dirichlet series, Eisenstein series, automorphic forms, etc.
- Learn/Expand new Sage tools for quasisymmetric function expansions (Bandlow-Berg-Saliola).
- Learn/Expand new Sage tools for permutation pattern recognition (Magnusson-Úlfarsson).

Possible path. via Stanley symmetric functions and Schubert calculus.

Outline

- 1. Symmetric Functions and Quasisymmetric Functions
- 2. Stanley Symmetric Functions
- 3. 3 properties of SSF's characterized by permutation patterns
- 4. Applications to Schubert calculus and Liu's conjecture
- 5. Sage Demo

Based on joint work with Brendan Pawlowski at the University of Washington.

Tale of Two Rings

Power Series Ring.: $\mathbb{Z}[[X]]$ over a finite or countably infinite alphabet $X = \{x_1, x_2, \dots, x_n\}$ or $X = \{x_1, x_2, \dots\}$.

Two subrings. of $\mathbb{Z}[[X]]$:

- Symmetric Functions (SYM)
- Quasisymmetric Functions (QSYM)

Ring of Symmetric Functions

Defn. $f(x_1, x_2, ...) \in \mathbb{Z}[[X]]$ is a symmetric function if for all i $f(..., x_i, x_{i+1}, ...) = f(..., x_{i+1}, x_i, ...).$

Example. $x_1^2x_2 + x_1^2x_3 + x_2^2x_1 + x_2^2x_3 + \dots$

Ring of Symmetric Functions

Defn. $f(x_1, x_2, ...) \in \mathbb{Z}[[X]]$ is a *symmetric function* if for all i $f(\ldots, x_i, x_{i+1}, \ldots) = f(\ldots, x_{i+1}, x_i, \ldots).$

Example. $x_1^2x_2 + x_1^2x_3 + x_2^2x_1 + x_2^2x_3 + \dots$

Defn. $f(x_1, x_2, ...) \in \mathbb{Z}[[X]]$ is a quasisymmetric function if $\operatorname{coef}(f; x_1^{\alpha_1} x_2^{\alpha_2} \dots x_k^{\alpha_k}) = \operatorname{coef}(f; x_a^{\alpha_1} x_b^{\alpha_2} \dots x_c^{\alpha_k})$ for all $1 < a < b < \dots < c$.

Example. $f(X) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + \dots$

Why study SYM and QSYM?

- Symmetric Functions (SYM): Used in representation theory, combinatorics, algebraic geometry over past 200+ years. And now in number theory!
- Quasisymmetric Functions (QSYM): 0-Hecke algebra representation theory, Hopf dual of NSYM=non-commutative symmetric functions, Schubert calculus.
- QSYM now in Sage!

Monomial Basis of SYM

Defn. A *partition* of a number n is a weakly decreasing sequence of positive integers

$$\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$$

such that $n=\sum \lambda_i = |\lambda|$.

Partitions can be visualized by their Ferrers diagram

Defn/Thm. The monomial symmetric functions

 $m_{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_k^{\lambda_k} + x_2^{\lambda_1} x_1^{\lambda_2} \cdots x_k^{\lambda_k} + \text{all other perms of vars}$

form a basis for SYM_n = homogeneous symmetric functions of degree n.

Fact. dim $SYM_n = p(n) =$ number of partitions of n.

Monomial Basis of QSYM

Defn. A *composition* of a number n is a sequence of positive integers

$$lpha=(lpha_1,lpha_2,\ldots,lpha_k)$$

such that $n = \sum lpha_i = |lpha|$.

Defn/Thm. The monomial quasisymmetric functions

 $M_{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k} + x_2^{\alpha_1} x_3^{\alpha_2} \cdots x_{k+1}^{\alpha_k} + \text{all other shifts}$ form a basis for $QSYM_n$ = homogeneous quasisymmetric functions of deg n.

Fact. dim $QSYM_n$ = number of compositions of $n = 2^{n-1}$.

Monomial Basis of QSYM

Fact. dim $QSYM_n$ = number of compositions of $n = 2^{n-1}$. Bijection:

$$(lpha_1, lpha_2, \dots, lpha_k) \longrightarrow \{lpha_1, \ lpha_1 + lpha_2, \ lpha_1 + lpha_2 + lpha_3, \ \dots \ lpha_1 + lpha_2 + \dots + lpha_{k-1}\}$$

Counting Partitions

Asymptotic Formula:. (Hardy-Ramanujan)

$$p(n) \approx \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$$

Schur basis for SYM

Let $X = \{x_1, x_2, \dots, x_m\}$ be a finite alphabet.

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$ and $\lambda_p = 0$ for p > k.

Defn. The following are equivalent definitions for the Schur functions $S_{\lambda}(X)$:

1.
$$S_{oldsymbol{\lambda}} = rac{\det(x_i^{\lambda_j+m-j})}{\det(x_i^j)}$$
 with indices $1 \leq i,j \leq m$.

2. $S_{\lambda} = \sum x^{T}$ summed over all column strict tableaux T of shape λ .

Defn. T is *column strict* if entries strictly increase along columns and weakly increase along rows.

Example. A column strict tableau of shape (5, 3, 1)

$$T = \begin{bmatrix} 7 & & & \\ 4 & 7 & 7 \\ 2 & 2 & 3 & 4 & 8 \end{bmatrix} \qquad x^T = x_2^2 x_3 x_4^2 x_7^3 x_8$$

Multiplying Schur Functions

Littlewood-Richardson Coefficients.

$$S_{\lambda}(X) \cdot S_{\mu}(X) = \sum_{|\nu|=|\lambda|+|\mu|} c^{\nu}_{\lambda,\mu} S_{\nu}(X)$$

 $c_{\lambda,\mu}^{\nu}=\#$ skew tableaux of shape u/λ such that $x^T=x^{\mu}$ and the reverse reading word is a lattice word.

 ${f Example.}$ If u=(4,3,2) , $\lambda=(2,1)$, $\lambda=(3,2,1)$ then

readingword = 231211

Fundamental basis for QSYM

Defn. Let $A \subset [p-1] = \{1, 2, \dots, p-1\}$. The fundamental quasisymmetric function

$$F_A(X) = \sum x_{i_1} \cdots x_{i_p}$$

summed over all $1 \leq i_1 \leq \ldots \leq i_p$ such that $i_j < i_{j+1}$ whenever $j \not\in A$.

Example. $F_{++-+} = x_1 x_1 x_1 x_2 x_2 + x_1 x_2 x_2 x_3 x_3 + x_1 x_2 x_3 x_4 x_5 + \dots$ Here $+ + -+ = \{1, 2, 4\} \subset \{1, 2, 3, 4\}.$

Other bases of QSYM. quasi Schur basis (Haglund-Luoto-Mason-vanWilliger matroid friendly basis (Luoto)

A Poset on Partitions

Defn. A *partial order* or a *poset* is a reflexive, anti-symmetric, and transitive relation on a set.

Defn. Young's Lattice on all partitions is the poset defined by the relation $\lambda \subset \mu$ if the Ferrers diagram for λ fits inside the Ferrers diagram for μ .

Defn. A standard tableau T of shape λ is a saturated chain in Young's lattice from \emptyset to λ .

Example.
$$T = \begin{bmatrix} 7 \\ 4 & 5 & 9 \\ 1 & 2 & 3 & 6 & 8 \end{bmatrix}$$

Schur functions

Thm.(Gessel,1984) For all partitions λ ,

$$S_{\lambda}(X) = \sum F_{D(T)}(X)$$

summed over all standard tableaux T of shape λ .

Defn. The descent set of T, denoted D(T), is the set of indices i such that i + 1 appears northwest of i.

Example. Expand $S_{(3,2)}$ in the fundamental basis

Macdonald Polynomials

Defn/Thm. (Macdonald 1988, Haiman-Haglund-Loehr, 2005)

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{w \in S_n} q^{inv_{\mu}(w)} t^{maj_{\mu}(w)} F_{D(w^{-1})}$$

where D(w) is the descent set of w in one-line notation.

Thm. (Haiman) Expanding $\widetilde{H}_{\mu}(X;q,t)$ into Schur functions

$$\widetilde{H}_{\mu}(X;q,t) = \sum_{i} \sum_{j} \sum_{|\lambda| = |\mu|} c_{i,j,\lambda} q^{i} t^{j} S_{\lambda},$$

the coefficients $c_{i,j,\lambda}$ are all non-negative integers.

Open I. Find a "nice" combinatorial algorithm to compute $c_{i,j,\lambda}$ showing these are non-negative integers.

Lascoux-Leclerc-Thibon Polynomials

Defn. Let $\bar{\mu} = (\mu^{(1)}, \mu^{(1)}, \dots, \mu^{(k)})$ be a list of partitions.

$$LLT_{\bar{\mu}}(X;q) = \sum q^{inv_{\mu}(T)}F_{D(w^{-1})}$$

summed over all bijective fillings w of $\bar{\mu}$ where each $\mu^{(i)}$ filled with rows and columns increasing. Each w is recorded as the permutation given by the content reading word of the filling.

Thm. For all $\bar{\mu} = (\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(k)})$ 1. $LLT_{\bar{\mu}}(X;q)$ is symmetric. (Lascoux-Leclerc-Thibon)

Lascoux-Leclerc-Thibon Polynomials

Open II. Find a "nice" combinatorial algorithm to compute the expansion coefficients for LLT's to Schurs.

Known. Each $\widetilde{H}_{\mu}(X;q,t)$ expands as a positive sum of LLT's so Open II implies Open I. (Haiman-Haglund-Loehr)

Plethysm of Schur Functions

Defn. Given $f,g \in \mathbb{Z}_+[[X]]$ with $g=x^lpha+x^eta+x^\gamma+\dots$, the *Plethysm* of f,g is $f[g]=f(x^lpha,x^eta,x^\gamma,\dots)$

Thm.[Loehr-Warrington (2012)] For all partitions λ, μ and compositions α , the plethysm

$$egin{aligned} &s_{\lambda}[F_{lpha}] = \sum_{A \in M(\lambda, lpha)} F_{D(w(A))} \ &s_{\lambda}[s_{\mu}] = \sum_{A \in M(\lambda, \mu)} F_{D(w(A))} \end{aligned}$$

Stanley symmetric functions

Background.

- Every permutation w can be written as a product of adjacent transpositions $s_i = (i, i+1)$.
- A minimal length expression for w is said to be *reduced*.
- Let R(w) be the set of all sequences $\mathbf{a}=(a_1,\ldots,a_p)$ such that $w=s_{a_1}\cdots s_{a_p}$ is reduced.

Def. For $w \in S_n$, the *Stanley symmetric function* is

$$F_w = \sum_{\mathrm{a} \in R(w)} F_{A(\mathrm{a})}$$

where $A(\mathbf{a})$ is the set of positions *i* where $a_i < a_{i+1}$.

Stanley symmetric functions

Background.

- Every permutation w can be written as a product of adjacent transpositions $s_i = (i, i+1)$.
- A minimal length expression for w is said to be *reduced*.
- Let R(w) be the set of all sequences $\mathbf{a} = (a_1, \dots a_p)$ such that $w = s_{a_1} \cdots s_{a_p}$ is reduced.

Def. For $w \in S_n$, the *Stanley symmetric function* is

$$F_w = \sum_{\mathrm{a} \in R(w)} F_{A(\mathrm{a})} = \lim_{m o \infty} \mathfrak{S}_{1^m imes w}.$$

where \mathfrak{S}_w is a Schubert polynomial and $1 \times w = [1, w_1 + 1, \dots, w_n + 1]$.

Stanley symmetric functions

Thm. [Stanley, Edelman-Greene] F_w is symmetric and has Schur expansion:

$$F_w = \sum_\lambda a_{\lambda,w} S_\lambda, \qquad a_{\lambda,w} \in \mathbb{N}.$$

Cor. $|R(w)| = \sum_{\lambda} a_{\lambda,w} f^{\lambda}$ where f^{λ} is the number of standard tableaux of shape λ .

Nice cases.

1. If $w = [n, n - 1, \dots, 1] = w_0$ then $F_w = S_\delta$ where δ is the staircase shape with n - 1 rows.

2. $F_w = s_{\lambda(w)}$ iff w is 2143-avoiding iff w is vexillary.

Vexillary Permutations

Def. A permutation is *vexillary* iff $F_w = s_{\lambda(w)}$ iff w is 2143-avoiding.

Properties.

- Schubert polynomial is a flagged Schur function (Wachs).
- Kazhdan-Lusztig polynomials have a combinatorial formula (Lascoux-Schützenl
- The enumeration is the same as 1234-avoiding permutations (Gessel).
- Easy to find a uniformly random reduced expression using Robinson-Schensted-Knuth correspondence and the hook-walk algorithm (Greene-Nijenhuis-Wilf).

Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff $F_w = \sum a_{\lambda,w} s_{\lambda}$ and $\sum_{a_{\lambda,w}} \leq k$.

Example. $F_{214365} = S_{(3)} + 2S_{(2,1)} + S_{(1,1,1)}$

so 214365 is 4-vexillary, but not 3-vexillary.

Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff $F_w = \sum a_{\lambda,w} s_{\lambda}$ and $\sum_{a_{\lambda,w}} \leq k$.

Thm. (Billey-Pawlowski) A permutation w is k-vexillary iff w avoids a finite set of patterns V_k for all $k \in \mathbb{N}$.

 $\begin{array}{ll} k=1 & V_1=\{2143\},\\ k=2 & |V_2|=35, \, \text{all in } S_5\cup S_6\cup S_7\cup S_8\\ k=3 & |V_3|=91, \, \text{all in } S_5\cup S_6\cup S_7\cup S_8\\ k=4 & \text{conjecture } |V_4|=2346, \, \text{all in } S_5\cup \cdots \cup S_{12}. \end{array}$

Generalizing Vexillary Permutations

Def. A permutation is k-vexillary iff $F_w = \sum a_{\lambda,w} s_{\lambda}$ and $\sum_{a_{\lambda,w}} \leq k$.

Properties.

- 2-vex perms have easy expansion: $F_w = S_{\lambda(w)} + S_{\lambda(w^{-1})'}$.
- 3-vex perms are multiplicity free: $F_w = S_{\lambda(w)} + S_{\mu} + S_{\lambda(w^{-1})'}$ for some μ between first and second shape in dominance order.
- 3-vex perms have a nice essential set.

Outline of Proof

Thm. (Billey-Pawlowski) A permutation w is k-vexillary iff w avoids a finite set of patterns V_k for all $k \in \mathbb{N}$.

Proof.

- 1. (James-Peel) Use generalized Specht modules S^D for $D \in \mathbb{N} \times \mathbb{N}$.
- 2. (Kraśkiewicz, Reiner-Shimozono) For D(w)=diagram of permutation w,

$$S^{D(w)} = \bigoplus (S^{\lambda})^{a_{\lambda,w}}.$$

- 3. Compare Lascoux-Schützenberger transition tree and James-Peel moves.
- 4. If w contains v as a pattern, then the James-Peel moves used to expand $S^{D(v)}$ into irreducibles will also apply to D(w) in a way that respects shape inclusion and multiplicity.

Another permutation filtration

Def. A permutation w is *multiplicity free* if F_w has a multiplicity free Schur expansion.

Def. A permutation w is k-multiplicity bounded if $\langle F_w, S_\lambda \rangle \leq k$ for all partitions λ .

Cor. If w is k-multiplicity bounded and w contains v as a pattern, then v is k-multiplicity bounded for all k.

Conjecture. The multiplicity free permutations are characterized by 198 pattern up through S_{11} .

Motivation

Let $D \subset \mathbb{N} \times \mathbb{N}$. Let $S^D = \bigoplus (S^{\lambda})^{c_{\lambda,D}}$ expanded into irreducibles.

In the Grassmannian Gr(k, n), consider the row spans of the matrices

$$\{(I_k|A): A \in M_{k \times (n-k)}, A_{ij} = 0 \text{ if } (i,j) \in D\}.$$

Let Ω_D be the closure of this set in Gr(k, n). Let σ_D be the cohomology class associated to this variety.

Liu's Conjecture. The Schur expansion of $\sigma_D = \sum c_{\lambda,D} S_{\lambda}$.

True for "forests" (Liu) and permutation diagrams (Knutson-Lam-Speyer, Pawlowski)

Summary of Conjectures/Goals

Conjectures.

- 1. The 4-vexillary permutations are characterized by 2346 patterns in S_{12} .
- 2. The multiplicity free permutations are characterized by 198 pattern up through S_{11} .
- 3. Liu's conjecture: The Schur expansion of $\sigma_D = \sum c_{\lambda,D} S_{\lambda}$.

High Level Goals.

- Find some applications of quasisymmetric functions and permutation patterns in terms of Whittaker functions, multiple Dirichlet series, Eisenstein series, automorphic forms, etc.
- Learn/Expand new Sage tools for quasisymmetric function expansions (Bandlow-Berg-Saliola).
- Learn/Expand new Sage tools for permutation pattern recognition (Magnusson-Úlfarsson)