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My Definition/Philosophy of Combinatorics

“Combinatorics is the equivalent of nanotechnology
in mathematics.”

(See also Igor Pak’s page http://www.math.ucla.edu/˜pak/
hidden/papers/Quotes/Combinatorics-quotes.htm)

http://www.math.ucla.edu/~pak/hidden/papers/Quotes/Combinatorics-quotes.htm
http://www.math.ucla.edu/~pak/hidden/papers/Quotes/Combinatorics-quotes.htm


Ravi Vakil’s ”Three Things Game”

Goal. To learn how to get things out of talks. More info:
http://math.stanford.edu/˜vakil/threethings.html

Rules. Take a clean sheet of paper. As you watch the talk, look
out for ”things” you like. When one comes your way, write it
down. Your goal is to have three things, and only three things, on
this sheet at the end of the talk. If you find extra things, you must
look over the previous three, and decide which one must be cut.

Here is how you win. After the talk, if other people are playing,
send each other your things by email or discuss them in person. It
is surprisingly enlightening. And there will likely be some follow-up
discussion. If you have questions, then ask them to someone
(perhaps the speaker over the seminar dinner; or perhaps your
advisor or your students or your colleagues). Don’t let them drop!

http://math.stanford.edu/~vakil/threethings.html
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Permutations

Notation. [n] = {1, 2, . . . , n}

Defn. A permutation is a bijective function π : [n] −→ [n].

Symmetric Group. Sn = Set of permutations of [n] where
multiplication is given by composition π · σ(i) = π(σ(i)).



Many ways to represent a permutation


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =
[

1 2 3 4
2 3 4 1

]
= [2341] = = s1s2s3

1234

2341

matrix
notation

two-line
notation

one-line
notation

string
diagram

reduced
expression

Multiplication of permutations is equivalently determined by matrix
multiplication or composition of bijections or stacking of string
diagrams.



Many ways to represent a permutation

Cycle Notation. Consider the orbits of [n] under the action of
w . These orbits form the cycles of w . Write w = C1C2 . . .Ck as a
product of cycles. The cycle type of w is the partition
λ = (λ1 ≥ λ2 ≥ . . . ≥ λk) given by the sizes of the cycles in
decreasing order.

Example. w = [2, 3, 4, 1] means w(1) = 2, w(2) = 3, w(3) = 4,
w(4) = 1. So, in cycle notation w = (1→ 2→ 3→ 4). So
type(w) = (4)

Example. v = [4, 5, 3, 6, 1, 2, 8, 7] written in cycle notation is
(1→ 4→ 6→ 2→ 5)(3)(7→ 8). So type(v) = (5, 2, 1).

Fact. Two permutations are in the same conjugacy class if and
only if they have the same cycle type.



Binary Rooted Trees

Defn. A tree T is a collection of vertices V and edges E
connecting pairs of distinct vertices such that there are no cycles
and every vertex is connected to every other vertex by a path of
edges. A vertex which is incident to exactly one edge is a leaf.

Defn. A binary rooted tree T = (V ,E ) is a tree with a specified
root vertex such that every vertex is either a leaf or it has 2
children.

Example: All binary rooted trees with 6 leaves.

credit: https://en.wikipedia.org/wiki/Wedderburn-Etherington_number

https://en.wikipedia.org/wiki/Wedderburn-Etherington_number


Binary Rooted Trees
Question. Are the n leaves in those trees distinguishable (like
people) or indistinguishable (like electrons)?

Answer. Count both ways!
1. If we give each leaf a distinct label from 1 to n, there will be

many different trees for each one drawn above.
2. The trees above then represent the distinct orbits under the

group of permutations on the leaf labels.

Defn. Two trees are inequivalent, if there is no bijection on the
leaf labels taking one to the other.
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Rooted Binary Trees

I Bn= set of inequivalent binary rooted trees with n leaves
I |Bn| −→ 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, . . .

Examples.
I (1), (2), (3) represent the unique rooted binary trees for

n = 1, 2, 3 respectively.

I B4 = {((1)(3)), ((2)(2))},
I B5 = {((1)((1)(3))), ((1)((2)(2))), ((2)(3))},
I ((1)(((1)((1)((1)(3))))(((2)(2))(((1)(3))((2)(3)))))) is in B20.
|B20| = 293, 547
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Catalan objects

I Cn= set of plane rooted binary trees with n leaves
I |Cn| −→ 1, 1, 2, 5, 14, 42, . . .

Catalan numbers!

Example.
I ((1)(2)) and ((2)(1)) are distinct as plane trees.



Catalan objects

I Cn= set of plane rooted binary trees with n leaves
I |Cn| −→ 1, 1, 2, 5, 14, 42, . . . Catalan numbers!

Example.
I ((1)(2)) and ((2)(1)) are distinct as plane trees.



Automorphism Groups of Rooted Binary Trees

I Let T ∈ Bn rooted binary tree with n leaves.
I A(T ) is the subgroup of permutations acting on a fixed

labeling of the n leaves which don’t change the tree.

Example. T = ((1)((2)(2))) generated by 3 involutions

[1, 3, 2, 4, 5], [1, 2, 3, 5, 4], [1, 4, 5, 2, 3]

|| || ||

(2 3) (4 5) (2 4)(3 5)

|A(T )| = 23 = 8.



Tanglegrams

Defn. An (ordered binary rooted) tanglegram of size n is a triple
(T ,w , S) where S,T ∈ Bn and w ∈ Sn.

Two tanglegrams (T ,w ,S) and (T ′,w ′, S ′) are equivalent provided
T = T ′, S = S ′ and w ′ ∈ A(T )wA(S).

I Tn= set of inequivalent tanglegrams with n leaves
I tn = |Tn| −→ 1, 1, 2, 13, 114, 1509, 25595, 535753, . . .

Example. n = 3, t3 = 2



Tanglegrams

Case n = 4, t4 = 13 :



Enumeration of Tanglegrams

Questions.(Matsen) How many tanglegrams are in Tn?
How does tn grow asymptotically?

First formula.:

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

.

This formula allowed us to get data up to n = 10. Sequence
wasn’t in OEIS = Online Encyclopedia of Integer Sequences.



Motivation to study tanglegrams

Cophylogeny Estimation Problem in Biology.: Reconstruct
the history of genetic changes in a host vs parasite or other linked
groups of organisms.

Tanglegram Layout Problem in CS.: Find a drawing of a
tanglegram in the plane with planar embeddings of the left and
right trees and a minimal number of crossing (straight) edges in
the matching. Eades-Wormald (1994) showed this is NP-hard.

Tanglegrams appear in analysis of software development in CS.



Main Enumeration Theorem

Thm 1. The number of tanglegrams of size n is

tn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)2

zλ
,

summed over binary partitions of n.

Defn. A binary partition λ = (λ1 ≥ λ2 ≥ ...) has each part
λk = 2j for some j ∈ N.

Defn. zλ = 1m02m14m2 · · · (2j)mj m0!m1!m2! · · ·mj !
for λ = 1m02m14m28m3 · · · .



The numbers zλ are famous!

Defn. More generally, zλ = 1m12m23m3 · · · jmj m1!m2! · · ·mj ! for
λ = 1m12m23m3 · · · .

Facts.:
1. The number of permutations in Sn of cycle type λ is n!

zλ
.

2. If v ∈ Sn has cycle type λ, then zλ is the size of the stabilizer
of v under the conjugation of Sn on itself.

3. For fixed u, v ∈ Sn of cycle type λ,

zλ = #{w ∈ Sn | wvw−1 = u}.

4. The symmetric function hn(X ) =
∑
λ

pλ(X )
zλ

.



Main Enumeration Theorem

Thm. The number of tanglegrams of size n is

tn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)2

zλ
,

summed over binary partitions of n and zλ.

Example. The 4 binary partitions of n = 4 are

λ : (4) (22) (211) (1111)
zλ : 4 222! 12212! 144!

t4 = 1
4 + 32

8 + 32 · 12

4 + 52 · 32 · 12

24 = 13



Corollaries

Cor 1. tn = c2
n−1n!
4n−1

∑
µ

n(n−1)···(n−|µ|+1)
zµ·
∏`(µ)

i=1

∏µi −1
j=1 (2n−2(µ1+···+µi−1)−2j−1)2

,

summed is over binary partitions µ with all parts equal to a
positive power of 2 and |µ| ≤ n.

Cor 2.: As n gets large, tn
n! ∼

e 1
8 4n−1

πn3 .

Cor 3.: There is an efficient recurrence relation for tn based on
stripping off all copies of the largest part of λ.
We can compute t4000 exactly.



Second Enumeration Theorem

Thm 2. The number of binary trees in Bn is

bn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
zλ

,

summed over binary partitions of n.

Question. What if the exponent k is bigger than 2?

t(k, n) =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)k

zλ
.
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Tangled Chains

Defn. A tangled chain of size n and length k is an ordered
sequence of binary trees with complete matchings between the
leaves of neighboring trees in the sequence.

Thm 3. The number of tangled chains of size n and length k is

t(k, n) =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)k

zλ
.



Outline of Proof of Theorem 1

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

For S,T fixed

|A(T )wA(S)| = |A(T )| · |A(S)|
|A(T ) ∩ wA(S)w−1|

∑
w∈Sn

|A(T ) ∩ wA(S)w−1| =
∑

w∈Sn

∑
u∈A(T )

∑
v∈A(S)

χ[u = wvw−1]

=
∑

u∈A(T )

∑
v∈A(S)

∑
w∈Sn

χ[u = wvw−1]

=
∑
λ`n
|A(T )λ| · |A(S)λ| · zλ

where A(T )λ = {w ∈ A(T ) | type(w) = λ}. Only binary
partitions occur!
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Outline of Proof of Main Theorem

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

=
∑

S∈Bn

∑
T∈Bn
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λ

|A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)|

=
∑
λ

zλ

 ∑
T∈Bn

|A(T )λ|
|A(T )|

2

To show:∑
T∈Bn

|A(T )λ|
|A(T )| =

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
zλ

=: qλ

via the recurrence
2qλ = qλ/2 +

∑
λ1∪λ2=λ

qλ1qλ2

Conclusion: tn =
∑

zλq2
λ. (See new proof by Eric Fusy.)
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Random Generation of Tanglegrams

Input: n

Step 1: Pick a binary partition λ ` n with prob zλq2
λ/tn.

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ. Similarly, choose S
and v ∈ A(T )λ uniformly by subdividing.

Step 3: Among the zλ permutations w such that u = wvw−1,
pick one uniformly.

Output: (T ,w , S).



Random Generation of a Permutation in A(T )

Input: Binary tree T ∈ Bn with left and right subtrees T1 and T2.

If n = 1, set w = (1) ∈ A(T ), unique choice.

Otherwise, recursively find w1 ∈ A(T1) and w2 ∈ A(T2) at random.
I If T1 6= T2, set w = w1w2.
I If T1 = T2, choose either w = w1w2 or w = πw1w2 with

equal probability.

Here π = (1 k)(2 (k + 1))(3 (k + 3)) · · · (k n) where k = n/2 flips
the labels on the leaves of the two subtrees.

Output: Permutation w ∈ A(T ).



Random Generation of Tanglegrams:Step 2

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ.

Input: λ ` n.
I If n = 1, output T = •, u = (1) ∈ A(T ), unique choice.
I Otherwise, pick a subdivision of λ from two types

{(λ/2, λ/2)}
⋃
{(λ1, λ2) : λ1 ∪ λ2 = λ}

with probability proportional to

qλ/2 +
∑

qλ1qλ2 = 2qλ.



Random Generation of Tanglegrams:Step 2

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ.

I Type 1: (λ/2, λ/2). Use the algorithm recursively to compute
T1 ∈ Bn/2 and a permutation u2 ∈ A(T1)λ/2. Uniformly at
random, generate another permutation u1 ∈ A(T1). Set

T = (T1,T1), u = πu1πu−1
1 πu2.

I Type 2: (λ1, λ2). Use the algorithm recursively to compute
trees T1,T2 and permutations u1 ∈ A(T1)λ1 u2 ∈ A(T2)λ2 .
Switch if necessary so T1 ≤ T2. Set

T = (T1,T2), u = u1u2.

Output: (T , u).



Random Generation of Tanglegrams:Step 2

Example If λ = (6, 4), then |λ| = 10, λ/2 = (3, 2) and
π = (1 6)(2 7)(3 8)(4 9)(5 10). If

w1 = (1 4)(2 5)(3) and w2 = (6 9 7)(8 10)

then

w = πw1πw−1
1 πw2 = (6 1 9 5 7 4)(8 2 10 3),

all in cycle notation.



Review: Random Generation of Tanglegrams

Input: n

Step 1: Pick a binary partition λ ` n with prob zλq2
λ/tn.

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ. Similarly, choose S
and v ∈ A(T )λ uniformly by subdividing.

Step 3: Among the zλ permutations w such that u = wvw−1,
pick one uniformly.

Output: (T ,w , S).



Random Tanglegrams: n=10



Random Tanglegrams: n=20



Random Tanglegrams: n=30



Random Tanglegrams: n=50



Random Tanglegrams: n=100



Positivity and symmetric functions
go hand in hand with enumeration.

This is a story that began with an enumeration question and via
work of Gessel now connects to symmetric functions, plethysm of
Schur functions, and Kronecker coefficients.



Open Problems

Conjecture 1.[Amdeberhan-Konvalinka] For all positive integer n
and k, and q a prime number, let

tq(k, n) =
∑
λ

∏`(λ)
i=2

(
q(λi + · · ·+ λ`(λ))− 1

)k

zλ

summed over all partitions whose parts are powers of q. Then,
tq(k, n) is an integer.

Conjecture 2.[Gessel] For all positive integer n, q a prime
number and 1 ≤ s < q,

tq(k, n) =
∑
λ

pλ

∏`(λ)
i=2

(
q(λi + · · ·+ λ`(λ))− s

)
zλ

is a nonnegative integer linear combination of Schur functions.
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More Open Problems

1. Is there a closed form or functional equation for
T (x) =

∑
tnxn like there is for binary trees B(x)?

B(x) = x + 1
2
(
B(x)2 + B(x2)

)

2. Is there an efficient algorithm for depth first search on
tanglegrams?

3. Can one describe the lex minimal permutations in the double
cosets A(T )\Sn/A(S) for S,T ∈ Bn?
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