# Trees, Tanglegrams, and Tangled Chains 

Sara Billey<br>University of Washington

Based on joint work with: Matjaž Konvalinka and Frederick (Erick) Matsen IV arXiv:1507.04976

LSU Math Student Colloquium, February 29, 2016

## My Definition/Philosophy of Combinatorics

"Combinatorics is the equivalent of nanotechnology in mathematics."
(See also Igor Pak's page http://www.math.ucla.edu/~pak/ hidden/papers/Quotes/Combinatorics-quotes.htm)

## Ravi Vakil's "Three Things Game"

Goal. To learn how to get things out of talks. More info: http://math.stanford.edu/~vakil/threethings.html

## Ravi Vakil's "Three Things Game"

Goal. To learn how to get things out of talks. More info: http://math.stanford.edu/~vakil/threethings.html

Rules. Take a clean sheet of paper. As you watch the talk, look out for "things" you like. When one comes your way, write it down. Your goal is to have three things, and only three things, on this sheet at the end of the talk. If you find extra things, you must look over the previous three, and decide which one must be cut.

## Ravi Vakil's "Three Things Game"

Goal. To learn how to get things out of talks. More info: http://math.stanford.edu/~vakil/threethings.html

Rules. Take a clean sheet of paper. As you watch the talk, look out for "things" you like. When one comes your way, write it down. Your goal is to have three things, and only three things, on this sheet at the end of the talk. If you find extra things, you must look over the previous three, and decide which one must be cut.

Here is how you win. After the talk, if other people are playing, send each other your things by email or discuss them in person. It is surprisingly enlightening. And there will likely be some follow-up discussion. If you have questions, then ask them to someone (perhaps the speaker over the seminar dinner; or perhaps your advisor or your students or your colleagues). Don't let them drop!

## Outline

## Background

Formulas for Trees, Tanglegrams and Tangled Chains

Algorithms for random generation

Open Problems

## Permutations

Notation. [ $n$ ] $=\{1,2, \ldots, n\}$
Defn. A permutation is a bijective function $\pi:[n] \longrightarrow[n]$.
Symmetric Group. $S_{n}=$ Set of permutations of $[n]$ where multiplication is given by composition $\pi \cdot \sigma(i)=\pi(\sigma(i))$.

## Many ways to represent a permutation

Multiplication of permutations is equivalently determined by matrix multiplication or composition of bijections or stacking of string diagrams.

## Many ways to represent a permutation

Cycle Notation. Consider the orbits of [ $n$ ] under the action of $w$. These orbits form the cycles of $w$. Write $w=C_{1} C_{2} \ldots C_{k}$ as a product of cycles. The cycle type of $w$ is the partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}\right)$ given by the sizes of the cycles in decreasing order.

Example. $w=[2,3,4,1]$ means $w(1)=2, w(2)=3, w(3)=4$, $w(4)=1$. So, in cycle notation $w=(1 \rightarrow 2 \rightarrow 3 \rightarrow 4)$. So $\operatorname{type}(w)=(4)$

Example. $v=[4,5,3,6,1,2,8,7]$ written in cycle notation is $(1 \rightarrow 4 \rightarrow 6 \rightarrow 2 \rightarrow 5)(3)(7 \rightarrow 8)$. So type $(v)=(5,2,1)$.

Fact. Two permutations are in the same conjugacy class if and only if they have the same cycle type.

## Binary Rooted Trees

Defn. A tree $T$ is a collection of vertices $V$ and edges $E$ connecting pairs of distinct vertices such that there are no cycles and every vertex is connected to every other vertex by a path of edges. A vertex which is incident to exactly one edge is a leaf.

Defn. A binary rooted tree $T=(V, E)$ is a tree with a specified root vertex such that every vertex is either a leaf or it has 2 children.

## Example: All binary rooted trees with 6 leaves.



## Binary Rooted Trees

Question. Are the $n$ leaves in those trees distinguishable (like people) or indistinguishable (like electrons)?


## Binary Rooted Trees

Question. Are the $n$ leaves in those trees distinguishable (like people) or indistinguishable (like electrons)?


Answer. Count both ways!

1. If we give each leaf a distinct label from 1 to $n$, there will be many different trees for each one drawn above.
2. The trees above then represent the distinct orbits under the group of permutations on the leaf labels.

Defn. Two trees are inequivalent, if there is no bijection on the leaf labels taking one to the other.

## Rooted Binary Trees

- $B_{n}=$ set of inequivalent binary rooted trees with $n$ leaves
- $\left|B_{n}\right| \longrightarrow 1,1,1,2,3,6,11,23,46,98, \ldots$


## Rooted Binary Trees

- $B_{n}=$ set of inequivalent binary rooted trees with $n$ leaves
- $\left|B_{n}\right| \longrightarrow 1,1,1,2,3,6,11,23,46,98, \ldots$


## Examples.

- (1), (2), (3) represent the unique rooted binary trees for $n=1,2,3$ respectively.


## Rooted Binary Trees

- $B_{n}=$ set of inequivalent binary rooted trees with $n$ leaves
- $\left|B_{n}\right| \longrightarrow 1,1,1,2,3,6,11,23,46,98, \ldots$


## Examples.

- (1), (2), (3) represent the unique rooted binary trees for $n=1,2,3$ respectively.
- $B_{4}=\{((1)(3)),((2)(2))\}$,
- $B_{5}=\{((1)((1)(3))),((1)((2)(2))),((2)(3))\}$,
- $((1)(((1)((1)((1)(3))))(((2)(2))(((1)(3))((2)(3))))))$ is in $B_{20}$. $\left|B_{20}\right|=293,547$


## Catalan objects

- $C_{n}=$ set of plane rooted binary trees with $n$ leaves
- $\left|C_{n}\right| \longrightarrow 1,1,2,5,14,42, \ldots$


## Catalan objects

- $C_{n}=$ set of plane rooted binary trees with $n$ leaves
- $\left|C_{n}\right| \longrightarrow 1,1,2,5,14,42, \ldots$ Catalan numbers!


## Example.

- ((1)(2)) and ((2)(1)) are distinct as plane trees.


## Automorphism Groups of Rooted Binary Trees

- Let $T \in B_{n}$ rooted binary tree with $n$ leaves.
- $A(T)$ is the subgroup of permutations acting on a fixed labeling of the $n$ leaves which don't change the tree.

Example. $T=((1)((2)(2)))$ generated by 3 involutions

$$
[1,3,2,4,5],[1,2,3,5,4],[1,4,5,2,3]
$$


$|A(T)|=2^{3}=8$.

## Tanglegrams

Defn. An (ordered binary rooted) tanglegram of size $n$ is a triple $(T, w, S)$ where $S, T \in B_{n}$ and $w \in S_{n}$.

Two tanglegrams $(T, w, S)$ and $\left(T^{\prime}, w^{\prime}, S^{\prime}\right)$ are equivalent provided $T=T^{\prime}, S=S^{\prime}$ and $w^{\prime} \in A(T) w A(S)$.

- $T_{n}=$ set of inequivalent tanglegrams with $n$ leaves
- $t_{n}=\left|T_{n}\right| \longrightarrow 1,1,2,13,114,1509,25595,535753, \ldots$

Example. $n=3, t_{3}=2$


## Tanglegrams

Case $n=4, t_{4}=13$ :


## Enumeration of Tanglegrams

Questions.(Matsen) How many tanglegrams are in $T_{n}$ ? How does $t_{n}$ grow asymptotically?

First formula.:

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

This formula allowed us to get data up to $n=10$. Sequence wasn't in OEIS = Online Encyclopedia of Integer Sequences.

## Motivation to study tanglegrams

Cophylogeny Estimation Problem in Biology.: Reconstruct the history of genetic changes in a host vs parasite or other linked groups of organisms.

Tanglegram Layout Problem in CS.: Find a drawing of a tanglegram in the plane with planar embeddings of the left and right trees and a minimal number of crossing (straight) edges in the matching. Eades-Wormald (1994) showed this is NP-hard.

Tanglegrams appear in analysis of software development in CS.

## Main Enumeration Theorem

Thm 1. The number of tanglegrams of size $n$ is

$$
t_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{2}}{z_{\lambda}}
$$

summed over binary partitions of $n$.

Defn. A binary partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ has each part $\lambda_{k}=2^{j}$ for some $j \in \mathbb{N}$.

Defn. $z_{\lambda}=1^{m_{0}} 2^{m_{1}} 4^{m_{2}} \cdots\left(2^{j}\right)^{m_{j}} m_{0}!m_{1}!m_{2}!\cdots m_{j}$ ! for $\lambda=1^{m_{0}} 2^{m_{1}} 4^{m_{2}} 8^{m_{3}} \cdots$.

## The numbers $z_{\lambda}$ are famous!

Defn. More generally, $z_{\lambda}=1^{m_{1}} 2^{m_{2}} 3^{m_{3}} \cdots j^{m_{j}} m_{1}!m_{2}!\cdots m_{j}!$ for $\lambda=1^{m_{1}} 2^{m_{2}} 3^{m_{3}} \cdots$.

## Facts.:

1. The number of permutations in $S_{n}$ of cycle type $\lambda$ is $\frac{n!}{z_{\lambda}}$.
2. If $v \in S_{n}$ has cycle type $\lambda$, then $z_{\lambda}$ is the size of the stabilizer of $v$ under the conjugation of $S_{n}$ on itself.
3. For fixed $u, v \in S_{n}$ of cycle type $\lambda$,

$$
z_{\lambda}=\#\left\{w \in S_{n} \mid w v w^{-1}=u\right\}
$$

4. The symmetric function $h_{n}(X)=\sum_{\lambda} \frac{p_{\lambda}(X)}{z_{\lambda}}$.

## Main Enumeration Theorem

Thm. The number of tanglegrams of size $n$ is

$$
t_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{2}}{z_{\lambda}}
$$

summed over binary partitions of $n$ and $z_{\lambda}$.

Example. The 4 binary partitions of $n=4$ are

$$
\begin{array}{ccccc}
\lambda: & (4) & (22) & (211) & (1111) \\
z_{\lambda}: & 4 & 2^{2} 2! & 1^{2} 2^{1} 2! & 1^{4} 4! \\
t_{4}= & \frac{1}{4}+\frac{3^{2}}{8}+\frac{3^{2} \cdot 1^{2}}{4}+\frac{5^{2} \cdot 3^{2} \cdot 1^{2}}{24}=13
\end{array}
$$

## Corollaries

Cor 1. $t_{n}=\frac{c_{n-1}^{2} n!}{4^{n-1}} \sum_{\mu} \frac{n(n-1) \cdots(n-|\mu|+1)}{z_{\mu} \cdot \prod_{i=1}^{\ell(\mu)} \prod_{j=1}^{\mu_{i}-1}\left(2 n-2\left(\mu_{1}+\cdots+\mu_{i-1}\right)-2 j-1\right)^{2}}$,
summed is over binary partitions $\mu$ with all parts equal to a positive power of 2 and $|\mu| \leq n$.

Cor 2.: As $n$ gets large, $\frac{t_{n}}{n!} \sim \frac{e^{\frac{1}{8}} 4^{n-1}}{\pi n^{3}}$.

Cor 3.: There is an efficient recurrence relation for $t_{n}$ based on stripping off all copies of the largest part of $\lambda$.
We can compute $t_{4000}$ exactly.

## Second Enumeration Theorem

Thm 2. The number of binary trees in $B_{n}$ is

$$
b_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}},
$$

summed over binary partitions of $n$.

## Second Enumeration Theorem

Thm 2. The number of binary trees in $B_{n}$ is

$$
b_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}},
$$

summed over binary partitions of $n$.

Question. What if the exponent $k$ is bigger than 2?

$$
t(k, n)=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{k}}{z_{\lambda}} .
$$

## Tangled Chains

Defn. A tangled chain of size $n$ and length $k$ is an ordered sequence of binary trees with complete matchings between the leaves of neighboring trees in the sequence.


Thm 3. The number of tangled chains of size $n$ and length $k$ is

$$
t(k, n)=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{k}}{z_{\lambda}}
$$

## Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

## Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For $S, T$ fixed

$$
|A(T) w A(S)|=\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|}
$$

## Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For $S, T$ fixed

$$
\begin{aligned}
|A(T) w A(S)| & =\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|} \\
\sum_{w \in S_{n}}\left|A(T) \cap w A(S) w^{-1}\right| & =\sum_{w \in S_{n}} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi\left[u=w v w^{-1}\right]
\end{aligned}
$$

## Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For $S, T$ fixed

$$
\begin{gathered}
|A(T) w A(S)|=\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|} \\
\sum_{w \in S_{n}}\left|A(T) \cap w A(S) w^{-1}\right|=\sum_{w \in S_{n}} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi\left[u=w v w^{-1}\right] \\
=\sum_{u \in A(T)} \sum_{v \in A(S)} \sum_{w \in S_{n}} \chi\left[u=w v w^{-1}\right]
\end{gathered}
$$

## Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For $S, T$ fixed

$$
|A(T) w A(S)|=\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|}
$$

$$
\sum_{w \in S_{n}}\left|A(T) \cap w A(S) w^{-1}\right|=\sum_{w \in S_{n}} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi\left[u=w v w^{-1}\right]
$$

$$
\begin{gathered}
=\sum_{u \in A(T)} \sum_{v \in A(S)} \sum_{w \in S_{n}} \chi\left[u=w v w^{-1}\right] \\
=\sum_{\lambda \vdash n}\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}
\end{gathered}
$$

where $A(T)_{\lambda}=\{w \in A(T) \mid \operatorname{type}(w)=\lambda\}$. Only binary partitions occur!

## Outline of Proof of Main Theorem

$$
\begin{aligned}
& t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
= & \sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|}
\end{aligned}
$$

## Outline of Proof of Main Theorem

$$
\begin{gathered}
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|} \\
\quad=\sum_{\lambda} z_{\lambda}\left(\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}\right)^{2}
\end{gathered}
$$

## Outline of Proof of Main Theorem

$$
\begin{gathered}
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|} \\
\quad=\sum_{\lambda} z_{\lambda}\left(\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}\right)^{2}
\end{gathered}
$$

To show:

$$
\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}=\frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}}=: q_{\lambda}
$$

via the recurrence

$$
2 q_{\lambda}=q_{\lambda / 2}+\sum_{\lambda^{1} \cup \lambda^{2}=\lambda} q_{\lambda^{1}} q_{\lambda^{2}}
$$

Conclusion: $t_{n}=\sum z_{\lambda} q_{\lambda}^{2}$.

## Outline of Proof of Main Theorem

$$
\begin{gathered}
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|} \\
\quad=\sum_{\lambda} z_{\lambda}\left(\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}\right)^{2}
\end{gathered}
$$

To show:

$$
\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}=\frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}}=: q_{\lambda}
$$

via the recurrence

$$
2 q_{\lambda}=q_{\lambda / 2}+\sum_{\lambda^{1} \cup \lambda^{2}=\lambda} q_{\lambda^{1}} q_{\lambda^{2}}
$$

Conclusion: $t_{n}=\sum z_{\lambda} q_{\lambda}^{2}$.
(See new proof by Eric Fusy.)

## Random Generation of Tanglegrams

Input: n
Step 1: Pick a binary partition $\lambda \vdash n$ with prob $z_{\lambda} q_{\lambda}^{2} / t_{n}$.
Step 2: Choose $T$ and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for $q_{\lambda}$. Similarly, choose $S$ and $v \in A(T)_{\lambda}$ uniformly by subdividing.

Step 3: Among the $z_{\lambda}$ permutations $w$ such that $u=w v w^{-1}$, pick one uniformly.

Output: $(T, w, S)$.

## Random Generation of a Permutation in $A(T)$

Input: Binary tree $T \in B_{n}$ with left and right subtrees $T_{1}$ and $T_{2}$.
If $n=1$, set $w=(1) \in A(T)$, unique choice.
Otherwise, recursively find $w_{1} \in A\left(T_{1}\right)$ and $w_{2} \in A\left(T_{2}\right)$ at random.

- If $T_{1} \neq T_{2}$, set $w=w_{1} w_{2}$.
- If $T_{1}=T_{2}$, choose either $w=w_{1} w_{2}$ or $w=\pi w_{1} w_{2}$ with equal probability.

Here $\pi=(1 k)(2(k+1))(3(k+3)) \cdots(k n)$ where $k=n / 2$ flips the labels on the leaves of the two subtrees.

Output: Permutation $w \in A(T)$.

## Random Generation of Tanglegrams:Step 2

Step 2: Choose $T$ and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for $q_{\lambda}$.

Input: $\lambda \vdash n$.

- If $n=1$, output $T=\bullet, u=(1) \in A(T)$, unique choice.
- Otherwise, pick a subdivision of $\lambda$ from two types

$$
\{(\lambda / 2, \lambda / 2)\} \bigcup\left\{\left(\lambda^{1}, \lambda^{2}\right): \lambda^{1} \cup \lambda^{2}=\lambda\right\}
$$

with probability proportional to

$$
q_{\lambda / 2}+\sum q_{\lambda^{1}} q_{\lambda^{2}}=2 q_{\lambda}
$$

## Random Generation of Tanglegrams:Step 2

Step 2: Choose $T$ and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for $q_{\lambda}$.

- Type 1: $(\lambda / 2, \lambda / 2)$. Use the algorithm recursively to compute $T_{1} \in B_{n / 2}$ and a permutation $u_{2} \in A\left(T_{1}\right)_{\lambda / 2}$. Uniformly at random, generate another permutation $u_{1} \in A\left(T_{1}\right)$. Set

$$
T=\left(T_{1}, T_{1}\right), u=\pi u_{1} \pi u_{1}^{-1} \pi u_{2}
$$

- Type 2: $\left(\lambda^{1}, \lambda^{2}\right)$. Use the algorithm recursively to compute trees $T_{1}, T_{2}$ and permutations $u_{1} \in A\left(T_{1}\right)_{\lambda^{1}} u_{2} \in A\left(T_{2}\right)_{\lambda^{2}}$. Switch if necessary so $T_{1} \leq T_{2}$. Set

$$
T=\left(T_{1}, T_{2}\right), u=u_{1} u_{2}
$$

Output: $(T, u)$.

## Random Generation of Tanglegrams:Step 2

Example If $\lambda=(6,4)$, then $|\lambda|=10, \lambda / 2=(3,2)$ and $\pi=(16)(27)(38)(49)(510)$. If

$$
w_{1}=(14)(25)(3) \text { and } w_{2}=\left(\begin{array}{ll}
6 & 9
\end{array}\right)(810)
$$

then

$$
w=\pi w_{1} \pi w_{1}^{-1} \pi w_{2}=\left(\begin{array}{ll}
6 & 19574
\end{array}\right)(82103),
$$

all in cycle notation.

## Review: Random Generation of Tanglegrams

Input: n
Step 1: Pick a binary partition $\lambda \vdash n$ with prob $z_{\lambda} q_{\lambda}^{2} / t_{n}$.
Step 2: Choose $T$ and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for $q_{\lambda}$. Similarly, choose $S$ and $v \in A(T)_{\lambda}$ uniformly by subdividing.

Step 3: Among the $z_{\lambda}$ permutations $w$ such that $u=w v w^{-1}$, pick one uniformly.

Output: $(T, w, S)$.

Random Tanglegrams: $\mathrm{n}=10$


Random Tanglegrams: $n=20$


Random Tanglegrams: $\mathrm{n}=30$


## Random Tanglegrams: $\mathrm{n}=50$



## Random Tanglegrams: $\mathrm{n}=100$



## Positivity and symmetric functions go hand in hand with enumeration.

This is a story that began with an enumeration question and via work of Gessel now connects to symmetric functions, plethysm of Schur functions, and Kronecker coefficients.

## Open Problems

Conjecture 1.[Amdeberhan-Konvalinka] For all positive integer $n$ and $k$, and $q$ a prime number, let

$$
t_{q}(k, n)=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(q\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{k}}{z_{\lambda}}
$$

summed over all partitions whose parts are powers of $q$. Then, $t_{q}(k, n)$ is an integer.

## Open Problems

Conjecture 1.[Amdeberhan-Konvalinka] For all positive integer $n$ and $k$, and $q$ a prime number, let

$$
t_{q}(k, n)=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(q\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{k}}{z_{\lambda}}
$$

summed over all partitions whose parts are powers of $q$. Then, $t_{q}(k, n)$ is an integer.

Conjecture 2.[Gessel] For all positive integer $n, q$ a prime number and $1 \leq s<q$,

$$
t_{q}(k, n)=\sum_{\lambda} p_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(q\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-s\right)}{z_{\lambda}}
$$

is a nonnegative integer linear combination of Schur functions.

## More Open Problems

1. Is there a closed form or functional equation for $T(x)=\sum t_{n} x^{n}$ like there is for binary trees $B(x)$ ?

$$
B(x)=x+\frac{1}{2}\left(B(x)^{2}+B\left(x^{2}\right)\right)
$$

2. Is there an efficient algorithm for depth first search on tanglegrams?
3. Can one describe the lex minimal permutations in the double cosets $A(T) \backslash S_{n} / A(S)$ for $S, T \in B_{n}$ ?

## References

- "On the enumeration of tanglegrams and tangled chains" by Sara Billey, Matjaž Konvalinka, Frederick A Matsen IV (http://arxiv.org/pdf/1507.04976.pdf)
- "On Symmetries In Phylogenetic Trees" Eric Fusy (http://arxiv.org/pdf/1602.07432v1.pdf)
- "The shape of random tanglegrams"Matjaž Konvalinka, Stephan Wagner http://arxiv.org/abs/1512.01168
- "Inducibility in binary trees and crossings in random tanglegrams" Eva Czabarka, László A. Székely, Stephan Wagner (http://arxiv.org/abs/1601.07149)
- "Collection of Conjectures" compiled by Amdeberhan (http://129.81.170.14/ tamdeberhan/conjectures.html)

