Enumeration of Parabolic Double Cosets in Symmetric Groups and Beyond

> Sara Billey University of Washington

Based on joint work with: Matjaž Konvalinka, T. Kyle Petersen, William Slofstra and Bridget Tenner FPSAC 2016 abstract

LSU Math Graduate Colloquium, February 29, 2016

- ロ ト - 4 回 ト - 4 □

Quote by Arnold Ross

"Think deeply of simple things"

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Outline

Background on Symmetric Groups

Parabolic Double Cosets

Main Theorem on Enumeration

The Marine Model

Extension to Coxeter Groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Open Problems

Notation.

- ► *S_n* is the group of permutations.
- $t_{i,j} = (i \leftrightarrow j) = \text{transposition for } i < j$,
- ▶ $s_i = (i \leftrightarrow i + 1) = \text{simple transposition for } 1 \le i < n.$

Example. $w = [3, 4, 1, 2, 5] \in S_5$,

 $ws_4 = [3, 4, 1, 5, 2]$ and $s_4w = [3, 5, 1, 2, 4]$.

Presentation.

 S_n is generated by $s_1, s_2, \ldots, s_{n-1}$ with relations

$$egin{aligned} s_i s_i &= 1 \ (s_i s_j)^2 &= 1 \ ext{if } |i-j| > 1 \ (s_i s_{i+1})^3 &= 1 \end{aligned}$$

This presentation of S_n by generators and relations is encoded an edge labeled chain, called a Coxeter graph.

$$S_7 \approx \bullet_1 \frac{3}{\bullet_2} \bullet_2 \frac{3}{\bullet_3} \bullet_3 \frac{3}{\bullet_4} \bullet_4 \frac{3}{\bullet_5} \bullet_5 \frac{3}{\bullet_6} \bullet_6$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Notation. Given any $w \in S_n$ write

$$w = s_{i_1}s_{i_2}\cdots s_{i_k}$$

in a minimal number of generators. Then

- k is the length of w denoted $\ell(w)$.
- ▶ $\ell(w) = \#\{(i < j) | w(i) > w(j)\}$ (inversions).
- $s_{i_1}s_{i_2}\cdots s_{i_k}$ is a reduced expression for w.

Example. $w = [2, 1, 4, 3, 7, 6, 5] \in S_7$ has 5 inversions, $\ell(w) = 5$.

$$w = [2, 1, 4, 3, 7, 6, 5] = s_1 s_3 s_6 s_5 s_6 = s_3 s_1 s_6 s_5 s_6 = s_3 s_1 s_5 s_6 s_5 = \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Poincaré polynomials. Interesting *q*-analog of *n*!:

$$\sum_{w \in S_n} q^{\ell(w)} = (1+q)(1+q+q^2) \cdots (1+q+q^2+\ldots+q^{n-1}) = [n]_q!.$$

Examples.

$$\begin{split} & [2]_q! = 1 + q \\ & [3]_q! = 1 + 2q + 2q^2 + q^3 \\ & [4]_q! = 1 + 3q + 5q^2 + 6q^3 + 5q^4 + 3q^5 + q^6 \end{split}$$

Poincaré polynomials. Interesting *q*-analog of *n*!:

$$\sum_{w \in S_n} q^{\ell(w)} = (1+q)(1+q+q^2) \cdots (1+q+q^2+\ldots+q^{n-1}) = [n]_q!.$$

Examples.

$$\begin{split} & [2]_q! = 1 + q \\ & [3]_q! = 1 + 2q + 2q^2 + q^3 \\ & [4]_q! = 1 + 3q + 5q^2 + 6q^3 + 5q^4 + 3q^5 + q^6 \end{split}$$

Open. Find a simple formula for the coefficient of q^k in $[n]_q!$

Eulerian polynomials. Another interesting *q*-analog of *n*!:

$$A_n(q) = \sum_{k=0}^{n-1} A_{n,k} q^k = \sum_{w \in S_n} q^{\operatorname{asc}(w)}$$

where $Ascents(w) = \{i \mid w(i) > w(i+1)\}$ and asc(w) = #Ascents(w). See Petersen's book "Eulerian Numbers."

Examples. $A_2(q) = 1 + q$ $A_3(q) = 1 + 4q + q^2$ $A_4(q) = 1 + 11q + 11q^2 + q^3$

Eulerian polynomials. Another interesting *q*-analog of *n*!:

$$A_n(q) = \sum_{k=0}^{n-1} A_{n,k} q^k = \sum_{w \in S_n} q^{\operatorname{asc}(w)}$$

where $Ascents(w) = \{i \mid w(i) > w(i+1)\}$ and asc(w) = #Ascents(w). See Petersen's book "Eulerian Numbers."

Examples. $A_2(q) = 1 + q$ $A_3(q) = 1 + 4q + q^2$ $A_4(q) = 1 + 11q + 11q^2 + q^3$

Theorem. (Holte 1997, Diaconis-Fulman 2009) When adding together *n* large randomly chosen numbers in any base, the probability of carrying a *k* for $0 \le k < n$ is approximately $A_{n,k}/n!$.

Parabolic Subgroups and Cosets

Defn. For any subset $I \in \{1, 2, ..., n-1\} = [n-1]$, let W_I be the parabolic subgroup of S_n generated by $\langle s_i | i \in I \rangle$.

Defn. Sets of permutations of the form wW_I (or W_Iw) are left (or right) parabolic cosets for W_I for any $w \in S_n$.

Example. Take $I = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the left coset wW_I includes the 12 permutations

[34125]	[34152]	[34215]	[34512]	[34251]	[34521]
[43125]	[43152]	[43215]	[43512]	[43251]	[43521]

Parabolic Subgroups and Cosets

Defn. For any subset $I \in \{1, 2, ..., n-1\} = [n-1]$, let W_I be the parabolic subgroup of S_n generated by $\langle s_i | i \in I \rangle$.

Defn. Sets of permutations of the form wW_I (or W_Iw) are left (or right) parabolic cosets for W_I for any $w \in S_n$.

Example. Take $I = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the left coset wW_I includes the 12 permutations

[34125]	[34152]	[34215]	[34512]	[34251]	[34521]
[43125]	[43152]	[43215]	[43512]	[43251]	[43521]

Facts.

- Every parabolic coset has a unique minimal and a unique maximal length element.
- Every parabolic coset for W_l has size $|W_l|$.
- ► S_n is the disjoint union of the $n!/|W_l|$ left parabolic cosets S_n/W_l .

Defn. Let $I, J \in [n-1]$ and $w \in S_n$, then the sets of permutations the form $W_I \cdot w \cdot W_J$ are parabolic double cosets.

Example. Take $I = \{2\}$, $J = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the parabolic double coset $W_I w W_J$ includes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

plus

Defn. Let $I, J \in [n-1]$ and $w \in S_n$, then the sets of permutations the form $W_I \cdot w \cdot W_J$ are parabolic double cosets.

Example. Take $I = \{2\}$, $J = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the parabolic double coset $W_I w W_J$ includes

[24135]	[24153]	[24315]	[24513]	[24351]	[24531]
[42135]	[42153]	[42315]	[42513]	[42351]	[42531]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

plus

Defn. Let $I, J \in [n-1]$ and $w \in S_n$, then the sets of permutations the form $W_I \cdot w \cdot W_J$ are parabolic double cosets.

Example. Take $I = \{2\}$, $J = \{1, 3, 4\}$ and w = [3, 4, 1, 2, 5]. Then the parabolic double coset $W_I w W_J$ includes

	[34125]	[34152]	[34215]	[34512]	[34251]	[34521]
	[43125]	[43152]	[43215]	[43512]	[43251]	[43521]
•						

[24135]	[24153]	[24315]	[24513]	[24351]	[24531]
[42135]	[42153]	[42315]	[42513]	[42351]	[42531]

Example. W_{I} [4, 5, 1, 2, 3] W_{J} has 12 elements.

Facts.

- Parabolic double coset for W_I, W_J can have different sizes.
- ► *S_n* is the disjoint union of the parabolic double cosets

$$W_I \setminus S_n / W_J = \{ W_I w W_J \mid w \in S_n \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Every parabolic double coset has a unique minimal and a unique maximal length element.

Facts.

- Parabolic double coset for W_I, W_J can have different sizes.
- ► *S_n* is the disjoint union of the parabolic double cosets

$$W_I \setminus S_n / W_J = \{ W_I w W_J \mid w \in S_n \}.$$

 Every parabolic double coset has a unique minimal and a unique maximal length element.

Thm.(Kobayashi 2011) Every parabolic double coset is an interval in Bruhat order. The follow polynomials are palindromic

$$\mathsf{P}_{I,w,J}(q) = \sum_{v \in W_I w W_J} q^{\ell(v)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm. The Richardson variety in $GL_n(\mathbb{C})/B$ indexed by u < v is smooth if and only if the following polynomial is palindromic

 $\sum_{u\leq v\leq w}q^{\ell(v)}.$

References on smooth Richardson varieties: See book by Billey-Lakshmibai, and papers by Carrell, Billey-Coskun, Lam-Knutson-Speyer, Kreiman-Lakshmibai, Knutson-Woo-Yong, Lenagan-Yakimov and many more.

Question 1. For a fixed *I*, *J*, how many distinct parabolic double cosets are there in $W_I \setminus S_n / W_J$?

Question 2. Is there a formula for $f(n) = \sum_{I,J} |W_I \setminus S_n / W_J|$?

Question 3. How many distinct parabolic double cosets are there in S_n in total?

Counting Double Cosets

- ▶ G= finite group
- H, K = subgroups of G
- $H \setminus G/K = double \ cosets$ of G with respect to H, K= { $HgK : g \in G$ }

Generlization of Question 1. What is the size of $H \setminus G/K$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Counting Double Cosets

- ▶ G= finite group
- H, K = subgroups of G
- ► $H \setminus G/K$ = double cosets of G with respect to H, K= {HgK : $g \in G$ }

Generlization of Question 1. What is the size of $H \setminus G/K$?

One Answer..

The size of $H \setminus G/K$ is given by the inner product of the characters of the two trivial representations on H and K respectively induced up to G.

Reference: Stanley's "Enumerative Combinatorics" Ex 7.77a.

Question 2. Is there a formula for $f(n) = \sum_{I,J} |W_I \setminus S_n / W_J|$?

Data. 1, 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161 (A120733 in OEIS)

This counts the number of "two-way contingency tables" (see Diaconis-Gangoli 1994), the dimensions of the graded components of the Hopf algebra MQSym (see Duchamp-Hivert-Thibon 2002), and the number of cells in a two-sided analogue of the Coxeter complex (Petersen).

Question 3. How many distinct parabolic double cosets are there in S_n in total?

Data.:
$$p(n) = |\{W_I v W_J \mid v \in S_n, I, J \subset [n-1]\}|,$$

1, 3, 19, 167, 1791, 22715, 334031, 5597524, 105351108, 2200768698

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Not formerly in the OEIS! Now, see A260700.

Question 3. How many distinct parabolic double cosets are there in S_n in total?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Defn. For $w \in S_n$, let c_w be the number of distinct parabolic double cosets with w minimal.

One Answer.
$$p(n) = \sum_{w \in S_n} c_w$$
.

Lemma. w is minimal in $W_I w W_J$ if and only if $\ell(s_i w) > \ell(w)$ for all $i \in I$ and $\ell(ws_j) > \ell(w)$ for all $j \in J$. So

$$c_w = \#\{W_I w W_J \mid I \subset Ascent(w^{-1}), J \subset Ascent(w)\}.$$

Observation. Sometimes $W_I w W_J = W_{I'} w W_{J'}$ even if $I, I' \subset Ascent(w^{-1})$ and $J, J' \subset Ascent(w)$.

Dilemma. Which representation is best for enumeration?

Example. $w = [3, 4, 1, 2, 5] = w^{-1}$, Ascent(w) =

Example. $w = [3, 4, 1, 2, 5] = w^{-1}$, Ascent $(w) = \{1, 3, 4\}$,

Example.
$$w = [3, 4, 1, 2, 5] = w^{-1}$$
, $Ascent(w) = \{1, 3, 4\}$, $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} w W_{\{\}} = W_{\{\}} w W_{\{1\}}$.

Example. $w = [3, 4, 1, 2, 5] = w^{-1}$, $Ascent(w) = \{1, 3, 4\}$, $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} wW_{\{\}} = W_{\{\}} wW_{\{1\}}$. $ws_4 = [3, 4, 1, 5, 2] \neq s_i w$ for any *i* and $s_4 w = [3, 5, 1, 2, 4] \neq ws_i$ for any *i*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example.
$$w = [3, 4, 1, 2, 5] = w^{-1}$$
, $Ascent(w) = \{1, 3, 4\}$,
 $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} w W_{\{\}} = W_{\{\}} w W_{\{1\}}$.
 $ws_4 = [3, 4, 1, 5, 2] \neq s_i w$ for any *i* and
 $s_4 w = [3, 5, 1, 2, 4] \neq ws_i$ for any *i*.

Defn. A small ascent for w is an ascent j such that $ws_j = s_i w$. Every other ascent is large.

Example.
$$w = [3, 4, 1, 2, 5] = w^{-1}$$
, $Ascent(w) = \{1, 3, 4\}$,
 $ws_1 = [4, 3, 1, 2, 5] = s_3 w$ so $W_{\{3\}} w W_{\{\}} = W_{\{\}} w W_{\{1\}}$.
 $ws_4 = [3, 4, 1, 5, 2] \neq s_i w$ for any *i* and
 $s_4 w = [3, 5, 1, 2, 4] \neq ws_i$ for any *i*.

Defn. A small ascent for w is an ascent j such that $ws_j = s_i w$. Every other ascent is large.

Enumeration Principle. To count distinct parabolic double cosets $W_I w W_J$ with w minimal, J can contain any subset of large ascents for w, I can contain any subset of large ascents for w^{-1} , count the small ascents very carefully!

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right).$$

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{\mathsf{Floats}}(w)|} \sum_{T \subseteq \operatorname{\mathsf{Tethers}}(w)} \left(\prod_{R \in \operatorname{\mathsf{Rafts}}(w)} b_{|R|}^{\mathcal{I}(R,T)}
ight).$$

2. The sequences $b_m^{\mathcal{I}}$ satisfy a linear recurrence, and thus can be easily computed in time linear in m.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. There is a finite family of 81 integer sequences $\{b_m^{\mathcal{I}} \mid m \ge 0\}$, such that for any permutation w, the total number of parabolic double cosets with minimal element w is equal to

$$c_w = 2^{|\operatorname{\mathsf{Floats}}(w)|} \sum_{T \subseteq \operatorname{\mathsf{Tethers}}(w)} \left(\prod_{R \in \operatorname{\mathsf{Rafts}}(w)} b_{|R|}^{\mathcal{I}(R,T)}
ight).$$

- 2. The sequences $b_m^{\mathcal{I}}$ satisfy a linear recurrence, and thus can be easily computed in time linear in m.
- 3. The expected number of tethers for any given permutation is approximately 1/n.

The Marine Model

Main Formula. For $w \in S_n$,

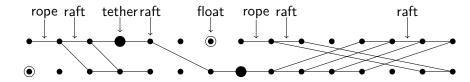
$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{T \subseteq \operatorname{Tethers}(w)} \left(\prod_{R \in \operatorname{Rafts}(w)} b_{|R|}^{\mathcal{I}(R,T)} \right)$$

The *w*-Ocean.

- 1. Take 2 parallel copies of the Coxeter graph G of S_n
- Connect vertex i ∈ Ascent(w⁻¹) and vertex j ∈ Ascent(w) by a new edge called planks whenever ws_j = s_iw.
- 3. Remove all edges not incident to a small ascent.

The Marine Model

Example. Rafts, tethers, floats and ropes of the *w* ocean w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).

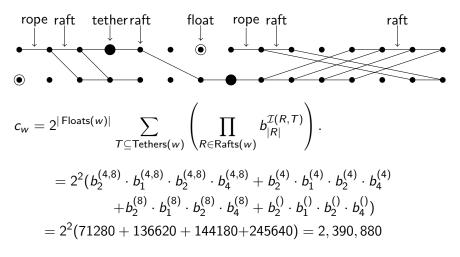


The Marine Model Terminology.

- 1. Raft a maximal connected component of adjacent planks.
- 2. Float a large ascent not adjacent to any rafts.
- 3. Rope a large ascent adjacent to exactly one raft.
- 4. Tether a large ascent connected to two rafts.

The Marine Model

Example. w = (1, 3, 4, 5, 7, 8, 2, 6, 14, 15, 16, 9, 10, 11, 12, 13).

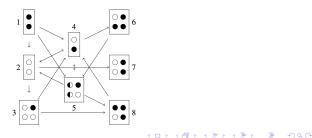


Proof Sketch

Defn. (I, J) is lex minimal over all pairs (I', J') such that $D = W'_I w W'_J$ provided |I| < |I'| or |I| = |I'| and |J| < |J'|.

Lemma. The lex minimal pair for a parabolic double coset is unique.

Lemma. Lex minimal pairs along any one raft correspond with words in the finite automaton below (loops are omitted), hence then are enumerated by a rational generating function $P^{\mathcal{I}}(x)/Q(x)$ by the Transfer Matrix Method.



Coxeter Groups

G = Coxeter graph with vertices {1,2,...,n}, edges labeled by Z≥3 ∪∞.

$$\bullet_1 \xrightarrow{4} \bullet_2 \xrightarrow{3} \bullet_3 \xrightarrow{3} \bullet_4 \quad \approx \quad \bullet_1 \xrightarrow{4} \bullet_2 \longrightarrow \bullet_3 \longrightarrow \bullet_4$$

• W = Coxeter group generated by $S = \{s_1, s_2, \dots, s_n\}$ with relations

1.
$$s_i^2 = 1$$
.
2. $s_i s_j = s_j s_i$ if i, j not adjacent in G .
3. $\underbrace{s_i s_j s_i \cdots}_{m(i,j) \text{ gens}} = \underbrace{s_j s_i s_j \cdots}_{m(i,j) \text{ gens}}$ if i, j connected by edge labeled $m(i, j)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

Dihedral groups: Dih₁₀ $\bullet_1 \xrightarrow{5} \bullet_2$ Symmetric groups: S_5 $\bullet_1 - \bullet_2 - \bullet_3 - \bullet_4$ Hyperoctahedral groups: B_4 $\bullet_1 \xrightarrow{4} \bullet_2 \longrightarrow \bullet_3 \longrightarrow \bullet_4$ E₈: $\bullet_1 - \bullet_2 - \bullet_3 - \bullet_4 - \bullet_5 - \bullet_6 - \bullet_7$ •8

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Generalizing the notation from Symmetric Groups

- ► W = Coxeter group generated by S = {s₁, s₂,..., s_n} with special relations.
- ▶ l(w) = length of w = length of a reduced expression for w.
- $W_I = \langle s_i \mid i \in I \rangle$ is a parabolic subgroup of W.
- W_IwW_J is a parabolic double coset of W for any I, J ⊂ [n], w ∈ W.
- ► c_w = number of distinct parabolic double cosets in W with minimal element w.

Generalizing Main Theorem to Coxeter Groups

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. For every finite Coxeter group W and $w \in W$, we have

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{\substack{T \subseteq \operatorname{Tethers}(w) \\ W \subseteq \operatorname{Wharfs}(w)}} \left(\prod_{\substack{R \in \operatorname{Rafts}(w) \\ R \in \operatorname{Marfs}(w)}} b_{|R|}^{\mathcal{I}(R,T,W)} \right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Generalizing Main Theorem to Coxeter Groups

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. For every finite Coxeter group W and $w \in W$, we have

$$c_w = 2^{|\operatorname{Floats}(w)|} \sum_{\substack{T \subseteq \operatorname{Tethers}(w) \\ W \subseteq \operatorname{Wharfs}(w)}} \left(\prod_{\substack{R \in \operatorname{Rafts}(w)}} b_{|R|}^{\mathcal{I}(R,T,W)} \right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2. The sequences $b_m^{\mathcal{I}(R,T,W)}$ satisfy a linear recurrence.

Generalizing Main Theorem to Coxeter Groups

Theorem. (Billey-Konvalinka-Petersen-Slofstra-Tenner)

1. For every finite Coxeter group W and $w \in W$, we have

$$c_{w} = 2^{|\operatorname{Floats}(w)|} \sum_{\substack{T \subseteq \operatorname{Tethers}(w) \\ W \subseteq \operatorname{Wharfs}(w)}} \left(\prod_{\substack{R \in \operatorname{Rafts}(w) \\ R \in \operatorname{Rafts}(w)}} b_{|R|}^{\mathcal{I}(R,T,W)} \right)$$

.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- 2. The sequences $b_m^{\mathcal{I}(R,T,W)}$ satisfy a linear recurrence.
- We generalize the formula for c_w to infinite families of Coxeter groups given by subdividing a fixed Coxeter graph G.

Mozes Numbers Game

Algorithm. Generates canonical representative for each element in a Coxeter group using its graph. (See Mozes 1990, Eriksson-Eriksson 1998, Björner-Brenti Book)

Input: Coxeter graph G and expression $s_{i_1}s_{i_2}\ldots s_{i_p} = w$.

Start: Each vertex of graph *G* assigned value 1. Replace each edge (i, j) of *G* by two opposing directed edges labeled $f_{ij} > 0$ and $f_{ji} > 0$ so that $f_{ij}f_{ji} = 4\cos^2\left(\frac{\pi}{m(i,j)}\right)$ or $f_{ij}f_{ji} = 4$ if $m(i, j) = \infty$.

Good choices:

m(i,j)	f _{ij}	f _{ji}
3	1	1
4	2	1
6	3	1

Loop. For each s_{i_k} in $s_{i_1}s_{i_2}\ldots s_{i_p}$ fire node i_k .

To fire node *i*, add to the value of each neighbor *j* the current value at node *i* multiplied by f_{ij} . Negate the value on node *i*.

Output.: G(w) = the final values on the nodes of G.

Mozes Numbers Game

Loop. For each s_{i_k} in $s_{i_1}s_{i_2}\ldots s_{i_p}$ fire node i_k .

To fire node *i*, add to the value of each neighbor *j* the current value at node *i* multiplied by f_{ij} . Negate the value on node *i*.

Output.: G(w) = the final values on the nodes of G.

Properties:

- 1. Output only depends on the product $s_{i_1}s_{i_2} \dots s_{i_p}$ and not on the particular choice of expression.
- 2. Node *i* is negative in G(w) iff $\ell(ws_i) < \ell(w)$.
- 3. Node *i* never has value 0.
- 4. If *I* ⊂ *S*, modify the game to get representatives for *W*/*W*_{*I*} by starting with initial value 0 on nodes in *I*. Then *ws_i* = *w* iff node *i* has value 0. Useful for studying parabolic cosets.

Open Problems

- 1. Follow up to Question 3: Is there a simpler or more efficient formula for the total number of distinct parabolic double cosets are there in S_n than the one given here?
- 2. Follow up to Question 2: Is there a simpler or more efficient formula for $f(n) = \sum_{I,J} |W_I \setminus S_n / W_J|$?

3. What other families of double cosets have interesting enumeration formulas?