Trees, Tanglegrams, and Tangled Chains

Sara Billey University of Washington

Based on joint work with: Matjaž Konvalinka and Frederick (Erick) Matsen IV arXiv:1507.04976

WPI, September 12, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background

Formulas for Trees, Tanglegrams and Tangled Chains

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Algorithms for random generation

Open Problems

Rooted Binary Trees

• B_n = set of rooted inequivalent binary trees with n leaves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ $|B_n| \longrightarrow 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, ...$

Rooted Binary Trees

- B_n = set of rooted inequivalent binary trees with n leaves
- ▶ $|B_n| \longrightarrow 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, ...$

Examples.

 (1), (2), (3) represent the unique rooted binary trees for n = 1, 2, 3 respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Rooted Binary Trees

- B_n = set of rooted inequivalent binary trees with n leaves
- ▶ $|B_n| \longrightarrow 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, ...$

Examples.

- (1), (2), (3) represent the unique rooted binary trees for n = 1, 2, 3 respectively.
- $B_4 = \{((1)(3)), ((2)(2))\},\$
- $\blacktriangleright B_5 = \{((1)((1)(3))), ((1)((2)(2))), ((2)(3))\},\$
- ((1)(((1)((1)((1)(3))))(((2)(2))(((1)(3))((2)(3)))))) is in B_{20} . $|B_{20} = 293,547|$

Catalan objects

- C_n = set of plane rooted binary trees with *n* leaves
- $\blacktriangleright |C_n| \longrightarrow 1, 1, 2, 5, 14, 42, \dots$

Example.

• ((1)(2)) and ((2)(1)) are distinct as plane trees.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Automorphism Groups of Rooted Binary Trees

- Let $T \in B_n$ rooted binary tree with n leaves.
- ► A(T) is the automorphism group of T given a canonical labeling of its leaves.

Example. T = ((1)((2)(2))) generated by 3 involutions [1,3,2,4,5], [1,2,3,5,4], [1,4,5,2,3] || || || || || (2 3) (4 5) (2 4)(3 5) $|A(T)| = 2^3 = 8.$

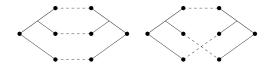
Tanglegrams

Defn. An *(ordered binary rooted) tanglegram* of size *n* is a triple (T, w, S) where $S, T \in B_n$ and $w \in S_n$.

Two tanglegrams (T, w, S) and (T', w', S') are equivalent provided T = T', S = S' and $w' \in A(T)wA(S)$.

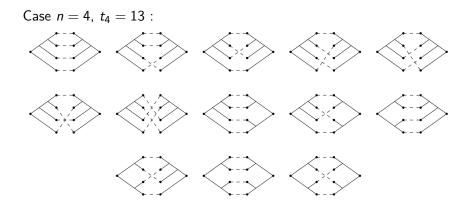
T_n= set of inequivalent tanglegrams with *n* leaves
 t_n = |*T_n*| → 1, 1, 2, 13, 114, 1509, 25595, 535753, ...

Example. $n = 3, t_3 = 2$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tanglegrams



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Enumeration of Tanglegrams

Questions. (Matsen) How many tanglegrams are in T_n ? How does t_n grow asymptotically?

First formula.:

٠

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This formula allowed us to get data up to n = 10. Sequence wasn't in OEIS.

Cophylogeny Estimation Problem in Biology.: Reconstruct the history of genetic changes in a host vs parasite or other linked groups of organisms.

Tanglegram Layout Problem in CS.: Find a drawing of a tanglegram in the plane with planar embeddings of the left and right trees and a minimal number of crossing (straight) edges in the matching. Eades-Wormald (1994) showed this is NP-hard.

Tanglegrams appear in analysis of software development in CS.

Main Enumeration Theorem

Thm 1. The number of tanglegrams of size *n* is

$$t_n = \sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1 \right)^2}{z_{\lambda}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

summed over *binary partitions* of *n*.

Defn. A binary partition $\lambda = (\lambda_1 \ge \lambda_1 \ge ...)$ has each part $\lambda_k = 2^j$ for some $j \in \mathbb{N}$.

Defn. $z_{\lambda} = 1^{m_0} 2^{m_1} 4^{m_2} \cdots (2^j)^{m_j} m_0! m_1! m_2! \cdots m_j!$ for $\lambda = 1^{m_0} 2^{m_1} 4^{m_2} 8^{m_3} \cdots$.

The numbers z_{λ} are famous!

Defn. More generally, $z_{\lambda} = 1^{m_1} 2^{m_2} 3^{m_3} \cdots j^{m_j} m_1! m_2! m_2! \cdots m_j!$ for $\lambda = 1^{m_1} 2^{m_2} 3^{m_3} \cdots$.

Facts.:

- 1. The number of permutations in S_n of cycle type λ is $\frac{n!}{z_{\lambda}}$.
- 2. If $v \in S_n$ has cycle type λ , then z_{λ} is the size of the stabilizer of v under the conjugation of S_n on itself.
- 3. For fixed $u, v \in S_n$ of cycle type λ ,

$$z_{\lambda} = \#\{w \in S_n \mid wvw^{-1} = u|\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4. The symmetric function $h_n(X) = \sum_{\lambda} \frac{p_{\lambda}(X)}{z_{\lambda}}$.

Main Enumeration Theorem

Thm. The number of tanglegrams of size *n* is

$$t_n = \sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1 \right)^2}{z_{\lambda}},$$

summed over *binary partitions* of *n* and z_{λ} .

Example. The 4 binary partitions of n = 4 are

$$\lambda : (4) (22) (211) (1111)$$
$$z_{\lambda} : 4 2^{2}2! 1^{2}2^{1}2! 1^{4}4!$$
$$t_{4} = \frac{1}{4} + \frac{3^{2}}{8} + \frac{3^{2} \cdot 1^{2}}{4} + \frac{5^{2} \cdot 3^{2} \cdot 1^{2}}{24} = 13$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Corollaries

Cor 1.
$$t_n = \frac{c_{n-1}^2 n!}{4^{n-1}} \sum_{\mu} \frac{n(n-1)\cdots(n-|\mu|+1)}{z_{\mu} \cdot \prod_{i=1}^{\ell(\mu)} \prod_{j=1}^{\mu_i - 1} (2n-2(\mu_1 + \cdots + \mu_{i-1}) - 2j-1)^2},$$

summed is over binary partitions μ with all parts equal to a positive power of 2 and $|\mu| \leq n.$

Cor 2.: As *n* gets large,
$$\frac{t_n}{n!} \sim \frac{e^{\frac{1}{8}}4^{n-1}}{\pi n^3}$$
.

Cor 3.: There is an efficient recurrence relation for t_n based on stripping off all copies of the largest part of λ . We can compute t_{4000} exactly.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Second Enumeration Theorem

Thm 2. The number of binary trees in B_n is

$$b_n = \sum_{\lambda} rac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1
ight)}{z_{\lambda}},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

summed over *binary partitions* of *n*.

Second Enumeration Theorem

Thm 2. The number of binary trees in B_n is

$$b_n = \sum_{\lambda} rac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1
ight)}{z_{\lambda}},$$

summed over *binary partitions* of *n*.

Question. What if the exponent k is bigger than 2?

$$t(k,n) = \sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1\right)^k}{z_{\lambda}}.$$

Tangled Chains

Defn. A *tangled chain* of size n and length k is an ordered sequence of binary trees with complete matchings between the leaves of neighboring trees in the sequence.

Thm 3. The number of tangled chains of size n and length k is

$$t(k,n) = \sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \cdots + \lambda_{\ell(\lambda)}) - 1 \right)^k}{z_{\lambda}}.$$

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$

For S, T fixed

$$|A(T)wA(S)| = \frac{|A(T)| \cdot |A(S)|}{|A(T) \cap wA(S)w^{-1}|}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$

For S, T fixed

$$|A(T)wA(S)| = \frac{|A(T)| \cdot |A(S)|}{|A(T) \cap wA(S)w^{-1}|}$$

$$\sum_{w \in S_n} |A(T) \cap wA(S)w^{-1}| = \sum_{w \in S_n} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi[u = wvw^{-1}]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$

For S, T fixed

$$|A(T)wA(S)| = \frac{|A(T)| \cdot |A(S)|}{|A(T) \cap wA(S)w^{-1}|}$$

$$\sum_{w \in S_n} |A(T) \cap wA(S)w^{-1}| = \sum_{w \in S_n} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi[u = wvw^{-1}]$$

$$=\sum_{u\in A(T)}\sum_{v\in A(S)}\sum_{w\in S_n}\chi[u=wvw^{-1}]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$

For S, T fixed

$$|A(T)wA(S)| = \frac{|A(T)| \cdot |A(S)|}{|A(T) \cap wA(S)w^{-1}|}$$

$$\sum_{w \in S_n} |A(T) \cap wA(S)w^{-1}| = \sum_{w \in S_n} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi[u = wvw^{-1}]$$

$$=\sum_{u\in A(T)}\sum_{v\in A(S)}\sum_{w\in S_n}\chi[u=wvw^{-1}]$$

$$=\sum_{\lambda\vdash n}|A(T)_{\lambda}|\cdot|A(S)_{\lambda}|\cdot z_{\lambda}$$

where $A(T)_{\lambda} = \{ w \in A(T) \mid type(w) = \lambda \}$. Only binary partitions occur!

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$
$$= \sum_{S \in B_n} \sum_{T \in B_n} \sum_{\lambda} \frac{|A(T)_{\lambda}| \cdot |A(S)_{\lambda}| \cdot z_{\lambda}}{|A(T)| \cdot |A(S)|}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$
$$= \sum_{S \in B_n} \sum_{T \in B_n} \sum_{\lambda} \frac{|A(T)_{\lambda}| \cdot |A(S)_{\lambda}| \cdot z_{\lambda}}{|A(T)| \cdot |A(S)|}$$
$$= \sum_{\lambda} z_{\lambda} \left(\sum_{T \in B_n} \frac{|A(T)_{\lambda}|}{|A(T)|} \right)^2$$

$$t_n = \sum_{S \in B_n} \sum_{T \in B_n} \sum_{w \in S_n} \frac{1}{|A(T)wA(S)|}$$
$$= \sum_{S \in B_n} \sum_{T \in B_n} \sum_{\lambda} \frac{|A(T)_{\lambda}| \cdot |A(S)_{\lambda}| \cdot z_{\lambda}}{|A(T)| \cdot |A(S)|}$$
$$= \sum_{\lambda} z_{\lambda} \left(\sum_{T \in B_n} \frac{|A(T)_{\lambda}|}{|A(T)|} \right)^2$$

To show:

$$\sum_{T\in B_n} \frac{|A(T)_{\lambda}|}{|A(T)|} = \frac{\prod_{i=2}^{\ell(\lambda)} \left(2(\lambda_i + \dots + \lambda_{\ell(\lambda)}) - 1 \right)}{z_{\lambda}} =: q_{\lambda}$$

via the recurrence

$$2q_\lambda = q_{\lambda/2} + \sum_{\lambda^1\cup\lambda^2=\lambda} q_{\lambda^1}q_{\lambda^2}$$

Conclusion: $t_n = \sum z_\lambda q_\lambda^2$.

Random Generation of Tanglegrams

Input: n

Step 1: Pick a binary partition $\lambda \vdash n$ with prob $z_{\lambda}q_{\lambda}^2/t_n$.

Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda = \lambda^1 \cup \lambda^2$ according to the recurrence for q_{λ} . Similarly, choose S and $v \in A(T)_{\lambda}$ uniformly by subdividing.

Step 3: Among the z_{λ} permutations *w* such that $u = wvw^{-1}$, pick one uniformly.

Output: (T, w, S).

Random Generation of a Permutation in A(T)

Input: Binary tree $T \in B_n$ with left and right subtrees T_1 and T_2 .

If n = 1, set $w = (1) \in A(T)$, unique choice.

Otherwise, recursively find $w_1 \in A(T_1)$ and $w_2 \in A(T_2)$ at random.

• If
$$T_1 \neq T_2$$
, set $w = w_1 w_2$.

• If $T_1 = T_2$, choose either $w = w_1w_2$ or $w = \pi w_1w_2$ with equal probability.

Here $\pi = (1 \ k)(2 \ (k+1))(3 \ (k+3)) \cdots (k \ n)$ where k = n/2 flips the labels on the leaves of the two subtrees.

Output: Permutation $w \in A(T)$.

Random Generation of Tanglegrams:Step 2

Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda = \lambda^1 \cup \lambda^2$ according to the recurrence for q_{λ} .

Input: $\lambda \vdash n$.

- ▶ If n = 1, output $T = \bullet$, $u = (1) \in A(T)$, unique choice.
- Otherwise, pick a subdivision of λ from two types

$$\{(\lambda/2,\lambda/2)\} \bigcup \{(\lambda^1,\lambda^2): \lambda^1 \cup \lambda^2 = \lambda\}$$

with probability proportional to

$$q_{\lambda/2} + \sum q_{\lambda^1} q_{\lambda^2} = 2 q_\lambda.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Random Generation of Tanglegrams:Step 2

Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda = \lambda^1 \cup \lambda^2$ according to the recurrence for q_{λ} .

▶ Type 1: $(\lambda/2, \lambda/2)$. Use the algorithm recursively to compute $T_1 \in B_{n/2}$ and a permutations $u_2 \in A(T_1)_{\lambda/2}$. Uniformly at random, generate anther permutation $u_1 \in A(T_1)$. Set

$$T = (T_1, T_1), \ u = \pi u_1 \pi u_1^{-1} \pi u_2.$$

Type 2: (λ¹, λ²). Use the algorithm recursively to compute trees T₁, T₂ and permutations u₁ ∈ A(T₁)_{λ¹} u₂ ∈ A(T₂)_{λ²}. Switch if necessary so T₁ ≤ T₂. Set

$$T = (T_1, T_2), \ u = u_1 u_2.$$

Output: (T, u).

Random Generation of Tanglegrams:Step 2

Example If $\lambda = (6, 4)$, then $|\lambda| = 10$, $\lambda/2 = (3, 2)$ and $\pi = (1 \ 6)(2 \ 7)(3 \ 8)(4 \ 9)(5 \ 10)$. If

$$w_1 = (1 \ 4)(2 \ 5)(3)$$
 and $w_2 = (6 \ 9 \ 7)(8 \ 10)$

then

$$w = \pi w_1 \pi w_1^{-1} \pi w_2 = (6\ 1\ 9\ 5\ 7\ 4)(8\ 2\ 10\ 3),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

all in cycle notation.

Review: Random Generation of Tanglegrams

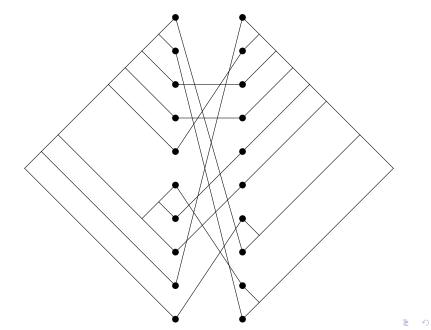
Input: n

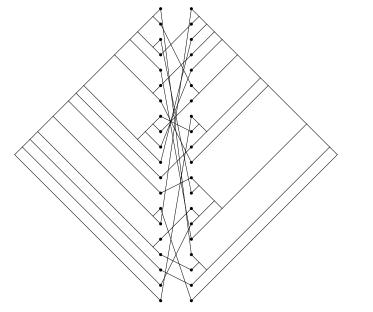
Step 1: Pick a binary partition $\lambda \vdash n$ with prob $z_{\lambda}q_{\lambda}^2/t_n$.

Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda = \lambda^1 \cup \lambda^2$ according to the recurrence for q_{λ} . Similarly, choose S and $v \in A(T)_{\lambda}$ uniformly by subdividing.

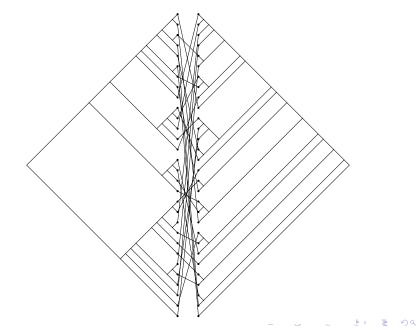
Step 3: Among the z_{λ} permutations *w* such that $u = wvw^{-1}$, pick one uniformly.

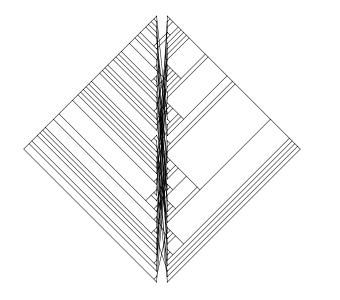
Output: (T, w, S).



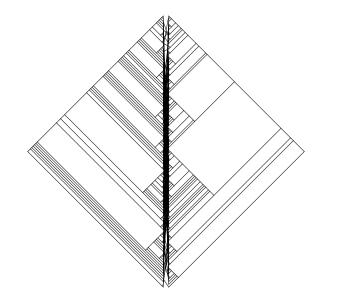


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ



・ロト・四ト・モート ヨー うへの

Positivity and symmetric functions go hand in hand with enumeration.

This is a story that began with an enumeration question and via work of Gessel now connects to symmetric functions, plethysm of Schur functions, and Kronecker coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open Problems

1. Is there a closed form or functional equation for $T(x) = \sum t_n x^n$ like there is for binary trees B(x)?

$$B(x) = x + \frac{1}{2} \left(B(x)^2 + B(x^2) \right)$$

- 2. Is there an efficient algorithm for depth first search on tanglegrams?
- 3. Can one describe the lex minimal permutations in the double cosets $A(T) \setminus S_n / A(S)$ for $S, T \in B_n$?