Trees, Tanglegrams, and Tangled Chains

Sara Billey
University of Washington

Based on joint work with: Matjaž Konvalinka and Frederick (Erick) Matsen IV arXiv:1507.04976

WPI, September 12, 2015

Outline

Background

Formulas for Trees, Tanglegrams and Tangled Chains

Algorithms for random generation

Open Problems

Rooted Binary Trees

- $B_{n}=$ set of rooted inequivalent binary trees with n leaves
- $\left|B_{n}\right| \longrightarrow 1,1,1,2,3,6,11,23,46,98, \ldots$

Rooted Binary Trees

- $B_{n}=$ set of rooted inequivalent binary trees with n leaves
- $\left|B_{n}\right| \longrightarrow 1,1,1,2,3,6,11,23,46,98, \ldots$

Examples.

- (1), (2), (3) represent the unique rooted binary trees for $n=1,2,3$ respectively.

Rooted Binary Trees

- $B_{n}=$ set of rooted inequivalent binary trees with n leaves
- $\left|B_{n}\right| \longrightarrow 1,1,1,2,3,6,11,23,46,98, \ldots$

Examples.

- (1), (2), (3) represent the unique rooted binary trees for $n=1,2,3$ respectively.
- $B_{4}=\{((1)(3)),((2)(2))\}$,
- $B_{5}=\{((1)((1)(3))),((1)((2)(2))),((2)(3))\}$,
- $((1)(((1)((1)((1)(3))))(((2)(2))(((1)(3))((2)(3))))))$ is in B_{20}. $\left|B_{20}=293,547\right|$

Catalan objects

- $C_{n}=$ set of plane rooted binary trees with n leaves
- $\left|C_{n}\right| \longrightarrow 1,1,2,5,14,42, \ldots$

Example.

- ((1)(2)) and ((2)(1)) are distinct as plane trees.

Automorphism Groups of Rooted Binary Trees

- Let $T \in B_{n}$ rooted binary tree with n leaves.
- $A(T)$ is the automorphism group of T given a canonical labeling of its leaves.

Example. $T=((1)((2)(2)))$ generated by 3 involutions

$$
[1,3,2,4,5],[1,2,3,5,4],[1,4,5,2,3]
$$

$|A(T)|=2^{3}=8$.

Tanglegrams

Defn. An (ordered binary rooted) tanglegram of size n is a triple (T, w, S) where $S, T \in B_{n}$ and $w \in S_{n}$.

Two tanglegrams (T, w, S) and $\left(T^{\prime}, w^{\prime}, S^{\prime}\right)$ are equivalent provided $T=T^{\prime}, S=S^{\prime}$ and $w^{\prime} \in A(T) w A(S)$.

- $T_{n}=$ set of inequivalent tanglegrams with n leaves
- $t_{n}=\left|T_{n}\right| \longrightarrow 1,1,2,13,114,1509,25595,535753, \ldots$

Example. $n=3, t_{3}=2$

Tanglegrams

Case $n=4, t_{4}=13$:

Enumeration of Tanglegrams

Questions.(Matsen) How many tanglegrams are in T_{n} ? How does t_{n} grow asymptotically?

First formula.:

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

This formula allowed us to get data up to $n=10$. Sequence wasn't in OEIS.

Motivation to study tanglegrams

Cophylogeny Estimation Problem in Biology.: Reconstruct the history of genetic changes in a host vs parasite or other linked groups of organisms.

Tanglegram Layout Problem in CS.: Find a drawing of a tanglegram in the plane with planar embeddings of the left and right trees and a minimal number of crossing (straight) edges in the matching. Eades-Wormald (1994) showed this is NP-hard.

Tanglegrams appear in analysis of software development in CS.

Main Enumeration Theorem

Thm 1. The number of tanglegrams of size n is

$$
t_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{2}}{z_{\lambda}}
$$

summed over binary partitions of n.

Defn. A binary partition $\lambda=\left(\lambda_{1} \geq \lambda_{1} \geq \ldots\right)$ has each part $\lambda_{k}=2^{j}$ for some $j \in \mathbb{N}$.

Defn. $z_{\lambda}=1^{m_{0}} 2^{m_{1}} 4^{m_{2}} \cdots\left(2^{j}\right)^{m_{j}} m_{0}!m_{1}!m_{2}!\cdots m_{j}$! for $\lambda=1^{m_{0}} 2^{m_{1}} 4^{m_{2}} 8^{m_{3}} \cdots$.

The numbers z_{λ} are famous!

Defn. More generally, $z_{\lambda}=1^{m_{1}} 2^{m_{2}} 3^{m_{3}} \cdots j^{m_{j}} m_{1}!m_{2}!m_{2}!\cdots m_{j}$! for $\lambda=1^{m_{1}} 2^{m_{2}} 3^{m_{3}} \cdots$.

Facts.:

1. The number of permutations in S_{n} of cycle type λ is $\frac{n!}{z_{\lambda}}$.
2. If $v \in S_{n}$ has cycle type λ, then z_{λ} is the size of the stabilizer of v under the conjugation of S_{n} on itself.
3. For fixed $u, v \in S_{n}$ of cycle type λ,

$$
z_{\lambda}=\#\left\{w \in S_{n}\left|w v w^{-1}=u\right|\right\}
$$

4. The symmetric function $h_{n}(X)=\sum_{\lambda} \frac{p_{\lambda}(X)}{z_{\lambda}}$.

Main Enumeration Theorem

Thm. The number of tanglegrams of size n is

$$
t_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{2}}{z_{\lambda}}
$$

summed over binary partitions of n and z_{λ}.

Example. The 4 binary partitions of $n=4$ are

$$
\begin{array}{ccccc}
\lambda: & (4) & (22) & (211) & (1111) \\
z_{\lambda}: & 4 & 2^{2} 2! & 1^{2} 2^{1} 2! & 1^{4} 4! \\
t_{4}= & \frac{1}{4}+\frac{3^{2}}{8}+\frac{3^{2} \cdot 1^{2}}{4}+\frac{5^{2} \cdot 3^{2} \cdot 1^{2}}{24}=13
\end{array}
$$

Corollaries

Cor 1. $t_{n}=\frac{c_{n-1}^{2} n!}{4^{n-1}} \sum_{\mu} \frac{n(n-1) \cdots(n-|\mu|+1)}{z_{\mu} \cdot \prod_{i=1}^{\ell(\mu)} \prod_{j=1}^{\mu_{i}-1}\left(2 n-2\left(\mu_{1}+\cdots+\mu_{i-1}\right)-2 j-1\right)^{2}}$,
summed is over binary partitions μ with all parts equal to a positive power of 2 and $|\mu| \leq n$.

Cor 2.: As n gets large, $\frac{t_{n}}{n!} \sim \frac{e^{\frac{1}{8}} 4^{n-1}}{\pi n^{3}}$.

Cor 3.: There is an efficient recurrence relation for t_{n} based on stripping off all copies of the largest part of λ.
We can compute t_{4000} exactly.

Second Enumeration Theorem

Thm 2. The number of binary trees in B_{n} is

$$
b_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}},
$$

summed over binary partitions of n.

Second Enumeration Theorem

Thm 2. The number of binary trees in B_{n} is

$$
b_{n}=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}},
$$

summed over binary partitions of n.

Question. What if the exponent k is bigger than 2?

$$
t(k, n)=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{k}}{z_{\lambda}} .
$$

Tangled Chains

Defn. A tangled chain of size n and length k is an ordered sequence of binary trees with complete matchings between the leaves of neighboring trees in the sequence.

Thm 3. The number of tangled chains of size n and length k is

$$
t(k, n)=\sum_{\lambda} \frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)^{k}}{z_{\lambda}}
$$

Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For S, T fixed

$$
|A(T) w A(S)|=\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|}
$$

Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For S, T fixed

$$
\begin{aligned}
|A(T) w A(S)| & =\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|} \\
\sum_{w \in S_{n}}\left|A(T) \cap w A(S) w^{-1}\right| & =\sum_{w \in S_{n}} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi\left[u=w v w^{-1}\right]
\end{aligned}
$$

Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For S, T fixed

$$
\begin{gathered}
|A(T) w A(S)|=\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|} \\
\sum_{w \in S_{n}}\left|A(T) \cap w A(S) w^{-1}\right|=\sum_{w \in S_{n}} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi\left[u=w v w^{-1}\right] \\
=\sum_{u \in A(T)} \sum_{v \in A(S)} \sum_{w \in S_{n}} \chi\left[u=w v w^{-1}\right]
\end{gathered}
$$

Outline of Proof of Theorem 1

$$
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|}
$$

For S, T fixed

$$
|A(T) w A(S)|=\frac{|A(T)| \cdot|A(S)|}{\left|A(T) \cap w A(S) w^{-1}\right|}
$$

$$
\sum_{w \in S_{n}}\left|A(T) \cap w A(S) w^{-1}\right|=\sum_{w \in S_{n}} \sum_{u \in A(T)} \sum_{v \in A(S)} \chi\left[u=w v w^{-1}\right]
$$

$$
\begin{gathered}
=\sum_{u \in A(T)} \sum_{v \in A(S)} \sum_{w \in S_{n}} \chi\left[u=w v w^{-1}\right] \\
=\sum_{\lambda \vdash n}\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}
\end{gathered}
$$

where $A(T)_{\lambda}=\{w \in A(T) \mid \operatorname{type}(w)=\lambda\}$. Only binary partitions occur!

Outline of Proof of Main Theorem

$$
\begin{aligned}
& t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
= & \sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|}
\end{aligned}
$$

Outline of Proof of Main Theorem

$$
\begin{gathered}
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|} \\
\quad=\sum_{\lambda} z_{\lambda}\left(\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}\right)^{2}
\end{gathered}
$$

Outline of Proof of Main Theorem

$$
\begin{gathered}
t_{n}=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{w \in S_{n}} \frac{1}{|A(T) w A(S)|} \\
=\sum_{S \in B_{n}} \sum_{T \in B_{n}} \sum_{\lambda} \frac{\left|A(T)_{\lambda}\right| \cdot\left|A(S)_{\lambda}\right| \cdot z_{\lambda}}{|A(T)| \cdot|A(S)|} \\
\quad=\sum_{\lambda} z_{\lambda}\left(\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}\right)^{2}
\end{gathered}
$$

To show:

$$
\sum_{T \in B_{n}} \frac{\left|A(T)_{\lambda}\right|}{|A(T)|}=\frac{\prod_{i=2}^{\ell(\lambda)}\left(2\left(\lambda_{i}+\cdots+\lambda_{\ell(\lambda)}\right)-1\right)}{z_{\lambda}}=: q_{\lambda}
$$

via the recurrence

$$
2 q_{\lambda}=q_{\lambda / 2}+\sum_{\lambda^{1} \cup \lambda^{2}=\lambda} q_{\lambda^{1}} q_{\lambda^{2}}
$$

Conclusion: $t_{n}=\sum z_{\lambda} q_{\lambda}^{2}$.

Random Generation of Tanglegrams

Input: n
Step 1: Pick a binary partition $\lambda \vdash n$ with prob $z_{\lambda} q_{\lambda}^{2} / t_{n}$.
Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for q_{λ}. Similarly, choose S and $v \in A(T)_{\lambda}$ uniformly by subdividing.

Step 3: Among the z_{λ} permutations w such that $u=w v w^{-1}$, pick one uniformly.

Output: (T, w, S).

Random Generation of a Permutation in $A(T)$

Input: Binary tree $T \in B_{n}$ with left and right subtrees T_{1} and T_{2}.
If $n=1$, set $w=(1) \in A(T)$, unique choice.
Otherwise, recursively find $w_{1} \in A\left(T_{1}\right)$ and $w_{2} \in A\left(T_{2}\right)$ at random.

- If $T_{1} \neq T_{2}$, set $w=w_{1} w_{2}$.
- If $T_{1}=T_{2}$, choose either $w=w_{1} w_{2}$ or $w=\pi w_{1} w_{2}$ with equal probability.

Here $\pi=(1 k)(2(k+1))(3(k+3)) \cdots(k n)$ where $k=n / 2$ flips the labels on the leaves of the two subtrees.

Output: Permutation $w \in A(T)$.

Random Generation of Tanglegrams:Step 2

Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for q_{λ}.

Input: $\lambda \vdash n$.

- If $n=1$, output $T=\bullet, u=(1) \in A(T)$, unique choice.
- Otherwise, pick a subdivision of λ from two types

$$
\{(\lambda / 2, \lambda / 2)\} \bigcup\left\{\left(\lambda^{1}, \lambda^{2}\right): \lambda^{1} \cup \lambda^{2}=\lambda\right\}
$$

with probability proportional to

$$
q_{\lambda / 2}+\sum q_{\lambda^{1}} q_{\lambda^{2}}=2 q_{\lambda}
$$

Random Generation of Tanglegrams:Step 2

Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for q_{λ}.

- Type 1: $(\lambda / 2, \lambda / 2)$. Use the algorithm recursively to compute $T_{1} \in B_{n / 2}$ and a permutations $u_{2} \in A\left(T_{1}\right)_{\lambda / 2}$. Uniformly at random, generate anther permutation $u_{1} \in A\left(T_{1}\right)$. Set

$$
T=\left(T_{1}, T_{1}\right), u=\pi u_{1} \pi u_{1}^{-1} \pi u_{2}
$$

- Type 2: $\left(\lambda^{1}, \lambda^{2}\right)$. Use the algorithm recursively to compute trees T_{1}, T_{2} and permutations $u_{1} \in A\left(T_{1}\right)_{\lambda^{1}} u_{2} \in A\left(T_{2}\right)_{\lambda^{2}}$. Switch if necessary so $T_{1} \leq T_{2}$. Set

$$
T=\left(T_{1}, T_{2}\right), u=u_{1} u_{2}
$$

Output: (T, u).

Random Generation of Tanglegrams:Step 2

Example If $\lambda=(6,4)$, then $|\lambda|=10, \lambda / 2=(3,2)$ and $\pi=(16)(27)(38)(49)(510)$. If

$$
w_{1}=(14)(25)(3) \text { and } w_{2}=\left(\begin{array}{ll}
6 & 9
\end{array}\right)(810)
$$

then

$$
w=\pi w_{1} \pi w_{1}^{-1} \pi w_{2}=\left(\begin{array}{ll}
6 & 19574
\end{array}\right)(82103),
$$

all in cycle notation.

Review: Random Generation of Tanglegrams

Input: n
Step 1: Pick a binary partition $\lambda \vdash n$ with prob $z_{\lambda} q_{\lambda}^{2} / t_{n}$.
Step 2: Choose T and $u \in A(T)_{\lambda}$ uniformly by subdividing $\lambda=\lambda^{1} \cup \lambda^{2}$ according to the recurrence for q_{λ}. Similarly, choose S and $v \in A(T)_{\lambda}$ uniformly by subdividing.

Step 3: Among the z_{λ} permutations w such that $u=w v w^{-1}$, pick one uniformly.

Output: (T, w, S).

Random Tanglegrams: $\mathrm{n}=10$

Random Tanglegrams: $n=20$

Random Tanglegrams: $\mathrm{n}=30$

Random Tanglegrams: $\mathrm{n}=50$

Random Tanglegrams: $\mathrm{n}=100$

Positivity and symmetric functions go hand in hand with enumeration.

This is a story that began with an enumeration question and via work of Gessel now connects to symmetric functions, plethysm of Schur functions, and Kronecker coefficients.

Open Problems

1. Is there a closed form or functional equation for $T(x)=\sum t_{n} x^{n}$ like there is for binary trees $B(x)$?

$$
B(x)=x+\frac{1}{2}\left(B(x)^{2}+B\left(x^{2}\right)\right)
$$

2. Is there an efficient algorithm for depth first search on tanglegrams?
3. Can one describe the lex minimal permutations in the double cosets $A(T) \backslash S_{n} / A(S)$ for $S, T \in B_{n}$?
