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Rooted Binary Trees

I Bn= set of rooted inequivalent binary trees with n leaves
I |Bn| −→ 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, . . .

Examples.
I (1), (2), (3) represent the unique rooted binary trees for

n = 1, 2, 3 respectively.

I B4 = {((1)(3)), ((2)(2))},
I B5 = {((1)((1)(3))), ((1)((2)(2))), ((2)(3))},
I ((1)(((1)((1)((1)(3))))(((2)(2))(((1)(3))((2)(3)))))) is in B20.
|B20 = 293, 547|
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Catalan objects

I Cn= set of plane rooted binary trees with n leaves
I |Cn| −→ 1, 1, 2, 5, 14, 42, . . .

Example.
I ((1)(2)) and ((2)(1)) are distinct as plane trees.



Automorphism Groups of Rooted Binary Trees

I Let T ∈ Bn rooted binary tree with n leaves.
I A(T ) is the automorphism group of T given a canonical

labeling of its leaves.

Example. T = ((1)((2)(2))) generated by 3 involutions

[1, 3, 2, 4, 5], [1, 2, 3, 5, 4], [1, 4, 5, 2, 3]

|| || ||

(2 3) (4 5) (2 4)(3 5)

|A(T )| = 23 = 8.



Tanglegrams

Defn. An (ordered binary rooted) tanglegram of size n is a triple
(T ,w , S) where S,T ∈ Bn and w ∈ Sn.

Two tanglegrams (T ,w ,S) and (T ′,w ′, S ′) are equivalent provided
T = T ′, S = S ′ and w ′ ∈ A(T )wA(S).

I Tn= set of inequivalent tanglegrams with n leaves
I tn = |Tn| −→ 1, 1, 2, 13, 114, 1509, 25595, 535753, . . .

Example. n = 3, t3 = 2



Tanglegrams

Case n = 4, t4 = 13 :



Enumeration of Tanglegrams

Questions.(Matsen) How many tanglegrams are in Tn?
How does tn grow asymptotically?

First formula.:

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

.

This formula allowed us to get data up to n = 10. Sequence
wasn’t in OEIS.



Motivation to study tanglegrams

Cophylogeny Estimation Problem in Biology.: Reconstruct
the history of genetic changes in a host vs parasite or other linked
groups of organisms.

Tanglegram Layout Problem in CS.: Find a drawing of a
tanglegram in the plane with planar embeddings of the left and
right trees and a minimal number of crossing (straight) edges in
the matching. Eades-Wormald (1994) showed this is NP-hard.

Tanglegrams appear in analysis of software development in CS.



Main Enumeration Theorem

Thm 1. The number of tanglegrams of size n is

tn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)2

zλ
,

summed over binary partitions of n.

Defn. A binary partition λ = (λ1 ≥ λ1 ≥ ...) has each part
λk = 2j for some j ∈ N.

Defn. zλ = 1m02m14m2 · · · (2j)mj m0!m1!m2! · · ·mj !
for λ = 1m02m14m28m3 · · · .



The numbers zλ are famous!

Defn. More generally, zλ = 1m12m23m3 · · · jmj m1!m2!m2! · · ·mj !
for λ = 1m12m23m3 · · · .

Facts.:
1. The number of permutations in Sn of cycle type λ is n!

zλ
.

2. If v ∈ Sn has cycle type λ, then zλ is the size of the stabilizer
of v under the conjugation of Sn on itself.

3. For fixed u, v ∈ Sn of cycle type λ,

zλ = #{w ∈ Sn | wvw−1 = u|}.

4. The symmetric function hn(X ) =
∑
λ

pλ(X )
zλ

.



Main Enumeration Theorem

Thm. The number of tanglegrams of size n is

tn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)2

zλ
,

summed over binary partitions of n and zλ.

Example. The 4 binary partitions of n = 4 are

λ : (4) (22) (211) (1111)
zλ : 4 222! 12212! 144!

t4 = 1
4 + 32

8 + 32 · 12

4 + 52 · 32 · 12

24 = 13



Corollaries

Cor 1. tn = c2
n−1n!
4n−1

∑
µ

n(n−1)···(n−|µ|+1)
zµ·
∏`(µ)

i=1

∏µi −1
j=1 (2n−2(µ1+···+µi−1)−2j−1)2

,

summed is over binary partitions µ with all parts equal to a
positive power of 2 and |µ| ≤ n.

Cor 2.: As n gets large, tn
n! ∼

e 1
8 4n−1

πn3 .

Cor 3.: There is an efficient recurrence relation for tn based on
stripping off all copies of the largest part of λ.
We can compute t4000 exactly.



Second Enumeration Theorem

Thm 2. The number of binary trees in Bn is

bn =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
zλ

,

summed over binary partitions of n.

Question. What if the exponent k is bigger than 2?

t(k, n) =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)k

zλ
.
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Tangled Chains

Defn. A tangled chain of size n and length k is an ordered
sequence of binary trees with complete matchings between the
leaves of neighboring trees in the sequence.

Thm 3. The number of tangled chains of size n and length k is

t(k, n) =
∑
λ

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)k

zλ
.



Outline of Proof of Theorem 1

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

For S,T fixed

|A(T )wA(S)| = |A(T )| · |A(S)|
|A(T ) ∩ wA(S)w−1|

∑
w∈Sn

|A(T ) ∩ wA(S)w−1| =
∑

w∈Sn

∑
u∈A(T )

∑
v∈A(S)

χ[u = wvw−1]

=
∑

u∈A(T )

∑
v∈A(S)

∑
w∈Sn

χ[u = wvw−1]

=
∑
λ`n
|A(T )λ| · |A(S)λ| · zλ

where A(T )λ = {w ∈ A(T ) | type(w) = λ}. Only binary
partitions occur!
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Outline of Proof of Main Theorem

tn =
∑

S∈Bn

∑
T∈Bn
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w∈Sn

1
|A(T )wA(S)|
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|A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)|
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∑
λ

zλ

 ∑
T∈Bn

|A(T )λ|
|A(T )|

2

To show:∑
T∈Bn

|A(T )λ|
|A(T )| =

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
zλ

=: qλ

via the recurrence
2qλ = qλ/2 +

∑
λ1∪λ2=λ

qλ1qλ2

Conclusion: tn =
∑

zλq2
λ.



Outline of Proof of Main Theorem

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

=
∑

S∈Bn

∑
T∈Bn

∑
λ

|A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)|

=
∑
λ

zλ

 ∑
T∈Bn

|A(T )λ|
|A(T )|

2

To show:∑
T∈Bn

|A(T )λ|
|A(T )| =

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
zλ

=: qλ

via the recurrence
2qλ = qλ/2 +

∑
λ1∪λ2=λ

qλ1qλ2

Conclusion: tn =
∑

zλq2
λ.



Outline of Proof of Main Theorem

tn =
∑

S∈Bn

∑
T∈Bn

∑
w∈Sn

1
|A(T )wA(S)|

=
∑

S∈Bn

∑
T∈Bn

∑
λ

|A(T )λ| · |A(S)λ| · zλ
|A(T )| · |A(S)|

=
∑
λ

zλ

 ∑
T∈Bn

|A(T )λ|
|A(T )|

2

To show:∑
T∈Bn

|A(T )λ|
|A(T )| =

∏`(λ)
i=2

(
2(λi + · · ·+ λ`(λ))− 1

)
zλ

=: qλ

via the recurrence
2qλ = qλ/2 +

∑
λ1∪λ2=λ

qλ1qλ2

Conclusion: tn =
∑

zλq2
λ.



Random Generation of Tanglegrams

Input: n

Step 1: Pick a binary partition λ ` n with prob zλq2
λ/tn.

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ. Similarly, choose S
and v ∈ A(T )λ uniformly by subdividing.

Step 3: Among the zλ permutations w such that u = wvw−1,
pick one uniformly.

Output: (T ,w , S).



Random Generation of a Permutation in A(T )

Input: Binary tree T ∈ Bn with left and right subtrees T1 and T2.

If n = 1, set w = (1) ∈ A(T ), unique choice.

Otherwise, recursively find w1 ∈ A(T1) and w2 ∈ A(T2) at random.
I If T1 6= T2, set w = w1w2.
I If T1 = T2, choose either w = w1w2 or w = πw1w2 with

equal probability.

Here π = (1 k)(2 (k + 1))(3 (k + 3)) · · · (k n) where k = n/2 flips
the labels on the leaves of the two subtrees.

Output: Permutation w ∈ A(T ).



Random Generation of Tanglegrams:Step 2

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ.

Input: λ ` n.
I If n = 1, output T = •, u = (1) ∈ A(T ), unique choice.
I Otherwise, pick a subdivision of λ from two types

{(λ/2, λ/2)}
⋃
{(λ1, λ2) : λ1 ∪ λ2 = λ}

with probability proportional to

qλ/2 +
∑

qλ1qλ2 = 2qλ.



Random Generation of Tanglegrams:Step 2

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ.

I Type 1: (λ/2, λ/2). Use the algorithm recursively to compute
T1 ∈ Bn/2 and a permutations u2 ∈ A(T1)λ/2. Uniformly at
random, generate anther permutation u1 ∈ A(T1). Set

T = (T1,T1), u = πu1πu−1
1 πu2.

I Type 2: (λ1, λ2). Use the algorithm recursively to compute
trees T1,T2 and permutations u1 ∈ A(T1)λ1 u2 ∈ A(T2)λ2 .
Switch if necessary so T1 ≤ T2. Set

T = (T1,T2), u = u1u2.

Output: (T , u).



Random Generation of Tanglegrams:Step 2

Example If λ = (6, 4), then |λ| = 10, λ/2 = (3, 2) and
π = (1 6)(2 7)(3 8)(4 9)(5 10). If

w1 = (1 4)(2 5)(3) and w2 = (6 9 7)(8 10)

then

w = πw1πw−1
1 πw2 = (6 1 9 5 7 4)(8 2 10 3),

all in cycle notation.



Review: Random Generation of Tanglegrams

Input: n

Step 1: Pick a binary partition λ ` n with prob zλq2
λ/tn.

Step 2: Choose T and u ∈ A(T )λ uniformly by subdividing
λ = λ1 ∪ λ2 according to the recurrence for qλ. Similarly, choose S
and v ∈ A(T )λ uniformly by subdividing.

Step 3: Among the zλ permutations w such that u = wvw−1,
pick one uniformly.

Output: (T ,w , S).



Random Tanglegrams: n=10



Random Tanglegrams: n=20



Random Tanglegrams: n=30



Random Tanglegrams: n=50



Random Tanglegrams: n=100



Positivity and symmetric functions
go hand in hand with enumeration.

This is a story that began with an enumeration question and via
work of Gessel now connects to symmetric functions, plethysm of
Schur functions, and Kronecker coefficients.



Open Problems

1. Is there a closed form or functional equation for
T (x) =

∑
tnxn like there is for binary trees B(x)?

B(x) = x + 1
2
(
B(x)2 + B(x2)

)

2. Is there an efficient algorithm for depth first search on
tanglegrams?

3. Can one describe the lex minimal permutations in the double
cosets A(T )\Sn/A(S) for S,T ∈ Bn?


	Background
	Formulas for Trees, Tanglegrams and Tangled Chains
	Algorithms for random generation
	Open Problems

