Optimal Value Function Methods in Numerical Optimization Level Set Methods

James V Burke
Mathematics, University of Washington, (jvburke@uw.edu)

Joint work with
Aravkin (UW), Drusvyatskiy (UW), Friedlander (UBC/Davis), Roy (UW)

The Hong Kong Polytechnic University
Applied Mathematics Colloquium
February 4, 2016

Optimization in Large-Scale Inference

- A range of large-scale data science applications can be modeled using optimization:
- Inverse problems (medical and seismic imaging)
- High dimensional inference (compressive sensing, LASSO, quantile regression)
- Machine learning (classification, matrix completion, robust PCA, time series)
- These applications are often solved using side information:
- Sparsity or low rank of solution
- Constraints (topography, non-negativity)
- Regularization (priors, total variation, "dirty" data)
- We need efficient large-scale solvers for nonsmooth programs.

The Prototypical Problem

Sparse Data Fitting:
Find sparse x with $A x \approx b$

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Example: Model Selection
$y=a^{T} x \quad$ where $y \in \mathbb{R}^{k}$ is an observation and $a \in \mathbb{R}^{n}$ are covariates.
Suppose y is a disease classifier and a is micro-array data $\left(n \geq 10^{4}\right)$. Given data $\left\{\left(y_{i}, a_{i}\right)\right\}_{i=1}^{m}$, find x so that $y_{i} \approx a_{i}^{T} x$.

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Example: Model Selection
$y=a^{T} x \quad$ where $y \in \mathbb{R}^{k}$ is an observation and $a \in \mathbb{R}^{n}$ are covariates.
Suppose y is a disease classifier and a is micro-array data ($n \geq 10^{4}$). Given data $\left\{\left(y_{i}, a_{i}\right)\right\}_{i=1}^{m}$, find x so that $y_{i} \approx a_{i}^{T} x$.
Since $m \ll n$, one can "always" find \bar{x} such that

$$
y_{i}=a_{i}^{T} x, i=1, \ldots, m .
$$

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Example: Model Selection
$y=a^{T} x \quad$ where $y \in \mathbb{R}^{k}$ is an observation and $a \in \mathbb{R}^{n}$ are covariates.
Suppose y is a disease classifier and a is micro-array data $\left(n \geq 10^{4}\right)$.
Given data $\left\{\left(y_{i}, a_{i}\right)\right\}_{i=1}^{m}$, find x so that $y_{i} \approx a_{i}^{T} x$.
Since $m \ll n$, one can "always" find \bar{x} such that

$$
y_{i}=a_{i}^{T} x, \quad i=1, \ldots, m .
$$

This \bar{x} gives little insight into the role of the covariates a in determining the observations y. We prefer the most parsimonious subset of covariates that can be used to explain the observations. That is, we prefer the sparsest model from the 2^{n} possible models. Such models are used to further our knowledge of disease mechanisms and to develop efficient disease assays.

Sparse Data Fitting:

Find sparse x with $A x \approx b$

There are numerous other applications;

- system identification
- image segmentation
- compressed sensing
- grouped sparsity for remote sensor location
- ...

The Prototypical Problem
Sparse Data Fitting:
Find sparse x with $A x \approx b$

The Prototypical Problem

Sparse Data Fitting:
Find sparse x with $A x \approx b$

Convex approaches: $\|x\|_{1}$ as a sparsity surragate (Candes-Tao-Donaho)

	BPDN	LASSO	Lagrangian (Penalty)					
\min	$\\|x\\|_{1}$	\min	$\frac{1}{2}\\|A x-b\\|_{2}^{2}$	\min				
x	$\frac{1}{2}\\|A x-b\\|_{2}^{2}+\lambda\\|x\\|_{1}$							
s.t.	$\frac{1}{2}\\|A x-b\\|_{2}^{2} \leq \sigma$	s.t.	$\\|x\\|_{1} \leq \tau$	x				

The Prototypical Problem

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Convex approaches: $\|x\|_{1}$ as a sparsity surragate (Candes-Tao-Donaho)

	BPDN		LASSO	Lagrangian (Penalty)									
$\min _{x}$	$\\|x\\|_{1}$	$\min _{x}$	$\frac{1}{2}\\|A x-b\\|_{2}^{2}$	$\min _{x}$	$\frac{1}{2}\\|A x-b\\|_{2}^{2}+\lambda\\|x\\|_{1}$								
s.t.	$\frac{1}{2}\\|A x-b\\|_{2}^{2} \leq \sigma$	s.t.	$\\|x\\|_{1} \leq \tau$										

- BPDN: often most natural and transparent. (physical considerations guide σ)

The Prototypical Problem

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Convex approaches: $\|x\|_{1}$ as a sparsity surragate (Candes-Tao-Donaho)

	BPDN		LASSO	Lagrangian (Penalty)									
$\min _{x}$	$\\|x\\|_{1}$	$\min _{x}$	$\frac{1}{2}\\|A x-b\\|_{2}^{2}$	\min	$\frac{1}{2}\\|A x-b\\|_{2}^{2}+\lambda\\|x\\|_{1}$								
s.t.	$\frac{1}{2}\\|A x-b\\|_{2}^{2} \leq \sigma$	s.t.	$\\|x\\|_{1} \leq \tau$										

- BPDN: often most natural and transparent. (physical considerations guide σ)
- Lagrangian: ubiquitous in practice.
("no constraints")

The Prototypical Problem

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Convex approaches: $\|x\|_{1}$ as a sparsity surragate (Candes-Tao-Donaho)

	BPDN		LASSO	Lagrangian (Penalty)									
$\min _{x}$	$\\|x\\|_{1}$	$\min _{x}$	$\frac{1}{2}\\|A x-b\\|_{2}^{2}$	\min	$\frac{1}{2}\\|A x-b\\|_{2}^{2}+\lambda\\|x\\|_{1}$								
s.t.	$\frac{1}{2}\\|A x-b\\|_{2}^{2} \leq \sigma$	s.t.	$\\|x\\|_{1} \leq \tau$										

- BPDN: often most natural and transparent.
(physical considerations guide σ)
- Lagrangian: ubiquitous in practice.
("no constraints")
All three are (essentially) equivalent computationally!

The Prototypical Problem

Sparse Data Fitting:

Find sparse x with $A x \approx b$

Convex approaches: $\|x\|_{1}$ as a sparsity surragate (Candes-Tao-Donaho)

	BPDN		LASSO	Lagrangian (Penalty)									
$\min _{x}$	$\\|x\\|_{1}$	$\min _{x}$	$\frac{1}{2}\\|A x-b\\|_{2}^{2}$	$\min _{x}$	$\frac{1}{2}\\|A x-b\\|_{2}^{2}+\lambda\\|x\\|_{1}$								
s.t.	$\frac{1}{2}\\|A x-b\\|_{2}^{2} \leq \sigma$	s.t.	$\\|x\\|_{1} \leq \tau$										

- BPDN: often most natural and transparent.
(physical considerations guide σ)
- Lagrangian: ubiquitous in practice.
("no constraints")
All three are (essentially) equivalent computationally!
Basis for SPGL1 (van den Berg-Friedlander '08)

Optimal Value or Level Set Framework

Problem class: Solve

$$
\begin{aligned}
\min _{x \in \mathcal{X}} & \phi(x) \\
\text { s.t. } & \rho(A x-b) \leq \sigma
\end{aligned} \mathcal{P}(\sigma)
$$

Optimal Value or Level Set Framework

Problem class: Solve

$$
\begin{array}{cl}
\min _{x \in \mathcal{X}} & \phi(x) \\
\text { s.t. } & \rho(A x-b) \leq \sigma
\end{array}
$$

$$
\mathcal{P}(\sigma)
$$

Strategy: Consider the "flipped" problem

$$
\begin{align*}
v(\tau):=\min _{x \in \mathcal{X}} & \rho(A x-b) \\
\text { s.t. } & \phi(x) \leq \tau
\end{align*}
$$

Optimal Value or Level Set Framework

Problem class: Solve

$$
\begin{array}{cl}
\min _{x \in \mathcal{X}} & \phi(x) \\
\text { s.t. } & \rho(A x-b) \leq \sigma
\end{array}
$$

$$
\mathcal{P}(\sigma)
$$

Strategy: Consider the "flipped" problem

$$
\begin{align*}
v(\tau):=\min _{x \in \mathcal{X}} & \rho(A x-b) \\
\text { s.t. } & \phi(x) \leq \tau
\end{align*}
$$

Then opt-val $(\mathcal{P}(\sigma))$ is the minimal root of the equation

$$
v(\tau)=\sigma
$$

The intuition behind the proposed framework has a distinguished history, appearing even in antiquity. Perhaps the earliest instance is Queen Dido's problem and the fabled origins of Carthage.

In short, the problem is to find the maximum area that can be enclosed by an arc of fixed length and a given line. The converse problem is to find an arc of least length that traps a fixed area between a line and the arc. Although these two problems reverse the objective and the constraint, the solution in each case is a semi-circle.

The intuition behind the proposed framework has a distinguished history, appearing even in antiquity. Perhaps the earliest instance is Queen Dido's problem and the fabled origins of Carthage.

In short, the problem is to find the maximum area that can be enclosed by an arc of fixed length and a given line. The converse problem is to find an arc of least length that traps a fixed area between a line and the arc. Although these two problems reverse the objective and the constraint, the solution in each case is a semi-circle.

Other historical examples abound. More recently, these observations provide the basis for the Markowitz Mean-Variance Portfolio Theory.

The Role of Convexity

Convex Sets

Let $C \subset \mathbb{R}^{n}$. We say that C is convex if
$(1-\lambda) x+\lambda y \in C$ whenever $x, y \in C$ and $0 \leq \lambda \leq 1$.

The Role of Convexity

Convex Sets

Let $C \subset \mathbb{R}^{n}$. We say that C is convex if

$$
(1-\lambda) x+\lambda y \in C \text { whenever } x, y \in C \text { and } 0 \leq \lambda \leq 1 .
$$

Convex Functions
Let $f: \mathbb{R}^{n} \rightarrow \bar{R}:=\mathbf{R} \cup\{+\infty\}$. We say that f is convex if the set

$$
\operatorname{epi}(f):=\{(x, \mu): f(x) \leq \mu\}
$$

is a convex set.

The Role of Convexity

Convex Sets

Let $C \subset \mathbb{R}^{n}$. We say that C is convex if

$$
(1-\lambda) x+\lambda y \in C \text { whenever } x, y \in C \text { and } 0 \leq \lambda \leq 1 .
$$

Convex Functions
Let $f: \mathbb{R}^{n} \rightarrow \bar{R}:=\mathbf{R} \cup\{+\infty\}$. We say that f is convex if the set

$$
\operatorname{epi}(f):=\{(x, \mu): f(x) \leq \mu\}
$$

is a convex set.

Convex indicator functions

Let $C \subset \mathbb{R}^{n}$. Then the function

$$
\delta_{C}(x):= \begin{cases}0 & , \text { if } x \in C \\ +\infty & , \text { if } x \notin C\end{cases}
$$

is a convex function.

Convex indicator functions

Let $C \subset \mathbb{R}^{n}$. Then the function

$$
\delta_{C}(x):= \begin{cases}0 & , \text { if } x \in C \\ +\infty & , \text { if } x \notin C\end{cases}
$$

is a convex function.

Addition

Non-negative linear combinations of convex functions are convex: f_{i} convex and $\lambda_{i} \geq 0, i=1, \ldots, k$

$$
f(x):=\sum_{i=1}^{k} \lambda_{i} f_{i}(x)
$$

Convex indicator functions

Let $C \subset \mathbb{R}^{n}$. Then the function

$$
\delta_{C}(x):= \begin{cases}0 & , \text { if } x \in C \\ +\infty & , \text { if } x \notin C\end{cases}
$$

is a convex function.

Addition

Non-negative linear combinations of convex functions are convex: f_{i} convex and $\lambda_{i} \geq 0, i=1, \ldots, k$

$$
f(x):=\sum_{i=1}^{k} \lambda_{i} f_{i}(x)
$$

Infimal Projection

If $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \overline{\mathbf{R}}$ is convex, then so is

$$
v(x):=\inf _{y} f(x, y)
$$

since

$$
\operatorname{epi}(v)=\{(x, \mu): \exists y \in \text { s.t. } f(x, y) \leq \mu\}
$$

When \mathcal{X}, ρ, and ϕ are convex, the optimal value function v is a non-increasing convex function by infimal projection:

$$
\begin{aligned}
v(\tau) & :=\min _{x \in \mathcal{X}} \quad \rho(A x-b) \quad \text { s.t. } \quad \phi(x) \leq \tau \\
& =\min _{x} \quad \rho(A x-b)+\delta_{\mathrm{epi}(\phi)}(x, \tau)+\delta_{\mathcal{X}}(x)
\end{aligned}
$$

Newton and Secant Methods

For f convex and non-increasing, solve $f(\tau)=0$.

For f convex and non-increasing, solve $f(\tau)=0$.

For f convex and non-increasing, solve $f(\tau)=0$.

Problem: f is often not differentiable.

For f convex and non-increasing, solve $f(\tau)=0$.

Problem: f is often not differentiable.
Use the convex subdifferential

$$
\partial f(x):=\left\{z: f(y) \geq f(x)+z^{T}(y-x) \quad \forall y \in \mathbb{R}^{n}\right\}
$$

Superlinear Convergence

$$
\tau_{*}:=\inf \{\tau: f(\tau) \leq 0\} \text { and } g_{*}:=\inf \left\{g: g \in \partial f\left(\tau_{*}\right)\right\}<0 \text { (non-degeneracy) }
$$

Superlinear Convergence

$\tau_{*}:=\inf \{\tau: f(\tau) \leq 0\}$ and $g_{*}:=\inf \left\{g: g \in \partial f\left(\tau_{*}\right)\right\}<0$ (non-degeneracy) Initialization: $\tau_{-1}<\tau_{0}<\tau_{*}$

$$
\tau_{k+1}:= \begin{cases}\tau_{k} & \text { if } f\left(\tau_{k}\right)=0 \\ \tau_{k}-\frac{f\left(\tau_{k}\right)}{g_{k}} & {\left[\text { for } g_{k} \in \partial f\left(\tau_{k}\right)\right]} \\ \text { otherwise }\end{cases}
$$

(Newton)
and

$$
\tau_{k+1}:= \begin{cases}\tau_{k} & \text { if } f\left(\tau_{k}\right)=0 \tag{Secant}\\ \tau_{k}-\frac{\tau_{k}-\tau_{k-1}}{f\left(\tau_{k}\right)-f\left(\tau_{k-1}\right)} f\left(\tau_{k}\right) & \text { otherwise }\end{cases}
$$

$\tau_{*}:=\inf \{\tau: f(\tau) \leq 0\}$ and $g_{*}:=\inf \left\{g: g \in \partial f\left(\tau_{*}\right)\right\}<0$ (non-degeneracy) Initialization: $\tau_{-1}<\tau_{0}<\tau_{*}$

$$
\tau_{k+1}:= \begin{cases}\tau_{k} & \text { if } f\left(\tau_{k}\right)=0 \tag{Newton}\\ \tau_{k}-\frac{f\left(\tau_{k}\right)}{g_{k}} & {\left[\text { for } g_{k} \in \partial f\left(\tau_{k}\right)\right]} \\ \text { otherwise }\end{cases}
$$

and

$$
\tau_{k+1}:= \begin{cases}\tau_{k} & \text { if } f\left(\tau_{k}\right)=0 \tag{Secant}\\ \tau_{k}-\frac{\tau_{k}-\tau_{k-1}}{f\left(\tau_{k}\right)-f\left(\tau_{k-1}\right)} f\left(\tau_{k}\right) & \text { otherwise }\end{cases}
$$

If either sequence terminates finitely at some τ_{k}, then $\tau_{k}=\tau_{*}$; otherwise,

$$
\left|\tau_{*}-\tau_{k+1}\right| \leq\left(1-\frac{g_{*}}{\gamma_{k}}\right)\left|\tau_{*}-\tau_{k}\right|, \quad k=1,2, \ldots,
$$

where $\gamma_{k}=g_{k}$ (Newton) and $\gamma_{k} \in \partial f\left(\tau_{k-1}\right)$ (secant). In either case, $\gamma_{k} \uparrow g_{*}$ and $\tau_{k} \uparrow \tau_{*}$ globally q-superlinearly.

Inexact Root Finding

- Problem: Find root of the inexactly known convex function

$$
v(\cdot)-\sigma
$$

Inexact Root Finding

- Problem: Find root of the inexactly known convex function

$$
v(\cdot)-\sigma
$$

- Bisection is one approach

Inexact Root Finding

- Problem: Find root of the inexactly known convex function

$$
v(\cdot)-\sigma .
$$

- Bisection is one approach
- nonmonotone iterates (bad for warmstarts)
- at best linear convergence (with perfect information)

Inexact Root Finding

- Problem: Find root of the inexactly known convex function

$$
v(\cdot)-\sigma
$$

- Bisection is one approach
- nonmonotone iterates (bad for warmstarts)
- at best linear convergence (with perfect information)
- Solution:
- modified secant
- approximate Newton methods

Inexact Root Finding: Secant

Inexact Root Finding: Newton

Inexact Root Finding: Convergence

Inexact Root Finding: Convergence

Key observation: $C=C\left(\tau_{0}\right)$ is independent of $v^{\prime}\left(\tau^{*}\right)$.

Robustness: $1 \leq u / l \leq \alpha$, where $\alpha \in[1,2)$ and $\epsilon=10^{-2}$

Figure: Inexact secant (top) and Newton (bottom) for $f_{1}(\tau)=(\tau-1)^{2}-10$ (first two columns) and $f_{2}(\tau)=\tau^{2}$ (last column). Below each panel, α is the oracle accuracy, and k is the number of iterations needed to converge, i.e., to reach $f_{i}\left(\tau_{k}\right) \leq \epsilon=10^{-2}$.

Sensor Network Localization (SNL)

Given a weighted graph $G=(V, E, d)$ find a realization:

$$
p_{1}, \ldots, p_{n} \in \mathbf{R}^{2} \quad \text { with } \quad d_{i j}=\left\|p_{i}-p_{j}\right\|^{2} \quad \text { for all } i j \in E .
$$

SDP relaxation (Weinberger et al. '04, Biswas et al. '06):

$$
\begin{array}{cl}
\max & \operatorname{tr}(X) \\
\text { s.t. } & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \leq \sigma \\
& X e=0, \quad X \succeq 0
\end{array}
$$

where $[\mathcal{K}(X)]_{i, j}=X_{i i}+X_{j j}-2 X_{i j}$.

SDP relaxation (Weinberger et al. '04, Biswas et al. '06):

$$
\begin{array}{cl}
\max & \operatorname{tr}(X) \\
\text { s.t. } & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \leq \sigma \\
& X e=0, \quad X \succeq 0
\end{array}
$$

where $[\mathcal{K}(X)]_{i, j}=X_{i i}+X_{j j}-2 X_{i j}$.
Intuition: $X=P P^{T}$ and then $\operatorname{tr}(X)=\frac{1}{n+1} \sum_{i, j=1}^{n}\left\|p_{i}-p_{j}\right\|^{2}$
with p_{i} the i th row of P.

SDP relaxation (Weinberger et al. '04, Biswas et al. '06):

$$
\begin{array}{cl}
\max & \operatorname{tr}(X) \\
\text { s.t. } & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \leq \sigma \\
& X e=0, \quad X \succeq 0
\end{array}
$$

where $[\mathcal{K}(X)]_{i, j}=X_{i i}+X_{j j}-2 X_{i j}$.
Intuition: $X=P P^{T}$ and then $\operatorname{tr}(X)=\frac{1}{n+1} \sum_{i, j=1}^{n}\left\|p_{i}-p_{j}\right\|^{2}$
with p_{i} the i th row of P.
Flipped problem:

$$
\begin{array}{cl}
\min & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \\
\text { s.t. } & \operatorname{tr} X=\tau \\
& X e=0 \quad X \succeq 0 .
\end{array}
$$

SDP relaxation (Weinberger et al. '04, Biswas et al. '06):

$$
\begin{array}{cl}
\max & \operatorname{tr}(X) \\
\text { s.t. } & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \leq \sigma \\
& X e=0, \quad X \succeq 0
\end{array}
$$

where $[\mathcal{K}(X)]_{i, j}=X_{i i}+X_{j j}-2 X_{i j}$.
Intuition: $X=P P^{T}$ and then $\operatorname{tr}(X)=\frac{1}{n+1} \sum_{i, j=1}^{n}\left\|p_{i}-p_{j}\right\|^{2}$
with p_{i} the i th row of P.
Flipped problem:

$$
\begin{array}{cl}
\min & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \\
\text { s.t. } & \operatorname{tr} X=\tau \\
& X e=0 \quad X \succeq 0 .
\end{array}
$$

- Perfectly adapted for the Frank-Wolfe method.

SDP relaxation (Weinberger et al. '04, Biswas et al. '06):

$$
\begin{array}{cl}
\max & \operatorname{tr}(X) \\
\text { s.t. } & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \leq \sigma \\
& X e=0, \quad X \succeq 0
\end{array}
$$

where $[\mathcal{K}(X)]_{i, j}=X_{i i}+X_{j j}-2 X_{i j}$.
Intuition: $X=P P^{T}$ and then $\operatorname{tr}(X)=\frac{1}{n+1} \sum_{i, j=1}^{n}\left\|p_{i}-p_{j}\right\|^{2}$
with p_{i} the i th row of P.
Flipped problem:

$$
\begin{array}{cl}
\min & \left\|\mathcal{P}_{E} \mathcal{K}(X)-d\right\|_{2}^{2} \\
\text { s.t. } & \operatorname{tr} X=\tau \\
& X e=0 \quad X \succeq 0 .
\end{array}
$$

- Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.

Figure : $\sigma=0.25$

Approximate Newton

Figure : $\sigma=0.25$

Figure : $\sigma=0$

Max-trace

Max-trace

- Simple strategy for optimizing over complex domains
- Rigorous convergence guarantees
- Insensitivity to ill-conditioning
- Many applications
- Sensor Network Localization (Drusvyatskiy-Krislock-Voronin-Wolkowicz '15)
- Sparse/Robust Estimation and Kalman Smoothing (Aravkin-B-Pillonetto '13)
- Large scale SDP and LP (cf. Renegar '14)
- Chromosome reconstruction (Aravkin-Becker-Drusvyatskiy-Lozano '15)
- Phase retrieval (Aravkin-B-Drusvyatskiy-Friedlander-Roy '16)
- Generalized linear models (Aravkin-B-Drusvyatskiy-Friedlander-Roy '16)
- ...

Conjugate Functions and Duality

Convex Indicator

For any convex set C, the convex indicator function for C is

$$
\delta(x \mid C):= \begin{cases}0, & x \in C, \\ +\infty, & x \notin C .\end{cases}
$$

Conjugate Functions and Duality

Convex Indicator

For any convex set C, the convex indicator function for C is

$$
\delta(x \mid C):= \begin{cases}0, & x \in C, \\ +\infty, & x \notin C .\end{cases}
$$

Support Functionals

For any set C, the support functional for C is

$$
\delta^{*}(x \mid C):=\sup _{z \in C}\langle x, z\rangle .
$$

Conjugate Functions and Duality

Convex Indicator

For any convex set C, the convex indicator function for C is

$$
\delta(x \mid C):= \begin{cases}0, & x \in C, \\ +\infty, & x \notin C .\end{cases}
$$

Support Functionals

For any set C, the support functional for C is

$$
\delta^{*}(x \mid C):=\sup _{z \in C}\langle x, z\rangle .
$$

Convex Conjugates
For any convex function $g(x)$, the convex conjugate is given by

$$
g^{*}(y):=\delta^{*}((y,-1) \mid \operatorname{epi}(g))=\sup _{x}[\langle x, y\rangle-g(x)]
$$

Conjugate's and the Subdifferential

$$
g^{*}(y)=\sup _{x}[\langle x, y\rangle-g(x)]
$$

$$
g^{*}(y)=\sup _{x}[\langle x, y\rangle-g(x)]
$$

The Bi-Conjugate Theorem
If epi (g) is closed and $\operatorname{dom}(g) \neq \emptyset$, then $\left(g^{*}\right)^{*}=g$.

Conjugate's and the Subdifferential

$$
g^{*}(y)=\sup _{x}[\langle x, y\rangle-g(x)]
$$

The Bi-Conjugate Theorem
If epi (g) is closed and $\operatorname{dom}(g) \neq \emptyset$, then $\left(g^{*}\right)^{*}=g$.

The Young-Fenchel Inequality
$g(x)+g^{*}(z) \geq\langle z, x\rangle$ for all $x, y \in \mathbb{R}^{n}$ with equality if and only if

$$
z \in \partial g(x) \quad \text { and } \quad x \in \partial g^{*}(z)
$$

In particular, $\partial g(x)=\operatorname{argmax}_{z}\left[\langle z, x\rangle-g^{*}(z)\right]$.

Conjugate's and the Subdifferential

$$
g^{*}(y)=\sup _{x}[\langle x, y\rangle-g(x)] .
$$

The Bi-Conjugate Theorem
If epi (g) is closed and $\operatorname{dom}(g) \neq \emptyset$, then $\left(g^{*}\right)^{*}=g$.

The Young-Fenchel Inequality
$g(x)+g^{*}(z) \geq\langle z, x\rangle$ for all $x, y \in \mathbb{R}^{n}$ with equality if and only if

$$
z \in \partial g(x) \quad \text { and } \quad x \in \partial g^{*}(z)
$$

In particular, $\partial g(x)=\operatorname{argmax}_{z}\left[\langle z, x\rangle-g^{*}(z)\right]$.
Maximal Montone Operator
If epi (g) is closed and $\operatorname{dom}(g) \neq \emptyset$, then ∂g is a maximal monotone operator with $\partial g^{-1}=\partial g^{*}$.

Conjugate's and the Subdifferential

$$
g^{*}(y)=\sup _{x}[\langle x, y\rangle-g(x)] .
$$

The Bi-Conjugate Theorem
If epi (g) is closed and $\operatorname{dom}(g) \neq \emptyset$, then $\left(g^{*}\right)^{*}=g$.

The Young-Fenchel Inequality
$g(x)+g^{*}(z) \geq\langle z, x\rangle$ for all $x, y \in \mathbb{R}^{n}$ with equality if and only if

$$
z \in \partial g(x) \quad \text { and } \quad x \in \partial g^{*}(z)
$$

In particular, $\partial g(x)=\operatorname{argmax}_{z}\left[\langle z, x\rangle-g^{*}(z)\right]$.
Maximal Montone Operator
If epi (g) is closed and $\operatorname{dom}(g) \neq \emptyset$, then ∂g is a maximal monotone operator with $\partial g^{-1}=\partial g^{*}$.

Note:The lsc hull of g is $\mathrm{cl} g:=g^{* *}$.

$$
\operatorname{epi}\left(g^{\pi}\right):=\operatorname{cl} \operatorname{cone}(\operatorname{epi}(g))=\operatorname{cl}\left(\bigcup_{\lambda>0} \lambda \operatorname{epi}(g)\right)
$$

$\operatorname{epi}\left(g^{\pi}\right):=\operatorname{cl} \operatorname{cone}(\operatorname{epi}(g))=\operatorname{cl}\left(\bigcup_{\lambda>0} \lambda \operatorname{epi}(g)\right)$

$$
g^{\pi}(z, \lambda):= \begin{cases}\lambda g\left(\lambda^{-1} z\right) & \text { if } \quad \lambda>0 \\ g^{\infty}(z) & \text { if } \quad \lambda=0 \\ +\infty & \text { if } \quad \lambda<0\end{cases}
$$

where g^{∞} is the horizon function of g :

$$
g^{\infty}(z):=\sup _{x \in \operatorname{dom} g}[g(x+z)-g(x)] .
$$

$g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be closed proper and convex.
Then

$$
\delta^{*}((y, \mu) \mid \operatorname{epi}(g))=\left(g^{*}\right)^{\pi}(y,-\mu)
$$

and

$$
\delta^{*}(y \mid[g \leq \tau])=\operatorname{cl} \inf _{\mu \geq 0}\left[\tau \mu+\left(g^{*}\right)^{\pi}(y, \mu)\right],
$$

where

$$
\begin{aligned}
\mathrm{epi}(g) & :=\{(x, \mu) \mid g(x) \leq \mu\} \\
{[g \leq \tau] } & :=\{x \mid g(x) \leq \tau\} \\
\delta^{*}(z \mid C) & :=\sup _{w \in C}\langle z, w\rangle
\end{aligned}
$$

The perturbation function

$$
f(x, b, \tau):=\rho(b-A x)+\delta((x, \tau) \mid \text { epi }(\phi))
$$

Its conjugate

$$
f^{*}(y, u, \mu)=\left(\phi^{*}\right)^{\pi}\left(y+A^{T} u,-\mu\right)+\rho^{*}(u) .
$$

The perturbation function

$$
f(x, b, \tau):=\rho(b-A x)+\delta((x, \tau) \mid \text { epi }(\phi))
$$

Its conjugate

$$
f^{*}(y, u, \mu)=\left(\phi^{*}\right)^{\pi}\left(y+A^{T} u,-\mu\right)+\rho^{*}(u) .
$$

The Primal Problem infimal projection in x

$$
\mathcal{P}(b, \tau): \quad v(b, \tau):=\min _{x} f(x, b, \tau)
$$

The perturbation function

$$
f(x, b, \tau):=\rho(b-A x)+\delta((x, \tau) \mid \text { epi }(\phi))
$$

Its conjugate

$$
f^{*}(y, u, \mu)=\left(\phi^{*}\right)^{\pi}\left(y+A^{T} u,-\mu\right)+\rho^{*}(u) .
$$

The Primal Problem

$$
\mathcal{P}(b, \tau): \quad v(b, \tau):=\min _{x} f(x, b, \tau)
$$

The Dual Problem

$\mathcal{D}(b, \tau):$
$\hat{v}(b, \tau):=\sup _{u, \mu}\langle b, u\rangle+\tau \mu-f^{*}(0, u, \mu)$
(reduced dual) $\quad=\sup _{u}\langle b, u\rangle-\rho^{*}(u)-\delta^{*}\left(A^{T} u \mid[\phi \leq \tau]\right)$.

The perturbation function

$$
f(x, b, \tau):=\rho(b-A x)+\delta((x, \tau) \mid \text { epi }(\phi))
$$

Its conjugate

$$
f^{*}(y, u, \mu)=\left(\phi^{*}\right)^{\pi}\left(y+A^{T} u,-\mu\right)+\rho^{*}(u) .
$$

The Primal Problem

$$
\mathcal{P}(b, \tau): \quad v(b, \tau):=\min _{x} f(x, b, \tau)
$$

The Dual Problem

$$
\begin{array}{ll}
\mathcal{D}(b, \tau): & \hat{v}(b, \tau):=\sup _{u, \mu}\langle b, u\rangle+\tau \mu-f^{*}(0, u, \mu) \\
\text { (reduced dual) } & =\sup _{u}\langle b, u\rangle-\rho^{*}(u)-\delta^{*}\left(A^{T} u \mid[\phi \leq \tau]\right) .
\end{array}
$$

The Subdifferential: If $(b, \tau) \in \operatorname{int}(\operatorname{dom} v)$, then $v(b, \tau)=\hat{v}(b, \tau)$ and

$$
\emptyset \neq \partial v(b, \tau)=\underset{u, \mu}{\operatorname{argmax}} \mathcal{D}(b, \tau)
$$

$$
\phi(x):=\sup _{u \in U}\left[\langle x, u\rangle-\frac{1}{2} u^{T} B u\right]
$$

$U \subset \mathbb{R}^{n}$ is nonempty, closed and convex with $0 \in U$ (not nec. poly.) $B \in \mathbb{R}^{n \times n}$ is symmetric positive semi-definite.

Examples:

1. Support functionals: $B=0$
2. Gauge functionals: $\gamma\left(\cdot \mid U^{\circ}\right)=\delta^{*}(\cdot \mid U)$
3. Norms: $\mathbb{B}=$ closed unit ball, $\|\cdot\|=\gamma(\cdot \mid \mathbb{B})$
4. Least-squares: $U=\mathbb{R}^{n}, B=I$
5. Huber: $U=[-\epsilon, \epsilon]^{n}, B=I$

Huber
Vapnik

$$
\begin{gathered}
\phi(x):=\sup _{u \in U}\left[\langle x, u\rangle-\frac{1}{2} u^{T} B u\right] \\
\mathcal{P}(b, \tau): \quad v(b, \tau):=\min \rho(b-A x) \quad \text { st } \phi(x) \leq \tau \\
\partial v(b, \tau)=\left\{\binom{\bar{u}}{-\bar{\mu}} \left\lvert\, \begin{array}{l}
\exists \bar{x} \text { s.t. } 0 \in-A^{T} \partial \rho(b-A \bar{x})+\bar{\mu}^{+} \partial \phi(\bar{x}) \text { and } \\
\bar{\mu}=\max \left\{\gamma\left(A^{T} \bar{u} \mid U\right), \sqrt{\bar{u}^{T} A B A^{T} \bar{u}} / \sqrt{2 \tau}\right\}
\end{array}\right.\right\} .
\end{gathered}
$$

A Few Special Cases

$$
v(\tau):=\min \frac{1}{2}\|b-A x\|_{2}^{2} \quad \text { st } \phi(x) \leq \tau
$$

Optimal Solution: \bar{x}
Optimal Residual: $\bar{r}:=A \bar{x}-b$

1. Support functionals: $\phi(x)=\delta^{*}(x \mid U), 0 \in U \Longrightarrow$

$$
v^{\prime}(\tau)=-\delta^{*}\left(A^{T} \bar{r} \mid U^{\circ}\right)=-\gamma\left(A^{T} \bar{r} \mid U\right)
$$

2. Gauge functionals: $\phi(x)=\gamma(x \mid U), 0 \in U \Longrightarrow$ $v^{\prime}(\tau)=-\gamma\left(A^{T} \bar{r} \mid U^{\circ}\right)=-\delta^{*}\left(A^{T} \bar{r} \mid U\right)$
3. Norms: $\phi(x)=\|x\| \Longrightarrow v^{\prime}(\tau)=-\left\|A^{T} \bar{r}\right\|_{*}$
4. Huber: $\phi(x)=\sup _{u \in[-\epsilon, \epsilon]^{n}}\left[\langle x, u\rangle-\frac{1}{2} u^{T} u\right] \Longrightarrow$
$v^{\prime}(\tau)=-\max \left\{\epsilon\left\|A^{T} \bar{r}\right\|_{\infty},\left\|A^{T} \bar{r}\right\|_{2} / \sqrt{2 \tau}\right\}$
5. Vapnik: $\phi(x)=\left\|(x-\epsilon)_{+}\right\|_{1}+\left\|(-x-\epsilon)_{+}\right\|_{1} \Longrightarrow$ $v^{\prime}(\tau)=-\left(\left\|A^{T} \bar{r}\right\|_{\infty}+\epsilon\left\|A^{T} \bar{r}\right\|_{2}\right)$

Basis Pursuit with Outliers

$$
\mathrm{BP}_{\sigma}: \quad \min \quad\|x\|_{1} \quad \text { st } \quad \rho(b-A x) \leq \sigma
$$

Standard least-squares: $\quad \rho(z)=\|z\|_{2}$ or $\rho(z)=\|z\|_{2}^{2}$.

$$
\mathrm{BP}_{\sigma}: \quad \min \quad\|x\|_{1} \quad \text { st } \quad \rho(b-A x) \leq \sigma
$$

Standard least-squares: $\quad \rho(z)=\|z\|_{2}$ or $\rho(z)=\|z\|_{2}^{2}$.

Quantile Huber:

$$
\rho_{\kappa, \tau}(r)= \begin{cases}\tau|r|-\frac{\kappa \tau^{2}}{2} & \text { if } r<-\tau \kappa, \\ \frac{1}{2 \kappa} r^{2} & \text { if } r \in[-\kappa \tau,(1-\tau) \kappa], \\ (1-\tau)|r|-\frac{\kappa(1-\tau)^{2}}{2}, & \text { if } r>(1-\tau) \kappa\end{cases}
$$

Standard Huber when $\tau=0.5$.

Huber

Sparse and Robust Formulation

$\mathrm{HBP}_{\sigma}: \quad$ min $\quad\|x\|_{1} \quad$ st $\quad \rho(b-A x) \leq \sigma$

Problem Specification
$x \quad 20$-sparse spike train in \mathbb{R}^{512}
b measurements in \mathbb{R}^{120}
A Measurement matrix satisfying RIP
ρ Huber function
σ error level set at . 01
5 outliers

Results
In the presence of outliers, the robust formulation recovers the spike train, while the standard formulation does not.

Sparse and Robust Formulation

$\operatorname{HBP}_{\sigma}: \min _{0 \leq x}\|x\|_{1} \quad$ st $\quad \rho(b-A x) \leq \sigma$

Problem Specification
$x \quad$ 20-sparse spike train in \mathbb{R}_{+}^{512}
b measurements in \mathbb{R}^{120}
A Measurement matrix satisfying RIP Huber
ρ Huber function
σ error level set at .01
5 outliers

Results
In the presence of outliers, the robust formulation recovers the spike train, while the standard formulation does not.

Signal Recovery

Residuals

- "Probing the pareto frontier for basis pursuit solutions" van der Berg - Friedlander SIAM J. Sci. Comput. 31(2008), 890-912.
- "Sparse optimization with least-squares constraints" van der Berg - Friedlander SIOPT 21(2011), 1201-1229.
- "Variational Properties of Value Functions." Aravkin - B - Friedlander SIOPT 23(2013), 1689-1717.
- "Level-set methods for convex optimization" Aravkin - B - Drusvyatskiy - Friedlander - Roy Preprint, 2016

