Linear Least-Squares Problems

1. Linear Least-Squares as an Optimization Problem

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and assume that m >> n, i.e., m is much greater that n. In this setting it is highly unlikely that there exists a vector $x \in \mathbb{R}^n$ such that Ax = b. As an alternative goal, we try to find the x that is as *close* to solving Ax = b as possible. But first we must define a notion of *close*. One way is to try to find the vector x that minimizes the norm of the residual error $||Ax - b||_2$. That is, we wish to find a vector \bar{x} such that

$$||A\bar{x} - b||_2 \le ||Ax - b||_2 \quad \forall \ x \in \mathbf{R}^n.$$

Equivalently, we wish to solve the optimization problem

$$\mathcal{LLS} \qquad \min_{x \in \mathbb{R}^n} \frac{1}{2} \sum_{i=1}^n (\sum_{j=1}^n A_{ij} x_j - b_i)^2 = \frac{1}{2} \|Ax - b\|_2^2.$$

If we set

$$f(x) = \frac{1}{2} \|Ax - b\|_{2}^{2},$$

then the first-order necessary conditions for a point x to solve \mathcal{LLS} is that $\nabla f(x) = 0$. In order to use this fact, we need to compute an expression for the gradient of f.

For i = 1, 2, ..., m, set $\phi_i(x) = (\sum_{j=1}^n A_{ij}x_j - b_i)^2$, then $f(x) = \frac{1}{2} \sum_{i=1}^m \phi_i(x)$ Observe that for $i \in \{1, 2, ..., m\}$ and a given $j_0 \in \{1, 2, ..., n\}$

$$\frac{\partial}{\partial x_{j_0}} \phi_i(x) = \frac{\partial}{\partial x_{j_0}} (\sum_{j=1}^n A_{ij} x_j - b_i)^2 = 2A_{ij_0} (\sum_{j=1}^n A_{ij} x_j - b_i).$$

Consequently,

$$\frac{\partial}{\partial x_{j_0}} f(x) = \sum_{i=1}^m A_{ij_0} (\sum_{j=1}^n A_{ij} x_j - b_i) = A_{\cdot j_0}^T (Ax - b),$$

and so

$$\nabla f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \frac{\partial}{\partial x_2} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} = \begin{bmatrix} A_{\cdot 1}^T (Ax - b) \\ A_{\cdot 2}^T (Ax - b) \\ \vdots \\ A_{\cdot n}^T (Ax - b) \end{bmatrix} = A^T (Ax - b) .$$

Therefore, if $x \in \mathbb{R}^n$ solves \mathcal{LLS} , then it must be the case that $0 = \nabla f(x) = A^T(Ax - b)$ or equivalently

$$A^T A x = A^T b .$$

This system of equations are called the *normal equations* for the linear least-squares problem \mathcal{LLS} . We must now address the question of whether the exists a solution to the normal equations. For this we make use of the following lemma.

Lemma 1. For every matrix $A \in \mathbb{R}^{m \times n}$ we have

$$Null(A^T A) = Null(A)$$
 and $Ran(A^T A) = Ran(A^T)$.

Proof. Note that if $x \in \text{Null}(A)$, then Ax = 0 and so $A^T A x = 0$, that is, $x \in \text{Null}(A^T A)$. Therefore, Null $(A) \subset \text{Null}(A^T A)$. Conversely, if $x \in \text{Null}(A^T A)$, then

$$A^TAx = 0 \implies x^TA^TAx = 0 \implies (Ax)^T(Ax) = 0 \implies ||Ax||_2^2 = 0 \implies Ax = 0,$$

or equivalently, $x \in \text{Null}(A)$. Therefore, $\text{Null}(A^T A) \subset \text{Null}(A)$, and so $\text{Null}(A^T A) = \text{Null}(A)$.

Since $\text{Null}(A^T A) = \text{Null}(A)$, the Fundamental Theorem of the Alternative tells us that

$$\operatorname{Ran}(A^T A) = \operatorname{Ran}((A^T A)^T) = \operatorname{Null}(A^T A)^{\perp} = \operatorname{Null}(A)^{\perp} = \operatorname{Ran}(A^T),$$

which proves the lemma.

Let us now examine the existence of solutions to the the normal equations in light of this lemma. The normal equations are $A^TAx = A^Tb$. By definition, $A^Tb \in \text{Ran}(A^T)$. The lemma tells us that $\text{Ran}(A^T) = \text{Ran}(A^TA)$. Hence, the must exist and x such that $A^TAx = A^Tb$, that is, the normal equations are always consistent regardless of the choice of matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$.

Theorem 2. The normal equations are consistent for all $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

This tells us that the linear least-squares problem \mathcal{LLS} always has a critical point. But it does not tells us when these critical points for \mathcal{LLS} are global solutions to \mathcal{LLS} . In this regard, we have the following surprising result.

Theorem 3. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then every solution \bar{x} to $A^T A x = A^T b$ satisfies

(1)
$$||A\bar{x} - b||_2 \le ||Ax - b||_2 \quad \forall \ x \in \mathbf{R}^n,$$

that is \bar{x} is a global solution to \mathcal{LLS} .

Proof. Given $u, v \in \mathbb{R}^m$, we have

(2)
$$||u+v||_2^2 = (u+v)^T(u+v) = u^Tu + 2u^Tv + v^Tv = ||u||_2^2 + 2u^Tv + ||v||_2^2.$$

Consequently, for every $x \in \mathbb{R}^n$,

$$||Ax - b||_{2}^{2} = ||(Ax - A\bar{x}) + (A\bar{x} - b)||_{2}^{2}$$

$$= ||A(x - \bar{x})||_{2}^{2} + 2(A(x - \bar{x}))^{T}(A\bar{x} - b) + ||A\bar{x} - b||_{2}^{2}$$
 (by (2))
$$\geq 2(x - \bar{x})^{T}A^{T}(A\bar{x} - b) + ||A\bar{x} - b||_{2}^{2}$$
 (since $||A(x - \bar{x})||_{2}^{2} \geq 0$)
$$= ||A\bar{x} - b||_{2}^{2}$$
 (since $A^{T}(A\bar{x} - b) = 0$),

or equivalently, (1) holds.

So far we know that the normal equations are consistent and that every solution to the normal equations solves the linear least-squares problem. That is, a solution to the linear least-squares problem always exists. We now address the question of when the solution is unique. This is equivalent to asking when the normal equations have a unique solution. From our study nonsingular matrices, we know this occurs precisely when the matrix A^TA is nonsingular or equivalently, inveritable, in which case the unique solution is given by $\bar{x} = (A^TA)^{-1}A^Tb$. Note that A^TA is invertible if and only if Null $(A^TA) = \{0\}$. But, by Lemma 1, this is equivalent to Null $(A) = \{0\}$.

Theorem 4. The linear least-squares problem \mathcal{LLS} has a unique solution if and only if $Null(A) = \{0\}$.

2. Orthogonal Projection onto a Subspace

In the previous section we stated the linear least-squares problem as the optimization problem \mathcal{LLS} . We can view this problem in a somewhat different light as a least distance problem to a subspace, or equivalently, as a projection problem for a subspace. Suppose $S \subset \mathbb{R}^m$ is a given subspace and $b \notin S$. The least distance problem for S and b is to find that element of S that is as close to b as possible. That is we wish to solve the problem

(3)
$$\min_{z \in S} \frac{1}{2} \|z - y\|_2^2.$$

The solution is the point $\bar{z} \in S$ such that

$$\|\bar{z} - b\|_2 \le \|z - b\|_2 \qquad \forall \ z \in S.$$

If we now take the subspace to be the range of A, S = Ran(A), then the problem (3) is closely related to the problem \mathcal{LLS} since

(4) if
$$\bar{z}$$
 solves (3) and \bar{x} solves \mathcal{LLS} , then $\bar{z} = A\bar{x}$ (why?).

Below we discuss the connection between the notion of a projection matrix and solutions to (3). Since the norm $\|\cdot\|_2$ is generated by the dot product, $\|w\|_2 = \sqrt{w \bullet w}$, least norm problems of this type are solved using the notion of *orthogonal projection onto a subspace*.

To understand orthogonal projections, we must first introduce the notion of projection. A matrix $P \in \mathbb{R}^{m \times m}$ is said to be a projection if $P^2 = P$. In this case we say that P is a projection onto the range of P, S = Ran(P). Note that if $x \in \text{Ran}(P)$, then there is a $w \in \mathbb{R}^m$ such that x = Pw, therefore, $Px = P(Pw) = P^2w = Pw = x$. That is, P leaves all elements of Ran(P) fixed. Also, note that, if P is a projection, then

$$(I - P)^2 = I - P - P + P^2 = I - P,$$

and so (I - P) is also a projection. Since for all $w \in \mathbb{R}^m$,

$$w = Pw + (I - P)w,$$

we have

$$R^{m} = \operatorname{Ran}(P) + \operatorname{Ran}((I - P)).$$

In this case we say that the subspaces $\operatorname{Ran}(P)$ and $\operatorname{Ran}((I-P))$ are complementary since their sum is the whole space and their intersection is the origin, i.e., $\operatorname{Ran}(P) \cap \operatorname{Ran}((I-P)) = \{0\}$ (why?).

Conversely, given any two subspaces S_1 and S_2 such that $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^m$, there is a projection P such that $S_1 = \operatorname{Ran}(P)$ and $S_2 = \operatorname{Ran}((I-P))$. We do not show how to construct these projections here, but note that they can be generated with the aid of bases for S_1 and S_2 .

This relationship between projections and complementary subspaces allows us to define a notion of orthogonal projection. For every subspace $S \subset \mathbb{R}^m$, we know that

$$S \cap S^{\perp} = \{0\}$$
 and $S + S^{\perp} = \mathbb{R}^m$ (why?).

Therefore, there is a projection P such that $\operatorname{Ran}(P) = S$ and $\operatorname{Ran}((I - P)) = S^{\perp}$, or equivalently,

$$((I - P)y)^T (Pw) = 0 \qquad \forall y, w \in \mathbb{R}^m.$$

The orthogonal projection plays a very special role among all possible projections onto a subspace. For this reason, we denote the orthogonal projection onto the subspace S by P_S .

We now use the condition (5) to derive a simple test of whether a projection is an orthogonal projection. For brevity, we write $P := P_s$ and set $M = (I - P)^T P$. Then, by (5),

$$M_{ij} = e_i^T M e_j = 0 \quad \forall i, j = 1, \dots, n,$$

i.e., M is the zero matrix. But then

$$P = P^T P = (P^T P)^T = P^T.$$

Conversely, if $P = P^T$ and $P^2 = P$, then $(I - P)^T P = 0$. Therefore, a matrix P is an orthogonal projection if and only if $P^2 = P$ and $P = P^T$. An orthogonal projection for a given subspace S can be constructed from any orthonormal basis for that subspace. Indeed, if the columns of the matrix Q form an orthonormal basis for S, then the matrix $P = QQ^T$ satisfies

$$P^2 = QQ^TQQ^T \stackrel{\text{why}}{=} QI_kQ^T = QQ^T = P$$
 and $P^T = (QQ^T)^T = QQ^T = P$,

so that P is an orthogonal projection. Moreover, since we know that $\operatorname{Ran}(QQ^T) = \operatorname{Ran}(Q) = S$, P is necessarily the orthogonal projector onto S.

Let us now return to the problem (5). We show that \bar{z} solves this problem if and only if $\bar{z} = P_S b$ where P_S is the orthogonal projection onto S. To see this, let $P := P_S$ and $z \in S$ so that z = Pz. Then

$$||z - b||_{2}^{2} = ||Pz - Pb - (I - P)b||_{2}^{2}$$

$$= ||P(z - b) + (I - P)b||_{2}^{2}$$

$$= ||P(z - b)||_{2}^{2} + 2(z - b)^{T}P(I - P)b + ||(I - P)b||_{2}^{2}$$

$$= ||P(z - b)||_{2}^{2} + ||(I - P)b||_{2}^{2}$$

$$\geq ||(P - I)b||_{2}^{2}$$

$$= ||\bar{z} - b||_{2}^{2},$$

which shows that $\|\bar{z} - b\|_2 \le \|z - b\|_2$ for all $z \in S$.

Let us now consider the linear least-squares problem \mathcal{LLS} when m >> n and Null $(A) = \{0\}$. In this case, we have shown that $\bar{x} = (A^T A)^{-1} A^T b$ solves \mathcal{LLS} , and $\bar{z} = P_S b$ solves (5) where P_S is the orthogonal projector onto S = Ran(A). Hence, by (4),

$$P_S b = \bar{z} = A \bar{x} = A (A^T A)^{-1} A^T b.$$

Since this is true for all possible choices of the vector b, we have

(6)
$$P_{S} = A(A^{T}A)^{-1}A^{T}!$$

That is, the matrix $A(A^TA)^{-1}A^T$ is the orthogonal projector onto the range of A. One can also check this directly by showing that the matrix $M = A(A^TA)^{-1}A^T$ satisfies $M^2 = M$, $M^T = M$, and Ran(M) = Ran(A).

3. Minimal Norm Solutions to Ax = b

Again let $A \in \mathbb{R}^{m \times n}$, but now we suppose that m << n. In this case A is short and fat so the matrix A most likely has rank m, or equivalently,

(7)
$$\operatorname{Ran}(A) = \mathbf{R}^m.$$

In this case, regardless of the choice of the vector $b \in \mathbb{R}^m$, the set of solutions to Ax = b will be infinite since the nullity of A is n - m. Indeed, if x^0 is any particular solution to Ax = b, then the set of solutions is given by $\{x^0 + z \mid z \in \text{Null}(A)\}$. In this setting, one might prefer the solution to the system having least norm. This solution is found by solving the problem

(8)
$$\min_{z \in S} \frac{1}{2} \|z + x^0\|_2^2 ,$$

where S is the null-space of A. This problem is of the form (3). Consequently, the solution is given by $\bar{z} = -P_S x^0$ where P_S is now the orthogonal projection onto S := Null(A).

In this context, note that $(I - P_S)$ is the orthogonal projector onto Null $(A)^{\perp} = \operatorname{Ran}(A^T)$. Recall that the formula (6) shows that if $M \in \mathbb{R}^{k \times s}$ is such that Null $(M) = \{0\}$, then the orthogonal projector onto $R := \operatorname{Ran}(M)$ is given by

(9)
$$P_{R} = M(M^{T}M)^{-1}M^{T}.$$

In our case, $M = A^T$ and $M^TM = AA^T$. Our working assumption (7) implies that

$$\text{Null}(M) = \text{Null}(A^T) = \text{Ran}(A)^{\perp} = (\mathbb{R}^m)^{\perp} = \{0\}$$

and consequently, by (9), the orthogonal projector onto $R = \operatorname{Ran}(A^T) = S^{\perp}$ is given by

$$P_{S^{\perp}} = A^T (AA^T)^{-1} A .$$

Therefore, the orthogonal projector onto S is

$$P_S = I - P_{S^{\perp}} = I - A^T (AA^T)^{-1} A$$
.

Putting this all together, we find that the solution to (8) is

$$\bar{z} = -P_S x^0 = (A^T (AA^T)^{-1} A - I) x^0$$
,

and the solution to Ax = b of least norm is

$$\bar{x} = x^0 + \bar{z} = A^T (AA^T)^{-1} Ax^0,$$

where x^0 is any particular solution to Ax = b, i.e., $Ax^0 = b$. Plugging \bar{x} into Ax = b gives

$$A\bar{x} = AA^{T}(AA^{T})^{-1}Ax^{0} = Ax^{0} = b.$$