Linear Least-Squares Problems

1. Linear Least-Squares as an Optimization Problem

Let $A \in \mathrm{R}^{m \times n}$ and $b \in \mathrm{R}^{m}$ and assume that $m \gg n$, i.e., m is much greater that n. In this setting it is highly unlikely that there exists a vector $x \in \mathrm{R}^{n}$ such that $A x=b$. As an alternative goal, we try to find the x that is as close to solving $A x=b$ as possible. But first we must define a notion of close. One way is to try to find the vector x that minimizes the norm of the residual error $\|A x-b\|_{2}$. That is, we wish to find a vector \bar{x} such that

$$
\|A \bar{x}-b\|_{2} \leq\|A x-b\|_{2} \quad \forall x \in \mathrm{R}^{n}
$$

Equivalently, we wish to solve the optimization problem

$$
\mathcal{L L S} \quad \min _{x \in \mathbf{R}^{n}} \frac{1}{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)^{2}=\frac{1}{2}\|A x-b\|_{2}^{2} .
$$

If we set

$$
f(x)=\frac{1}{2}\|A x-b\|_{2}^{2},
$$

then the first-order necessary conditions for a point x to solve $\mathcal{L} \mathcal{L}$ is that $\nabla f(x)=0$. In order to use this fact, we need to compute an expression for the gradient of f.

For $i=1,2, \ldots, m$, set $\phi_{i}(x)=\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)^{2}$, then $f(x)=\frac{1}{2} \sum_{i=1}^{m} \phi_{i}(x)$ Observe that for $i \in\{1,2, \ldots, m\}$ and a given $j_{0} \in\{1,2, \ldots, n\}$

$$
\frac{\partial}{\partial x_{j_{0}}} \phi_{i}(x)=\frac{\partial}{\partial x_{j_{0}}}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)^{2}=2 A_{i j_{0}}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right) .
$$

Consequently,

$$
\frac{\partial}{\partial x_{j_{0}}} f(x)=\sum_{i=1}^{m} A_{i j_{0}}\left(\sum_{j=1}^{n} A_{i j} x_{j}-b_{i}\right)=A_{\cdot j_{0}}^{T}(A x-b),
$$

and so

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(x) \\
\frac{\partial}{\partial x_{2}} f(x) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f(x)
\end{array}\right]=\left[\begin{array}{c}
A_{\cdot 1}^{T}(A x-b) \\
A_{\cdot 2}^{T}(A x-b) \\
\vdots \\
A_{\cdot n}^{T}(A x-b)
\end{array}\right]=A^{T}(A x-b) .
$$

Therefore, if $x \in \mathrm{R}^{n}$ solves $\mathcal{L} \mathcal{L S}$, then it must be the case that $0=\nabla f(x)=A^{T}(A x-b)$ or equivalently

$$
A^{T} A x=A^{T} b .
$$

This system of equations are called the normal equations for the linear least-squares problem $\mathcal{L L S}$.
We must now address the question of whether the exists a solution to the normal equations. For this we make use of the following lemma.
Lemma 1. For every matrix $A \in \mathrm{R}^{m \times n}$ we have

$$
\operatorname{Null}\left(A^{T} A\right)=\operatorname{Null}(A) \quad \text { and } \quad \operatorname{Ran}\left(A^{T} A\right)=\operatorname{Ran}\left(A^{T}\right) .
$$

Proof. Note that if $x \in \operatorname{Null}(A)$, then $A x=0$ and so $A^{T} A x=0$, that is, $x \in \operatorname{Null}\left(A^{T} A\right)$. Therefore, $\operatorname{Null}(A) \subset \operatorname{Null}\left(A^{T} A\right)$. Conversely, if $x \in \operatorname{Null}\left(A^{T} A\right)$, then

$$
A^{T} A x=0 \quad \Longrightarrow \quad x^{T} A^{T} A x=0 \quad \Longrightarrow \quad(A x)^{T}(A x)=0 \quad \Longrightarrow \quad\|A x\|_{2}^{2}=0 \quad \Longrightarrow \quad A x=0
$$

or equivalently, $x \in \operatorname{Null}(A)$. Therefore, $\operatorname{Null}\left(A^{T} A\right) \subset \operatorname{Null}(A)$, and so $\operatorname{Null}\left(A^{T} A\right)=\operatorname{Null}(A)$.

Since $\operatorname{Null}\left(A^{T} A\right)=\operatorname{Null}(A)$, the Fundamental Theorem of the Alternative tells us that

$$
\operatorname{Ran}\left(A^{T} A\right)=\operatorname{Ran}\left(\left(A^{T} A\right)^{T}\right)=\operatorname{Null}\left(A^{T} A\right)^{\perp}=\operatorname{Null}(A)^{\perp}=\operatorname{Ran}\left(A^{T}\right)
$$

which proves the lemma.
Let us now examine the existence of solutions to the the normal equations in light of this lemma. The normal equations are $A^{T} A x=A^{T} b$. By definition, $A^{T} b \in \operatorname{Ran}\left(A^{T}\right)$. The lemma tells us that $\operatorname{Ran}\left(A^{T}\right)=\operatorname{Ran}\left(A^{T} A\right)$. Hence, the must exist and x such that $A^{T} A x=A^{T} b$, that is, the normal equations are always consistent regardless of the choice of matrix $A \in \mathrm{R}^{m \times n}$ and vector $b \in \mathrm{R}^{m}$.
Theorem 2. The normal equations are consistent for all $A \in \mathrm{R}^{m \times n}$ and $b \in \mathrm{R}^{m}$.
This tells us that the linear least-squares problem $\mathcal{L L S}$ always has a critical point. But it does not tells us when these critical points for $\mathcal{L L S}$ are global solutions to $\mathcal{L} \mathcal{L S}$. In this regard, we have the following surprising result.
Theorem 3. Let $A \in \mathrm{R}^{m \times n}$ and $b \in \mathrm{R}^{m}$. Then every solution \bar{x} to $A^{T} A x=A^{T} b$ satisfies

$$
\begin{equation*}
\|A \bar{x}-b\|_{2} \leq\|A x-b\|_{2} \quad \forall x \in \mathrm{R}^{n} \tag{1}
\end{equation*}
$$

that is \bar{x} is a global solution to $\mathcal{L} \mathcal{L S}$.
Proof. Given $u, v \in \mathrm{R}^{m}$, we have

$$
\begin{equation*}
\|u+v\|_{2}^{2}=(u+v)^{T}(u+v)=u^{T} u+2 u^{T} v+v^{T} v=\|u\|_{2}^{2}+2 u^{T} v+\|v\|_{2}^{2} \tag{2}
\end{equation*}
$$

Consequently, for every $x \in \mathrm{R}^{n}$,

$$
\begin{aligned}
\|A x-b\|_{2}^{2} & =\|(A x-A \bar{x})+(A \bar{x}-b)\|_{2}^{2} & \\
& =\|A(x-\bar{x})\|_{2}^{2}+2(A(x-\bar{x}))^{T}(A \bar{x}-b)+\|A \bar{x}-b\|_{2}^{2} & (\text { by }(2)) \\
& \geq 2(x-\bar{x})^{T} A^{T}(A \bar{x}-b)+\|A \bar{x}-b\|_{2}^{2} & \left(\text { since }\|A(x-\bar{x})\|_{2}^{2} \geq 0\right) \\
& =\|A \bar{x}-b\|_{2}^{2} & \left(\text { since } A^{T}(A \bar{x}-b)=0\right)
\end{aligned}
$$

or equivalently, (1) holds.
So far we know that the normal equations are consistent and that every solution to the normal equations solves the linear least-squares problem. That is, a solution to the linear least-squares problem always exists. We now address the question of when the solution is unique. This is equivalent to asking when the normal equations have a unique solution. From our study nonsingular matrices, we know this occurs precisely when the matrix $A^{T} A$ is nonsingular or equivalently, inveritable, in which case the unique solution is given by $\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b$. Note that $A^{T} A$ is invertible if and only if $\operatorname{Null}\left(A^{T} A\right)=\{0\}$. But, by Lemma 1, this is equivalent to $\operatorname{Null}(A)=\{0\}$.
Theorem 4. The linear least-squares problem $\mathcal{L} \mathcal{L S}$ has a unique solution if and only if $\operatorname{Null}(A)=$ $\{0\}$.

2. Orthogonal Projection onto a Subspace

In the previous section we stated the linear least-squares problem as the optimization problem $\mathcal{L} \mathcal{L}$. We can view this problem in a somewhat different light as a least distance problem to a subspace, or equivalently, as a projection problem for a subspace. Suppose $S \subset \mathrm{R}^{m}$ is a given subspace and $b \notin S$. The least distance problem for S and b is to find that element of S that is as close to b as possible. That is we wish to solve the problem

$$
\begin{equation*}
\min _{z \in S} \frac{1}{2}\|z-y\|_{2}^{2} \tag{3}
\end{equation*}
$$

The solution is the point $\bar{z} \in S$ such that

$$
\|\bar{z}-b\|_{2} \leq\|z-b\|_{2} \quad \forall z \in S
$$

If we now take the subspace to be the range of $A, S=\operatorname{Ran}(A)$, then the problem (3) is closely related to the problem $\mathcal{L} \mathcal{L}$ since
if \bar{z} solves (3) and \bar{x} solves $\mathcal{L} \mathcal{L S}$, then $\bar{z}=A \bar{x}$ (why?).
Below we discuss the connection between the notion of a projection matrix and solutions to (3). Since the norm $\|\cdot\|_{2}$ is generated by the dot product, $\|w\|_{2}=\sqrt{w \bullet w}$, least norm problems of this type are solved using the notion of orthogonal projection onto a subspace.

To understand orthogonal projections, we must first introduce the notion of projection. A matrix $P \in \mathrm{R}^{m \times m}$ is said to be a projection if $P^{2}=P$. In this case we say that P is a projection onto the range of $P, S=\operatorname{Ran}(P)$. Note that if $x \in \operatorname{Ran}(P)$, then there is a $w \in \mathrm{R}^{m}$ such that $x=P w$, therefore, $P x=P(P w)=P^{2} w=P w=x$. That is, P leaves all elements of Ran (P) fixed. Also, note that, if P is a projection, then

$$
(I-P)^{2}=I-P-P+P^{2}=I-P,
$$

and so $(I-P)$ is also a projection. Since for all $w \in \mathrm{R}^{m}$,

$$
w=P w+(I-P) w
$$

we have

$$
\mathrm{R}^{m}=\operatorname{Ran}(P)+\operatorname{Ran}((I-P)) .
$$

In this case we say that the subspaces $\operatorname{Ran}(P)$ and $\operatorname{Ran}((I-P))$ are complementary since their sum is the whole space and their intersection is the origin, i.e., $\operatorname{Ran}(P) \cap \operatorname{Ran}((I-P))=\{0\}$ (why?).

Conversely, given any two subspaces S_{1} and S_{2} such that $S_{1} \cap S_{2}=\{0\}$ and $S_{1}+S_{2}=\mathrm{R}^{m}$, there is a projection P such that $S_{1}=\operatorname{Ran}(P)$ and $S_{2}=\operatorname{Ran}((I-P))$. We do not show how to construct these projections here, but note that they can be generated with the aid of bases for S_{1} and S_{2}.

This relationship between projections and complementary subspaces allows us to define a notion of orthogonal projection. For every subspace $S \subset \mathrm{R}^{m}$, we know that

$$
S \cap S^{\perp}=\{0\} \quad \text { and } \quad S+S^{\perp}=\mathrm{R}^{m} \quad \text { (why?). }
$$

Therefore, there is a projection P such that $\operatorname{Ran}(P)=S$ and $\operatorname{Ran}((I-P))=S^{\perp}$, or equivalently,

$$
\begin{equation*}
((I-P) y)^{T}(P w)=0 \quad \forall y, w \in \mathrm{R}^{m} \tag{5}
\end{equation*}
$$

The orthogonal projection plays a very special role among all possible projections onto a subspace. For this reason, we denote the orthogonal projection onto the subspace S by P_{S}.

We now use the condition (5) to derive a simple test of whether a projection is an orthogonal projection. For brevity, we write $P:=P_{S}$ and set $M=(I-P)^{T} P$. Then, by (5),

$$
M_{i j}=e_{i}^{T} M e_{j}=0 \quad \forall i, j=1, \ldots, n
$$

i.e., M is the zero matrix. But then,

$$
P=P^{T} P=\left(P^{T} P\right)^{T}=P^{T}
$$

Conversely, if $P=P^{T}$ and $P^{2}=P$, then $(I-P)^{T} P=0$. Therefore, a matrix P is an orthogonal projection if and only if $P^{2}=P$ and $P=P^{T}$. An orthogonal projection for a given subspace S can be constructed from any orthonormal basis for that subspace. Indeed, if the columns of the matrix Q form an orthonormal basis for S, then the matrix $P=Q Q^{T}$ satisfies

$$
P^{2}=Q Q^{T} Q Q^{T} \stackrel{\text { why }}{=} Q I_{k} Q^{T}=Q Q^{T}=P \quad \text { and } \quad P^{T}=\left(Q Q^{T}\right)^{T}=Q Q^{T}=P
$$

so that P is an orthogonal projection. Moreover, since we know that $\operatorname{Ran}\left(Q Q^{T}\right)=\operatorname{Ran}(Q)=S$, P is necessarily the orthogonal projector onto S.

Let us now return to the problem (5). We show that \bar{z} solves this problem if and only if $\bar{z}=P_{S} b$ where P_{S} is the orthogonal projection onto S. To see this, let $P:=P_{S}$ and $z \in S$ so that $z=P z$. Then

$$
\begin{aligned}
\|z-b\|_{2}^{2} & =\|P z-P b-(I-P) b\|_{2}^{2} \\
& =\|P(z-b)+(I-P) b\|_{2}^{2} \\
& =\|P(z-b)\|_{2}^{2}+2(z-b)^{T} P(I-P) b+\|(I-P) b\|_{2}^{2} \\
& =\|P(z-b)\|_{2}^{2}+\|(I-P) b\|_{2}^{2} \\
& \geq\|(P-I) b\|_{2}^{2} \\
& =\|\bar{z}-b\|_{2}^{2}
\end{aligned}
$$

which shows that $\|\bar{z}-b\|_{2} \leq\|z-b\|_{2}$ for all $z \in S$.
Let us now consider the linear least-squares problem $\mathcal{L} \mathcal{L S}$ when $m \gg n$ and $\operatorname{Null}(A)=\{0\}$. In this case, we have shown that $\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b$ solves $\mathcal{L} \mathcal{L S}$, and $\bar{z}=P_{S} b$ solves (5) where P_{S} is the orthogonal projector onto $S=\operatorname{Ran}(A)$. Hence, by (4),

$$
P_{S} b=\bar{z}=A \bar{x}=A\left(A^{T} A\right)^{-1} A^{T} b .
$$

Since this is true for all possible choices of the vector b, we have

$$
\begin{equation*}
P_{S}=A\left(A^{T} A\right)^{-1} A^{T}! \tag{6}
\end{equation*}
$$

That is, the matrix $A\left(A^{T} A\right)^{-1} A^{T}$ is the orthogonal projector onto the range of A. One can also check this directly by showing that the matrix $M=A\left(A^{T} A\right)^{-1} A^{T}$ satisfies $M^{2}=M, M^{T}=M$, and $\operatorname{Ran}(M)=\operatorname{Ran}(A)$.

3. Minimal Norm Solutions to $A x=b$

Again let $A \in \mathrm{R}^{m \times n}$, but now we suppose that $m \ll n$. In this case A is short and fat so the matrix A most likely has rank m, or equivalently,

$$
\begin{equation*}
\operatorname{Ran}(A)=\mathrm{R}^{m} \tag{7}
\end{equation*}
$$

In this case, regardless of the choice of the vector $b \in \mathrm{R}^{m}$, the set of solutions to $A x=b$ will be infinite since the nullity of A is $n-m$. Indeed, if x^{0} is any particular solution to $A x=b$, then the set of solutions is given by $\left\{x^{0}+z \mid z \in \operatorname{Null}(A)\right\}$. In this setting, one might prefer the solution to the system having least norm. This solution is found by solving the problem

$$
\begin{equation*}
\min _{z \in S} \frac{1}{2}\left\|z+x^{0}\right\|_{2}^{2} \tag{8}
\end{equation*}
$$

where S is the null-space of A. This problem is of the form (3). Consequently, the solution is given by $\bar{z}=-P_{S} x^{0}$ where P_{S} is now the orthogonal projection onto $S:=\operatorname{Null}(A)$.

In this context, note that $\left(I-P_{S}\right)$ is the orthogonal projector onto $\operatorname{Null}(A)^{\perp}=\operatorname{Ran}\left(A^{T}\right)$.Recall that the formula (6) shows that if $M \in \mathrm{R}^{k \times s}$ is such that $\operatorname{Null}(M)=\{0\}$, then the orthogonal projector onto $R:=\operatorname{Ran}(M)$ is given by

$$
\begin{equation*}
P_{R}=M\left(M^{T} M\right)^{-1} M^{T} \tag{9}
\end{equation*}
$$

In our case, $M=A^{T}$ and $M^{T} M=A A^{T}$. Our working assumption (7) implies that

$$
\operatorname{Null}(M)=\operatorname{Null}\left(A^{T}\right)=\operatorname{Ran}(A)^{\perp}=\left(\mathrm{R}^{m}\right)^{\perp}=\{0\}
$$

and consequently, by (9), the orthogonal projector onto $R=\operatorname{Ran}\left(A^{T}\right)=S^{\perp}$ is given by

$$
P_{S^{\perp}}=A^{T}\left(A A^{T}\right)^{-1} A
$$

Therefore, the orthogonal projector onto S is

$$
P_{S}=I-P_{S^{\perp}}=I-A^{T}\left(A A^{T}\right)^{-1} A
$$

Putting this all together, we find that the solution to (8) is

$$
\bar{z}=-P_{S} x^{0}=\left(A^{T}\left(A A^{T}\right)^{-1} A-I\right) x^{0},
$$

and the solution to $A x=b$ of least norm is

$$
\bar{x}=x^{0}+\bar{z}=A^{T}\left(A A^{T}\right)^{-1} A x^{0},
$$

where x^{0} is any particular solution to $A x=b$, i.e., $A x^{0}=b$. Plugging \bar{x} into $A x=b$ gives

$$
A \bar{x}=A A^{T}\left(A A^{T}\right)^{-1} A x^{0}=A x^{0}=b .
$$

