
Linear Least-Squares Problems

1. Linear Least-Squares as an Optimization Problem

Let A ∈ IRm×n and b ∈ IRm and assume that m >> n, i.e., m is much greater that n. In this
setting it is highly unlikely that there exists a vector x ∈ IRn such that Ax = b. As an alternative
goal, we try to find the x that is as close to solving Ax = b as possible. But first we must define
a notion of close. One way is to try to find the vector x that minimizes the norm of the residual
error ‖Ax− b‖2. That is, we wish to find a vector x̄ such that

‖Ax̄− b‖2 ≤ ‖Ax− b‖2 ∀ x ∈ IRn.

Equivalently, we wish to solve the optimization problem
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If we set
f(x) = 1
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then the first-order necessary conditions for a point x to solve LLS is that ∇f(x) = 0. In order to
use this fact, we need to compute an expression for the gradient of f .
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Therefore, if x ∈ IRn solves LLS, then it must be the case that 0 = ∇f(x) = AT (Ax − b) or
equivalently

ATAx = AT b .

This system of equations are called the normal equations for the linear least-squares problem LLS.
We must now address the question of whether the exists a solution to the normal equations. For

this we make use of the following lemma.

Lemma 1. For every matrix A ∈ IRm×n we have

Null (ATA) = Null (A) and Ran (ATA) = Ran (AT ) .

Proof. Note that if x ∈ Null (A), then Ax = 0 and so ATAx = 0, that is, x ∈ Null (ATA). Therefore,
Null (A) ⊂ Null (ATA). Conversely, if x ∈ Null (ATA), then

ATAx = 0 =⇒ xTATAx = 0 =⇒ (Ax)T (Ax) = 0 =⇒ ‖Ax‖22 = 0 =⇒ Ax = 0,

or equivalently, x ∈ Null (A). Therefore, Null (ATA) ⊂ Null (A), and so Null (ATA) = Null (A).
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Since Null (ATA) = Null (A), the Fundamental Theorem of the Alternative tells us that

Ran (ATA) = Ran ((ATA)T ) = Null (ATA)⊥ = Null (A)⊥ = Ran (AT ),

which proves the lemma. �

Let us now examine the existence of solutions to the the normal equations in light of this lemma.
The normal equations are ATAx = AT b. By definition, AT b ∈ Ran (AT ). The lemma tells us that
Ran (AT ) = Ran (ATA). Hence, the must exist and x such that ATAx = AT b, that is, the normal
equations are always consistent regardless of the choice of matrix A ∈ IRm×n and vector b ∈ IRm.

Theorem 2. The normal equations are consistent for all A ∈ IRm×n and b ∈ IRm.

This tells us that the linear least-squares problem LLS always has a critical point. But it does
not tells us when these critical points for LLS are global solutions to LLS. In this regard, we have
the following surprising result.

Theorem 3. Let A ∈ IRm×n and b ∈ IRm. Then every solution x̄ to ATAx = AT b satisfies

(1) ‖Ax̄− b‖2 ≤ ‖Ax− b‖2 ∀ x ∈ IRn,

that is x̄ is a global solution to LLS.

Proof. Given u, v ∈ IRm, we have

(2) ‖u+ v‖22 = (u+ v)T (u+ v) = uTu+ 2uTv + vTv = ‖u‖22 + 2uTv + ‖v‖22 .

Consequently, for every x ∈ IRn,

‖Ax− b‖22 = ‖(Ax− Ax̄) + (Ax̄− b)‖22
= ‖A(x− x̄)‖22 + 2(A(x− x̄))T (Ax̄− b) + ‖Ax̄− b‖22 (by (2))

≥ 2(x− x̄)TAT (Ax̄− b) + ‖Ax̄− b‖22 (since ‖A(x− x̄)‖22 ≥ 0)

= ‖Ax̄− b‖22 (since AT (Ax̄− b) = 0),

or equivalently, (1) holds. �

So far we know that the normal equations are consistent and that every solution to the normal
equations solves the linear least-squares problem. That is, a solution to the linear least-squares
problem always exists. We now address the question of when the solution is unique. This is equiv-
alent to asking when the normal equations have a unique solution. From our study nonsingular
matrices, we know this occurs precisely when the matrix ATA is nonsingular or equivalently, inver-
itable, in which case the unique solution is given by x̄ = (ATA)−1AT b. Note that ATA is invertible
if and only if Null (ATA) = {0}. But, by Lemma 1, this is equivalent to Null (A) = {0}.

Theorem 4. The linear least-squares problem LLS has a unique solution if and only if Null (A) =
{0}.

2. Orthogonal Projection onto a Subspace

In the previous section we stated the linear least-squares problem as the optimization problem
LLS. We can view this problem in a somewhat different light as a least distance problem to a
subspace, or equivalently, as a projection problem for a subspace. Suppose S ⊂ IRm is a given
subspace and b 6∈ S. The least distance problem for S and b is to find that element of S that is as
close to b as possible. That is we wish to solve the problem

(3) min
z∈S

1
2 ‖z − y‖
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The solution is the point z̄ ∈ S such that

‖z̄ − b‖2 ≤ ‖z − b‖2 ∀ z ∈ S.
If we now take the subspace to be the range of A, S = Ran (A), then the problem (3) is closely
related to the problem LLS since

(4) if z̄ solves (3) and x̄ solves LLS, then z̄ = Ax̄ (why?).

Below we discuss the connection between the notion of a projection matrix and solutions to (3).
Since the norm ‖·‖2 is generated by the dot product, ‖w‖2 =

√
w • w, least norm problems of this

type are solved using the notion of orthogonal projection onto a subspace.
To understand orthogonal projections, we must first introduce the notion of projection. A matrix

P ∈ IRm×m is said to be a projection if P 2 = P . In this case we say that P is a projection onto the
range of P , S = Ran (P ). Note that if x ∈ Ran (P ), then there is a w ∈ IRm such that x = Pw,
therefore, Px = P (Pw) = P 2w = Pw = x. That is, P leaves all elements of Ran (P ) fixed. Also,
note that, if P is a projection, then

(I − P )2 = I − P − P + P 2 = I − P,
and so (I − P ) is also a projection. Since for all w ∈ IRm,

w = Pw + (I − P )w,

we have

IRm = Ran (P ) + Ran ((I − P )).

In this case we say that the subspaces Ran (P ) and Ran ((I − P )) are complementary since their
sum is the whole space and their intersection is the origin, i.e., Ran (P ) ∩ Ran ((I − P )) = {0}
(why?).

Conversely, given any two subspaces S1 and S2 such that S1 ∩S2 = {0} and S1 +S2 = IRm, there
is a projection P such that S1 = Ran (P ) and S2 = Ran ((I−P )). We do not show how to construct
these projections here, but note that they can be generated with the aid of bases for S1 and S2.

This relationship between projections and complementary subspaces allows us to define a notion
of orthogonal projection. For every subspace S ⊂ IRm, we know that

S ∩ S⊥ = {0} and S + S⊥ = IRm (why?).

Therefore, there is a projection P such that Ran (P ) = S and Ran ((I − P )) = S⊥, or equivalently,

(5) ((I − P )y)T (Pw) = 0 ∀ y, w ∈ IRm.

The orthogonal projection plays a very special role among all possible projections onto a subspace.
For this reason, we denote the orthogonal projection onto the subspace S by PS.

We now use the condition (5) to derive a simple test of whether a projection is an orthogonal
projection. For brevity, we write P := PS and set M = (I − P )TP . Then, by (5),

Mij = eTi Mej = 0 ∀ i, j = 1, . . . , n,

i.e., M is the zero matrix. But then,

P = P TP = (P TP )T = P T .

Conversely, if P = P T and P 2 = P , then (I − P )TP = 0. Therefore, a matrix P is an orthogonal
projection if and only if P 2 = P and P = P T . An orthogonal projection for a given subspace S can
be constructed from any orthonormal basis for that subspace. Indeed, if the columns of the matrix
Q form an orthonormal basis for S, then the matrix P = QQT satisfies

P 2 = QQTQQT why
= QIkQ

T = QQT = P and P T = (QQT )T = QQT = P,
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so that P is an orthogonal projection. Moreover, since we know that Ran (QQT ) = Ran (Q) = S,
P is necessarily the orthogonal projector onto S.

Let us now return to the problem (5). We show that z̄ solves this problem if and only if z̄ = PSb
where PS is the orthogonal projection onto S. To see this, let P := PS and z ∈ S so that z = Pz.
Then

‖z − b‖22 = ‖Pz − Pb− (I − P )b‖22
= ‖P (z − b) + (I − P )b‖22
= ‖P (z − b)‖22 + 2(z − b)TP (I − P )b+ ‖(I − P )b‖22
= ‖P (z − b)‖22 + ‖(I − P )b‖22
≥ ‖(P − I)b‖22
= ‖z̄ − b‖22 ,

which shows that ‖z̄ − b‖2 ≤ ‖z − b‖2 for all z ∈ S.
Let us now consider the linear least-squares problem LLS when m >> n and Null (A) = {0}. In

this case, we have shown that x̄ = (ATA)−1AT b solves LLS, and z̄ = PSb solves (5) where PS is the
orthogonal projector onto S = Ran (A). Hence, by (4),

PSb = z̄ = Ax̄ = A(ATA)−1AT b.

Since this is true for all possible choices of the vector b, we have

(6) PS = A(ATA)−1AT !

That is, the matrix A(ATA)−1AT is the orthogonal projector onto the range of A. One can also
check this directly by showing that the matrix M = A(ATA)−1AT satisfies M2 = M , MT = M ,
and Ran (M) = Ran (A).

3. Minimal Norm Solutions to Ax = b

Again let A ∈ IRm×n, but now we suppose that m << n. In this case A is short and fat so the
matrix A most likely has rank m, or equivalently,

(7) Ran (A) = IRm .

In this case, regardless of the choice of the vector b ∈ IRm, the set of solutions to Ax = b will be
infinite since the nullity of A is n−m. Indeed, if x0 is any particular solution to Ax = b, then the
set of solutions is given by {x0 + z | z ∈ Null (A)}. In this setting, one might prefer the solution to
the system having least norm. This solution is found by solving the problem

(8) min
z∈S

1
2

∥∥z + x0
∥∥2
2
,

where S is the null-space of A. This problem is of the form (3). Consequently, the solution is given
by z̄ = −PSx

0 where PS is now the orthogonal projection onto S := Null (A).
In this context, note that (I − PS) is the orthogonal projector onto Null (A)⊥ = Ran (AT ).Recall

that the formula (6) shows that if M ∈ IRk×s is such that Null (M) = {0}, then the orthogonal
projector onto R := Ran (M) is given by

(9) PR = M(MTM)−1MT .

In our case, M = AT and MTM = AAT . Our working assumption (7) implies that

Null (M) = Null (AT ) = Ran (A)⊥ = (IRm)⊥ = {0}
and consequently, by (9), the orthogonal projector onto R = Ran (AT ) = S⊥ is given by

PS⊥ = AT (AAT )−1A .
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Therefore, the orthogonal projector onto S is

PS = I − PS⊥ = I − AT (AAT )−1A .

Putting this all together, we find that the solution to (8) is

z̄ = −PSx
0 = (AT (AAT )−1A− I)x0 ,

and the solution to Ax = b of least norm is

x̄ = x0 + z̄ = AT (AAT )−1Ax0,

where x0 is any particular solution to Ax = b, i.e., Ax0 = b. Plugging x̄ into Ax = b gives

Ax̄ = AAT (AAT )−1Ax0 = Ax0 = b.


