
Working with Block Structured Matrices

Numerical linear algebra lies at the heart of modern scientific computing and computa-
tional science. Today it is not uncommon to perform numerical computations with matrices
having millions of components. The key to understanding how to implement such algorithms
is to exploit underlying structure within the matrices. In these notes we touch on a few ideas
and tools for dissecting matrix structure. Specifically we are concerned with block matrix
structures.

1. Rows and Columns

Let A ∈ IRm×n so that A has m rows and n columns. Denote the element of A in the ith
row and jth column as Aij. Denote the m rows of A by A1·, A2·, A3·, . . . , Am· and the n
columns of A by A·1, A·2, A·3, . . . , A·n. For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 ,
then A2,4 = −100,

A1· =
[
3 2 −1 5 7 3

]
, A2· =

[
−2 27 32 −100 0 0

]
, A3· =

[
−89 0 47 22 −21 33

]
and

A·1 =

 3
−2
−89

 , A·2 =

 2
27
0

 , A·3 =

−1
32
47

 , A·4 =

 5
−100

22

 , A·5 =

 7
0
−21

 , A·6 =

 3
0
33

 .
Exercise: If

C =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 ,

what are C4,4, C·4 and C4·? For example, C2· =
[
2 2 0 0 1 0

]
and C·2 =


−4
2
0
0
0

 .
The block structuring of a matrix into its rows and columns is of fundamental importance

and is extremely useful in understanding the properties of a matrix. In particular, for
A ∈ IRm×n it allows us to write

A =


A1·
A2·
A3·
...

Am·

 and A =
[
A·1 A·2 A·3 . . . A·n

]
.
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These are called the row and column block representations of A, respectively

1.1. Matrix vector Multiplication. Let A ∈ IRm×n and x ∈ IRn. In terms of its coordi-

nates (or components), we can also write x =


x1
x2
...
xn

 with each xj ∈ IR. The term xj is called

the jth component of x. For example if

x =

 5
−100

22

 ,
then n = 3, x1 = 5, x2 = −100, x3 = 22. We define the matrix-vector product Ax by

Ax =


A1· • x
A2· • x
A3· • x

...
Am· • x

 ,
where for each i = 1, 2, . . . ,m, Ai· • x is the dot product of the ith row of A with x and is
given by

Ai· • x =
n∑

j=1

Aijxj .

For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 and x =


1
−1
0
0
2
3

 ,
then

Ax =

 24
−29
−32

 .
Exercise: If

C =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 and x =


1
−1
0
0
2
3

 ,
what is Cx?
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Note that if A ∈ IRm×n and x ∈ IRn, then Ax is always well defined with Ax ∈ IRm. In
terms of components, the ith component of Ax is given by the dot product of the ith row of
A (i.e. Ai·) and x (i.e. Ai· • x).

The view of the matrix-vector product described above is the row-space perspective, where
the term row-space will be given a more rigorous definition at a later time. But there is a
very different way of viewing the matrix-vector product based on a column-space perspective.
This view uses the notion of the linear combination of a collection of vectors.

Given k vectors v1, v2, . . . , vk ∈ IRn and k scalars α1, α2, . . . , αk ∈ IR, we can form the
vector

α1v
1 + α2v

2 + · · ·+ αkv
k ∈ IRn .

Any vector of this kind is said to be a linear combination of the vectors v1, v2, . . . , vk where the
α1, α2, . . . , αk are called the coefficients in the linear combination. The set of all such vectors
formed as linear combinations of v1, v2, . . . , vk is said to be the linear span of v1, v2, . . . , vk

and is denoted

Span
{
v1, v2, . . . , vk

}
:=
{
α1v

1 + α2v
2 + · · ·+ αkv

k | α1, α2, . . . , αk ∈ IR
}
.

Returning to the matrix-vector product, one has that

Ax =


A11x1 + A12x2 + A13x3 + · · ·+ A1nxn
A21x1 + A22x2 + A23x3 + · · ·+ A2nxn

...
...

...
Am1x1 + Am2x2 + Am3x3 + · · ·+ Amnxn

 = x1A·1 + x2A·2 + x3A·3 + · · ·+ xnA·n,

which is a linear combination of the columns of A. That is, we can view the matrix-vector
product Ax as taking a linear combination of the columns of A where the coefficients in the
linear combination are the coordinates of the vector x.

We now have two fundamentally different ways of viewing the matrix-vector product Ax.

Row-Space view of Ax:

Ax =


A1· • x
A2· • x
A3· • x

...
Am· • x


Column-Space view of Ax:

Ax = x1A·1 + x2A·2 + x3A·3 + · · ·+ xnA·n .

2. Matrix Multiplication

We now build on our notion of a matrix-vector product to define a notion of a matrix-
matrix product which we call matrix multiplication. Given two matrices A ∈ IRm×n and
B ∈ IRn×k note that each of the columns of B resides in IRn, i.e. B·j ∈ IRn i = 1, 2, . . . , k.
Therefore, each of the matrix-vector products AB·j is well defined for j = 1, 2, . . . , k. This
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allows us to define a matrix-matrix product that exploits the block column structure of B
by setting

(1) AB :=
[
AB·1 AB·2 AB·3 · · · AB·k

]
.

Note that the jth column of AB is (AB)·j = AB·j ∈ IRm and that AB ∈ IRm×k, i.e.

if H ∈ IRm×n and L ∈ IRn×k, then HL ∈ IRm×k.

Also note that

if T ∈ IRs×t and M ∈ IRr×`, then the matrix product TM is only defined when t = r.

For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 and B =


2 0
−2 2
0 3
0 0
1 1
2 −1

 ,
then

AB =

A


2
−2
0
0
1
2

 A


0
−2
3
0
1
−1



 =

 15 5
−58 150
−133 87

 .
Exercise: if

C =


3 −4 1 1
2 2 0 0
−1 0 0 0

0 0 0 2
0 1 0 1

 and D =


−1 0 2 4 3
0 −2 −1 4 5
5 2 −4 1 1
3 0 1 0 0

 ,
is CD well defined and if so what is it?

The formula (1) can be used to give further insight into the individual components of
the matrix product AB. By the definition of the matrix-vector product we have for each
j = 1, 2, . . . , k

AB·j =

A1· •B·j
A2· •B·j
Am· •B·j

 .
Consequently,

(AB)ij = Ai· •B·j ∀ i = 1, 2, . . .m, j = 1, 2, . . . , k.

That is, the element of AB in the ith row and jth column, (AB)ij, is the dot product of the
ith row of A with the jth column of B.
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2.1. Elementary Matrices. We define the elementary unit coordinate matrices in IRm×n

in much the same way as we define the elementary unit coordinate vectors. Given i ∈
{1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, the elementary unit coordinate matrix Eij ∈ IRm×n is
the matrix whose ij entry is 1 with all other entries taking the value zero. This is a slight
abuse of notation since the notation Eij is supposed to represent the ijth entry in the matrix
E. To avoid confusion, we reserve the use of the letter E when speaking of matrices to the
elementary matrices.

Exercise: (Multiplication of square elementary matrices)Let i, k ∈ {1, 2, . . . ,m} and j, ` ∈
{1, 2, . . . ,m}. Show the following for elementary matrices in IRm×m first for m = 3 and then
in general.

(1) EijEk` =

{
Ei` , if j = k,

0 , otherwise.
(2) For any α ∈ IR, if i 6= j, then (Im×m − αEij)(Im×m + αEij) = Im×m so that

(Im×m + αEij)
−1 = (Im×m − αEij).

(3) For any α ∈ IR with α 6= 0, (I + (α−1 − 1)Eii)(I + (α− 1)Eii) = I so that

(I + (α− 1)Eii)
−1 = (I + (α−1 − 1)Eii).

Exercise: (Elementary permutation matrices)Let i, ` ∈ {1, 2, . . . ,m} and consider the ma-
trix Pij ∈ IRm×m obtained from the identity matrix by interchanging its i and `th rows. We
call such a matrix an elementary permutation matrix. Again we are abusing notation, but
again we reserve the letter P for permutation matrices (and, later, for projection matrices).
Show the following are true first for m = 3 and then in general.

(1) Pi`Pi` = Im×m so that P−1i` = Pi`.
(2) P T

i` = Pi`.
(3) Pi` = I − Eii − E`` + Ei` + E`i.

Exercise: (Three elementary row operations as matrix multiplication)In this exercise we
show that the three elementary row operations can be performed by left multiplication by an
invertible matrix. Let A ∈ IRm×n, α ∈ IR and let i, ` ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.
Show that the following results hold first for m = n = 3 and then in general.

(1) (row interchanges) Given A ∈ IRm×n, the matrix PijA is the same as the matrix A
except with the i and jth rows interchanged.

(2) (row multiplication) Given α ∈ IR with α 6= 0, show that the matrix (I + (α− 1)Eii)A
is the same as the matrix A except with the ith row replaced by α times the ith row
of A.

(3) Show that matrix EijA is the matrix that contains the jth row of A in its ith row
with all other entries equal to zero.

(4) (replace a row by itself plus a multiple of another row) Given α ∈ IR and i 6= j,
show that the matrix (I +αEij)A is the same as the matrix A except with the ith row
replaced by itself plus α times the jth row of A.
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2.2. Associativity of matrix multiplication. Note that the definition of matrix multi-
plication tells us that this operation is associative. That is, if A ∈ IRm×n, B ∈ IRn×k, and
C ∈ IRk×s, then AB ∈ IRm×k so that (AB)C is well defined and BC ∈ IRn×s so that A(BC)
is well defined, and, moreover,

(AB)C =
[
(AB)C·1 (AB)C·2 · · · (AB)C·s

]
(2)

where for each ` = 1, 2, . . . , s

(AB)C·` =
[
AB·1 AB·2 AB·3 · · · AB·k

]
C·`

= C1`AB·1 + C2`AB·2 + · · ·+ Ck`AB·k

= A
[
C1`B·1 + C2`B·2 + · · ·+ Ck`B·k

]
= A(BC·`) .

Therefore, we may write (2) as

(AB)C =
[
(AB)C·1 (AB)C·2 · · · (AB)C·s

]
=

[
A(BC·1) A(BC·2) . . . A(BC·s)

]
= A

[
BC·1 BC·2 . . . BC·s

]
= A(BC) .

Due to this associativity property, we may dispense with the parentheses and simply write
ABC for this triple matrix product. Obviously longer products are possible.
Exercise:Consider the following matrices:

A =

[
2 3 1
1 0 −3

]
B =

[
4 −1
0 −7

]
C =

−2 3 2
1 1 −3
2 1 0



D =

2 3
1 0
8 −5

 F =


2 1 1 2
1 0 −4 0
3 0 −2 0
5 1 1 1

 G =

[
2 3 1 −2
1 0 −3 0

]
.

Using these matrices, which pairs can be multiplied together and in what order? Which
triples can be multiplied together and in what order (e.g. the triple product BAC is well
defined)? Which quadruples can be multiplied together and in what order? Perform all of
these multiplications.

3. Block Matrix Multiplication

To illustrate the general idea of block structures consider the following matrix.

A =


3 −4 1 1 0 0
0 2 2 0 1 0
1 0 −1 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 .
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Visual inspection tells us that this matrix has structure. But what is it, and how can it be
represented? We re-write the the matrix given above blocking out some key structures:

A =


3 −4 1 1 0 0
0 2 2 0 1 0
1 0 −1 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 =

[
B I3×3
02×3 C

]
,

where

B =

 3 −4 1
0 2 2
1 0 −1

 , C =

[
2 1 4
1 0 3

]
,

I3×3 is the 3× 3 identity matrix, and 02×3 is the 2× 3 zero matrix. Having established this
structure for the matrix A, it can now be exploited in various ways. As a simple example,
we consider how it can be used in matrix multiplication.

Consider the matrix

M =


1 2
0 4
−1 −1

2 −1
4 3
−2 0

 .

The matrix product AM is well defined since A is 5 × 6 and M is 6 × 2. We show how
to compute this matrix product using the structure of A. To do this we must first block
decompose M conformally with the block decomposition of A. Another way to say this is
that we must give M a block structure that allows us to do block matrix multiplication with
the blocks of A. The correct block structure for M is

M =

[
X
Y

]
,

where

X =

 1 2
0 4
−1 −1

 , and Y =

 2 −1
4 3
−2 0

 ,
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since then X can multiply

[
B

02×3

]
and Y can multiply

[
I3×3
C

]
. This gives

AM =

[
B I3×3
02×3 C

] [
X
Y

]
=

[
BX + Y
CY

]

=



 2 −11
2 12
−1 −2

 +

 −2 6
4 3
−2 0


[

0 1
−4 −1

]



=


4 −12
2 9
0 3
0 1
−4 −1

 .
Block structured matrices and their matrix product is a very powerful tool in matrix

analysis. Consider the matrices M ∈ IRn×m and T ∈ IRm×k given by

M =

[
An1×m1 Bn1×m2

Cn2×m1 Dn2×m2

]
and

T =

[
Em1×k1 Fm1×k2 Gm1×k3
Hm2×k1 Jm2×k2 Km2×k3

]
,

where n = n1 + n2, m = m1 + m2, and k = k1 + k2 + k3. The block structures for the
matrices M and T are said to be conformal with respect to matrix multiplication since

MT =

[
AE +BH AF +BJ AG+BK
CE +DH CF +DJ CG+DK

]
.

Similarly, one can conformally block structure matrices with respect to matrix addition (how
is this done?).
Exercise:Consider the the matrix

H =



−2 3 2 0 0 0 0
1 1 −3 0 0 0 0
2 1 −1 0 0 0 0
0 0 0 4 −1 0 0
0 0 0 2 −7 0 0
1 0 0 0 0 2 3
0 1 0 0 0 1 0
0 0 1 0 0 8 −5


.

Does H have a natural block structure that might be useful in performing a matrix-matrix
multiply, and if so describe it by giving the blocks? Describe a conformal block decomposition
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of the matrix

M =



1 2
3 −4
−5 6
1 −2
−3 4
1 1
1 1


that would be useful in performing the matrix product HM . Compute the matrix product
HM using this conformal decomposition.

Exercise:Let T ∈ IRm×n with T 6= 0 and let I be the m ×m identity matrix. Consider the
block structured matrix A = [ I T ].

(i) If A ∈ IRk×s, what are k and s?
(ii) Construct a non-zero s× n matrix B such that AB = 0.

The examples given above illustrate how block matrix multiplication works and why it
might be useful. One of the most powerful uses of block structures is in understanding and
implementing standard matrix factorizations or reductions.

4. Gauss-Jordan Elimination Matrices and Reduction to Reduced Echelon
Form

In this section, we show that Gaussian-Jordan elimination can be represented as a conse-
quence of left multiplication by a specially designed matrix called a Gaussian-Jordan elimi-
nation matrix.

Consider the vector v ∈ IRm block decomposed as

v =

 a
α
b


where a ∈ IRs, α ∈ IR, and b ∈ IRt with m = s+ 1 + t. In this vector we refer to the α entry
as the pivot and assume that α 6= 0. We wish to determine a matrix G such that

Gv = es+1

where for j = 1, . . . , n, ej is the unit coordinate vector having a one in the jth position and
zeros elsewhere. We claim that the matrix

G =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t


does the trick. Indeed,

(3) Gv =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t

  a
α
b

 =

 a− a
α−1α
−b+ b

 =

 0
1
0

 = es+1.
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The matrix G is called a Gaussian-Jordan Elimination Matrix, or GJEM for short. Note
that G is invertible since

G−1 =

 I a 0
0 α 0
0 b I

 ,
Moreover, for any vector of the form w =

 x
0
y

 where x ∈ IRs y ∈ IRt, we have

Gw = w.

The GJEM matrices perform precisely the operations required in order to execute Gauss-
Jordan elimination. That is, each elimination step can be realized as left multiplication of
the augmented matrix by the appropriate GJEM.

For example, consider the linear system

2x1 + x2 + 3x3 = 5
2x1 + 2x2 + 4x3 = 8
4x1 + 2x2 + 7x3 = 11
5x1 + 3x2 + 4x3 = 10

and its associated augmented matrix

A =


2 1 3 5
2 2 4 8
4 2 7 11
5 3 4 10

 .
The first step of Gauss-Jordan elimination is to transform the first column of this augmented
matrix into the first unit coordinate vector. The procedure described in (3) can be employed
for this purpose. In this case the pivot is the (1, 1) entry of the augmented matrix and so

s = 0, a is void, α = 2, t = 3, and b =

2
4
5

 ,
which gives

G1 =


1/2 0 0 0
−1 1 0 0
−2 0 1 0
−5/2 0 0 1

 .
Multiplying these two matrices gives

G1A =


1/2 0 0 0
−1 1 0 0
−2 0 1 0
−5/2 0 0 1




2 1 3 5
2 2 4 8
4 2 7 11
5 3 4 10

 =


1 1/2 3/2 5/2
0 1 1 3
0 0 1 1
0 1/2 −7/2 −5/2

 .
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We now repeat this process to transform the second column of this matrix into the second
unit coordinate vector. In this case the (2, 2) position becomes the pivot so that

s = 1, a = 1/2, α = 1, t = 2, and b =

[
0

1/2

]
yielding

G2 =


1 −1/2 0 0
0 1 0 0
0 0 1 0
0 −1/2 0 1

 .
Again, multiplying these two matrices gives

G2G1A =


1 −1/2 0 0
0 1 0 0
0 0 1 0
0 −1/2 0 1




1 1/2 3/2 5/2
0 1 1 3
0 0 1 1
0 1/2 −7/2 −5/2

 =


1 0 1 1
0 1 1 3
0 0 1 1
0 0 −4 −4

 .
Repeating the process on the third column transforms it into the third unit coordinate vector.
In this case the pivot is the (3, 3) entry so that

s = 2, a =

[
1
1

]
, α = 1, t = 1, and b = −4

yielding

G3 =


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 4 1

 .
Multiplying these matrices gives

G3G2G1A =


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 4 1




1 0 1 1
0 1 1 3
0 0 1 1
0 0 −4 −4

 =


1 0 0 0
0 1 0 2
0 0 1 1
0 0 0 0

 ,
which is in reduced echelon form. Therefore the system is consistent and the unique solution
is

x =

0
2
1

 .
Observe that

G3G2G1 =


3 −1/2 −1 0
1 1 −1 0
−2 0 1 0
−10 −1/2 4 1


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and that

(G3G2G1)
−1 = G−11 G−12 G−13

=


2 0 0 0
2 1 0 0
4 0 1 0
5 0 0 1




1 1/2 0 0
0 1 0 0
0 0 1 0
0 1/2 0 1




1 0 1 0
0 1 1 0
0 0 1 0
0 0 −4 1



=


2 1 3 0
2 2 4 0
4 2 7 0
5 3 4 1

 .
In particular, reduced Gauss-Jordan form can always be achieved by multiplying the aug-
mented matrix on the left by an invertible matrix which can be written as a product of
Gauss-Jordan elimination matrices.

Exercise:What are the Gauss-Jordan elimination matrices that transform the vector


2
3
−2
5


in to ej for j = 1, 2, 3, 4, and what are the inverses of these matrices?

5. The Four Fundamental Subspaces and Echelon Form

Let A ∈ IRm×n. We associate with A its four fundamental subspaces:

Ran (A) := {Ax |x ∈ IRn} Null (A) := {x |Ax = 0}
Ran (AT ) :=

{
ATy | y ∈ IRm

}
Null (AT ) :=

{
y
∣∣ATy = 0

}
.

In the text, it is shown that

(4) rank(A) + nullity(A) = n

and

rank(AT ) + nullity(AT ) = m,

where

(5)
rank(A) := dim Ran (A) nullity(A) := dim Null (A)

rank(AT ) := dim Ran (AT ) nullity(AT ) := dim Null (AT )

Observe that

Null (A) := {x |Ax = 0}
= {x |Ai· • x = 0, i = 1, 2, . . . ,m}
= {A1·, A2·, . . . , Am·}⊥

= Span {A1·, A2·, . . . , Am·}⊥

= Ran (AT )⊥ .
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Since for any subspace S ⊂ IRn, we have (S⊥)⊥ = S, we obtain

(6) Null (A)⊥ = Ran (AT ) and Null (AT ) = Ran (A)⊥.

The equivalences in (6) are called the Fundamental Theorem of the Alternative. By combining
this with the rank-plus-nullity equals dimension statement in (4) we find that

rank(AT ) = dim Ran (AT ) = dim Null (A)⊥ = n− nullity(A) = rank(A).

Consequently the row rank of a matrix equals the column rank of a matrix, i.e., the dimen-
sions of the row and column spaces of a matrix are the same!

These observations have consequences for computing bases for the four fundamental sub-
spaces of a matrix using reduced echelon form. Again consider A ∈ IRm×n and form the
augmented matrix [A | Im]. Apply the necessary sequence of Gauss-Jordan eliminations to
put this matrix in reduced echelon form. If each column has a non-zero pivot, then the
reduced echelon form looks like

(7)

[
Ik T R11 R12

0 0 F I(m−k)

]
,

where T ∈ IRk×(n−k), R ∈ IRk×k, and F ∈ IR(m−k)×k. This representation tells us that
rank(A) = k and nullity(A) = n− k.

A basis for Ran (A): Observe that (7) implies that

GA =

[
Ik T
0 0

]
,

where

G =

[
R11 R12

F I(m−k)

]
is an invertible matrix. In particular,

GA·j = ej for j = 1, 2, . . . , k.

Therefore, the vectors A·j, j = 1, 2, . . . , k are linearly independent (since G is invertible and
the vectors ej for j = 1, 2, . . . , k are linearly independent). Since rank(A) = k, these vectors
necessarily form a basis for Ran (A).

The reduced echelon form (7) provides a second way to obtain a basis for Ran (A). To see
this observe that if b ∈ Ran (A), then we can obtain a solution to Ax = b. In particular,

GAx = Gb =

[
R11 R12

F I(m−k)

] [
b1

b2

]
,

where b1 ∈ IRk and b2 ∈ IR(m−k) is a decomposition of b that is conformal to the block
structure of G. But then

0 = [F I(m−k)]

[
b1

b2

]
= Fb1 + b2,
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or equivalently, b2 = −Fb1. This is a necessary and sufficient condition for b to be an element
of Ran (A). Therefore, b ∈ Ran (A) if and only if there is a vector b1 ∈ IRk such that

b =

[
Ik
−F

]
b1.

Since the matrix

[
Ik
−F

]
has k = rank(A) columns, these columns must form a basis for

Ran (A).

Basis for the Null (A): Since G is invertible, we know that Ax = 0 if and only if GAx = 0.
Since nullity(A) = n − k, we need only find n − k linearly independent vectors such that
GAx = 0, or equivalently, [Ik T ]x = 0. For this, observe that

[I T ]

[
−T
I(n−k)

]
= −T + T = 0,

where the matrix

[
−T
I(n−k)

]
has n− k linearly independent columns. Therefore, the columns

of this matrix necessarily form a basis for Null (A).

Basis for Ran (AT ): Recall that AT = rank(A) = k. Therefore to obtain a basis for AT we
need only obtain k linearly independent vectors in the row space of A. But, by construction,
the matrix [

Ik T
0 0

]
is row equivalent to A with the rows of [Ik T ] necessarily linearly independent. Consequently,
the columns of the matrix

[Ik T ]T =

[
Ik
T T

]
necessarily form a basis for the range of AT .

Basis for Null (AT ): By (6), Null (AT ) = Ran (A)⊥. Therefore, to obtain a basis for
Null (AT ), we need only find m− k linearly independent vectors in Ran (A)⊥. But we have

already seen that the columns of the matrix

[
Ik
−F

]
form a basis for the Ran (A), and

[Ik − F T ]

[
F T

I(m−k)

]
= F T − F T = 0,

with the columns of

[
F T

I(m−k)

]
necessarily linearly independent. Therefore, the columns of

this matrix must form a basis for Null (AT ).

Recap: Putting this all together, we find that if A ∈ IRm×n is such that [A | I] has echelon
form

(8)

[
Ik T R11 R12

0 0 F I(m−k)

]
,
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with T ∈ IRk×(n−k), R ∈ IRk×k, and F ∈ IR(m−k)×k, then a bases for Ran (A), Null (A), Ran (AT ),
and Null (AT ) are given by the columns of the matrices

(9)

[
Ik
−F

]
,

[
−T
I(n−k)

]
,

[
Ik
TT

]
, and

[
F T

I(m−k)

]
,

respectively.

Example:Consider the matrix

A =

1 0 −4 4
1 1 −1 3
2 3 1 5

 .
Reducing [A | I3] to reduced echelon form gives 1 0 −4 4 1 0 0

0 1 3 −1 −1 1 0
0 0 0 0 1 −3 1

 .
Using the notation from (8), we have m = 3, n = 4, k = 2, n− k = 2, m− k = 1

T =

[
−4 4
3 −1

]
, R11 =

[
1 0
−1 1

]
, R12 =

[
0
0

]
and F = [1 − 3].

This may be easier to see by conformally partitioning the reduced echelon form of [A | I3] as[
Ik T R11 R12

0 0 F I(m−k)

]
=

 1 0 −4 4 1 0 0
0 1 3 −1 −1 1 0
0 0 0 0 1 −3 1

 .
Then the bases of the four fundamental subspaces are given as the columns of the following
matrices:

Ran (A) ∼
[
Ik
−F

]
=

 1 0
0 1
−1 3



Null (A) ∼
[
−T
I(n−k)

]
=


4 −4
−3 1
1 0
0 1



Ran (AT ) ∼
[
Ik
TT

]
=


1 0
0 1
−4 3
4 −1


Null (AT ) ∼

[
F T

I(m−k)

]
=

 1
−3
1

 .
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Example:Consider the matrix A =

1 2 3
1 3 5
1 1 1

. It has echelon form

G[A | I] =

1 0 −1 −1 0 2
0 1 2 −1 1 0
0 0 0 −2 1 1

 .
Show that the bases of the four fundamental subspaces are given as the columns of the fol-
lowing matrices, and identify which subspace goes with which matrix:1 0

0 1
2 −1

  1 0
0 1
−1 2

  1
−2
1

 −2
1
1

 .
It may happen that the reduced echelon form of [A | I] does not take the form given in

(8) if a zero pivot occurs. In this case, formulas similar to the ones given in (9) are possible,
and can be described in a straightforward manner, but the notational overhead is quite high.
Nonetheless, it is helpful to see what is possible, therefore we consider one more reduced
echelon structure below. The proof is left to the reader.

Suppose A ∈ IRm×n is such that [A | Im] has reduced echelon form

(10)

 Ik1 T11 0 T12 R11 R12

0 0 Ik2 T22 R21 R22

0 0 0 0 F Im−k

 ,
where k := k1 + k2 is the rank of A, n − k = t1 + t2 =: t is the nullity of A, T11 ∈ IRk1×t1 ,
T12 ∈ IRk1×t2 , and T22 ∈ IRk2×t2 . Then the bases of the four fundamental subspaces are given
as the columns of the following matrices:

Ran (A) ∼
[
Ik
−F

]
Null (A) ∼


−T11 −T12
It1 0
0 −T22
0 It2



Ran (AT ) ∼


Ik1 0
TT
11 0
0 Ik2
TT
12 TT

22

 Null (AT ) ∼
[
F T

I(m−k)

]
.

Example:Consider the matrix 
1 2 1 −2 0
2 3 4 −5 1
1 5 −5 2 0
2 4 2 −4 0

 .
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The reduced echelon form for [A | I] is the matrix
1 0 5 0 14 −31 14 4 0
0 1 −2 0 −4 9 −4 −1 0
0 0 0 1 3 −7 3 3 0
0 0 0 0 0 −2 0 0 1

 .
Show that the bases of the four fundamental subspaces are given as the columns of the fol-
lowing matrices, and identify which subspace goes with which matrix:

−5 −14
2 4
1 0
0 −3
0 1




1 0 0
0 1 0
5 −2 0
0 0 1
14 −4 3




1 0 0
0 1 0
0 0 1
2 0 0



−2
0
0
1

 .
Hint: Identify all of the pieces in the reduced echelon form (10) from the partitioning Ik1 T11 0 T12 R11 R12

0 0 Ik2 T22 R21 R22

0 0 0 0 F Im−k

 =


1 0 5 0 14 −31 14 4 0
0 1 −2 0 −4 9 −4 −1 0
0 0 0 1 3 −7 3 3 0
0 0 0 0 0 −2 0 0 1

 .


