
Math 407 Section A

MATH 308 REVIEW
In this course the notion of linearity plays a central role. All of the theoretical aspects of
this course are based on properties of systems of linear equations and inequalities in IRn. For
this reason the course prerequisite MATH 308 should be taken very seriously. Indeed, the
first quiz in this course is devoted to this material. This guide has been prepared to facilitate
your review of the relevant material on linear systems of equations. Reviewing this material
will prepare you for the quiz.

Basic Review:
You should be able to answer the following questions:

Answer the following 6 questions for each of the four cases n = 1, n = 2, n = 3, and
n ∈ {1, 2, 3, 4, 5, 6, . . . } beginning with the case n = 1.

(1) Why is IRn called a vector space?
(2) What is the dot product (or inner product) on IRn?
(3) What is the angle between any two vectors in IRn? (For this one simply applies the

definition aT b = ‖a‖ ‖b‖ cos θ.)
(4) When are two vectors in IRn said to be orthogonal?
(5) Describe all linear mappings from IRn to IR.
(6) What is the data structure that one usually associates with a linear transformation

from IRn to IRm?

You should also be able to answer the following more specific questions:
(7) Given any two points in IR2 determine (a) an equation for the line passing through

these points, and (b) a vector normal to the line determined by these two points.
(8) Given any three non–collinear points in IR3 determine (a) an equation for the plane

passing through these three points, and (b) a vector normal to this plane.
(9) Let a = (a1, a2, . . . , an)T ∈ IRn and α ∈ IR. For n = 1, 2, 3 and n > 3 describe the set

{x ∈ IRn : aTx = α}

when (a) α = 0, and (b) α 6= 0.
(10) Let a1· = (a11, a12, . . . , a1n)T ∈ IRn, a2· = (a21, a22, . . . , a2n)T ∈ IRn, and α1, α2 ∈ IR.

For n = 1, 2, 3 and n > 3 describe the set

{x ∈ IRn : a1·
Tx = α1, a2·

Tx = α2}.

(11) For i = 1, 2, 3, . . . ,m, let ai· = (ai1, ai2, . . . , ain)T ∈ IRn and αi ∈ IR.
(a) For n = 1, 2, 3 and n > 3 with m = n describe the set

S = {x ∈ IRn : ai·
Tx = αi, i = 1, 2, . . . ,m}.

(b) How does this description change when (a) m < n, (b) m > n?
(c) Can you express the set S in matrix notation?
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(d) What does it mean to say that the underlying matrix has (a) full column rank,
(b) full row rank, (c) full rank?

(12) What are the three elementary row operations, i.e. the three operations associated
with row reduction?

(13) Given an n × n real matrix A, what does it mean to say that A is invertible (or,
equivalently, non–singular)?

(14) Let A be an m×n real matrix, B be a k×n real matrix, and let a ∈ IRm and b ∈ IRk.
We say that the two systems of equations

Ax = a and Bx = b

are equivalent if they have identical solution sets.
(a) Show that if any one of the three elementary row operations is applied to the

system Ax = a, then one obtains an equivalent linear system.
(b) If C is a non–singular m × m real matrix, show that the system Ax = a is

equivalent to the system CAx = Ca.
(c) Is it possible for the systems Ax = a and Bx = b to be equivalent when n 6= m?

If it is possible, then provide an example to illustrate this possibility.

Advanced Review:
In these notes we discuss some of the topics studied in Math 308 in greater detail. One of
the intents of these notes is to discuss the ideas in the 308 without getting bogged down in
the notational details. Hopefully, this will help you see the big picture a little better. On
the other-hand, these notes are difficult mathematical reading. Reading these notes is an
exercise in itself. You will be called upon to remember many of the terms and ideas defined
in Math 308. These notes will exercise your knowledge of these terms and ideas and are
intended to re–establish and solidify this knowledge.

Subspaces:
Recall that a subset W of IRn is a subspace if and only if it satisfies the following
three conditions:
(a) The origin is an element of W .
(b) W is closed with respect to addition, i.e. u, v ∈ W implies u+ v ∈ W .
(c) W is closed with respect to scalar multiplication, i.e. α ∈ IR and u ∈ W implies

αu ∈ W .

For example, by using these properties it is easily shown that for any set S in IRn the
set

S⊥ = {v : wTv = 0 for all w ∈ S}
is a subspace. If S is itself a subspace, then S⊥ is called the subspace orthogonal (or
perpendicular) to the subspace S. Moreover, in this case we have S = (S⊥)⊥ (more
generally, (S⊥)⊥ = Span (S)). If S is a subspace, it can be shown that

n = dim (S) + dim (S⊥) .

Every subspace has what we will call internal and external representations. An
internal representation is any representation of the subspace as a linear span of a
finite set of vectors. The representation is said to be internal since the spanning
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vectors lie within the subspace. If the set of spanning vectors happens to be linearly
independent, then it is called a basis of the subspace. It is known that every basis of
a subspace has the same number of vectors in it. This number is called the dimension
of the subspace.

Internal representations of a subspace can be interpreted with the aid of our notion
for matrix vector multiplication. Recall that matrix vector multiplication can be
viewed as taking a linear combination of the columns of the matrix. Thus, if a
subspace is known to be the linear span of a finite collection of vectors, then this
subspace is the same as the range of the matrix formed by taking the columns of the
matrix to be the vectors that span the subspace.

An external representation of a subspace is any representation of the subspace as
the intersection of a finite number of subspaces of the form

(1) {x ∈ IRn : vTi x = 0}

for some nonzero vi 6= 0 in IRn for i = 1, 2, . . . , k. The representation is said to be
external since the vectors vi clearly cannot belong to the subspace. Another way to
view an external representation of the subspace is that the vectors {v1, v2, . . . , vk}
form a spanning set for the subspace orthogonal (or perpendicular) to the subspace
we are interested in. If the dimension of the subspace is p, then the dimension of the
orthogonal subspace is n− p. Thus, in particular, k ≥ n− p.

External representations of a subspace can also be interpreted with the aid of
our notion for matrix multiplication. Recall that matrix multiplication can also be
interpreted as taking the dot product with each row of the matrix. Thus, a vector
is in the null space of a matrix if it is orthogonal to every row of that matrix.
Consequently, a subspace externally represented by the vectors {v1, v2, . . . , vk} is the
same as the null space of the matrix formed by letting its rows be the vectors vi in
IRn for i = 1, 2, . . . , k.

It is important to remember that every subspace has both internal and external
representations (indeed, infinitely many of them). Equivalently, every subspace can
be represented either as the range of some matrix or as the null space of some ma-
trix (indeed, there are infinitely many such matrices). Some of the computational
techniques learned in Math 308 deal with passing between such representations and
obtaining minimal representations, that is internal and external representations hav-
ing the fewest number of elements.

Subspaces Associated with Matrices:
The discussion above tells us that matrices and subspaces are intimately connected
to each other. In this regard, every matrix has associated with it four fundamental
subspaces; its range and null space and the range and null space of its transpose.
The relationship between these subspaces is easily understood by recalling the two
different ways to think about matrix vector multiplication:
(i) linear combinations of the columns, and

(ii) dot products with the rows.
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Given A ∈ IRm×n recall that the null space of A is given by

Null (A) = {x | Ax = 0} ,

that is, x ∈ Null (A) if and only if x is orthogonal to every row of A since Ax is just
the dot product of x with every row of A. Therefore, x ∈ Null (A) if and only if x is
perpendicular to the linear span of the rows of A. But the linear span of the rows of
A is precisely the range of AT ! Therefore, Null (A) = Ran (AT )⊥. By replacing A by
AT in this expressiong, we also have Null (AT ) = Ran (A)⊥. Putting this all together
we obtain the following relationsships:

Ran (A) = Null (AT )⊥

Null (A) = Ran (AT )⊥

m = dim (Ran (AT )) + dim (Null (AT ))

n = dim (Ran (A)) + dim (Null (A)).

The dimension of the range of a matrix is called the rank of the matrix and the
dimension of the null space of a matrix is called the nullity of the matrix. An
important fact in this regard is that the rank of a matrix equals the rank of its
transpose. However, if the matrix is not square, then the nullity of a matrix may
differ from the nullity of its transpose.

Echelon Form:
The key computational tool of Math 308 and Math 407 is Gaussian elimination. The
purpose of Gaussian elimination is to put a matrix into echelon form. Let us review
this process in the light of our knowledge of subspaces.

Recall that in Gaussian elimination one employs the three elementary row opera-
tions to put a matrix into upper triangular form (or echelon form). These operations
can be viewed as operations on the vectors that form the rows of the matrix. That
is, they are operations in the row space of the matrix. In Math 308 it was shown
that the three elementary row operations do not change the row space of the matrix.
Let us review this fact by considering the row operations one at a time.

Row Interchange: In this operation we simply change the order in which we write
the rows. Clearly this does not change the row space of the matrix.
Multiply a Row by a Nonzero Scalar: Again the row space remains unchanged
since the row space contains all linear combinations of the rows and scalar mul-
tiplication is simply a special case of this.
Replace a Row by the Sum of Itself and a Multiple of Another Row: This just rep-
resents a linear combination of two rows. Thus the new row remains in the row
space. Furthermore, the new collection of rows have the same span as the rows
you started with. In order to see this we just need to show that the only row
that was changed can be obtained as some linear combination of the new rows.
This is also obvious. The old row is simply the new row minus what was added
to it, namely a scalar multiple of one of the unchanged rows.
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Thus, the elementary row operations do not change the row space of the matrix. In
particular, we have that two matrices are row equivalent if and only if they have the
same row space.

To say that we have tranformed a matrix into echelon form implies that we have
made as many rows of the matrix zero as we possibly can. Thus, none of the remaining
nonzero rows can be represented as a linear combination of the other remaining
nonzero rows. That is, the remaining nonzero rows are linearly independent and have
the same span as the row space of the original matrix, or equivalently, the nonzero
rows form a basis for the row space of the original matrix. This is a remarkable fact!
Our primary tool for solving equations is also an efficient way to obtain a basis for a
subspace from a spanning set for that subspace!

Echelon form is a very powerful tool. It can be used to solve a wide variety of
problems. We take a moment to review a few of the problems it is used to solve in
Math 308.

Equation Solving: Given a system of linear equations, Ax = b, where A ∈ IRm×n

and b ∈ IRm, we can characterize the solution set to this system by reducing the
associated augmented matrix [A|b] to echelon form.
Passing between internal and external representations of a subspace:

Internal to external: This is the same as expressing the range of one matrix
as the null space of another. Let A be the matrix in question and assume
y is in the range of A. Since y ∈ Ran (A), the system Ax = y is consistent.
We then formally solve this system by reducing the augmented matrix
[A|y] to echelon form. Once in echelon form some of the rows will be all
zero except for the right–hand side which will be a algebraic expression
in the components of y. The consistency of the system implies that each
of these expressions must be zero. By writing these expressions in matrix
form and setting them equal to zero we get a matrix equation of the form
By = 0 for some matrix B. That is, we have expressed the range of A as
the null space of B.
External to internal: This is the same as expressing the null space of one
matrix as the range of another. Again, letting A be the matrix in question,
we reduce A to reduced echelon form. In general, this will give us a row
equivalent matrix with block structure

C =

[
I B
0 0

]
.

The the columns of the matrix D =

[
−B
I

]
form a basis for the null

space of A. Indeed, the null space of A is the subspace orthogonal to the
row space of A. Since C is row equivalent to A, the null space of A is the
subspace orthogonal to the row space of C. Next observe that CD = 0,
that is, the columns of D are orthogonal to the rows of C. Since the
dimension counts work out, the columns of D must be a basis for the null
space of C.
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Generating a basis for the span of a finite collection of vectors: This has already
been discussed above as one of the primary consequences of the echelon form.
Just write the vectors as the row vectors of a matrix and then reduce this matrix
to echelon form. The rows of the reduced matrix will be the desired basis.
Generating a basis for the null space of a matrix: This also has been discussed
above in another guise. It is really the same as expressing the null space of the
matrix as the range of another matrix where the other matrix must have the
fewest number of columns possible since then the columns of this other matrix
will form a basis for the null space. This was addresses above in our discussion
of how to go from an external representation of a subspace to an internal one.
Generating a basis for the range of a matrix: Since the range of a matrix is just
the linear span of its columns (or the column space), this is the same as generat-
ing a basis for the column space. This also was discussed above in our description
of how to obtain a basis for the linear span of a finite collection of vectors. In
short, reduce the transpose of the matrix to echelon form. The nonzero rows of
the reduced matrix will be a basis for the range.

We give a concrete illustrations of how to use echelon, and reduced echelon form to compute
bases for the 4 elementary subspaces associated with a matrix.

Computing Bases for the Four Fundamental Subspaces of a Matrix

Let A ∈ IRm×n. An efficient procedure for computing bases for the four fundamental
subspaces associated with A begins by reducing the augmented system

(2) [A | Im×m] ∈ IRm×(n+m)

to echelon form. Recall that this is equivalent to multiplying the augmented system on the
left by some nonsingular m×m matrix M , yielding

(3) [MA |M ] ∈ IRm×(n+m) .

Decomposing this augmented matrix conformally with respect to the nonzero and zero rows
of MA yields the block matrix

(4)

[
T1
0

∣∣∣∣ T2T3
]
,

where, for some k, the matrix T1 ∈ IRk×n is in echelon form and has no zero rows and

M =

[
T2
T3

]
is block conformal with

[
T1
0

]
. From Math 308 we know that

• T1 ∈ IRk×n where k := rankA ≤ min{m, n} is the rank of A,
• the rows of the matrix T1 form a basis for Ran (AT ), and

• the rows of the matrix T3 ∈ IR(m−k)×m form a basis for Null (AT ).

If no row interchanges were required for the reduction to echelon form (i.e only k Gaussian
elimination steps), then T2 and T3 have the form

(5) T2 = [T21 0k×(m−k)] and T3 =
[
T31 I(m−k)×(m−k)

]
,
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where T21 ∈ IRk×k is invertible and T31 ∈ IR(m−k)×k. In this case, the columns of the matrix

(6)

[
I
−T31

]
form a basis for Ran (A). Finally, to get a basis for Null (A), we again use Gaussian elimina-
tion to transform the matrix T1 to reduced echelon form, yielding a matrix which typically
has block structure

(7) [Ik×k T12] ∈ IRm×k .

In this case, the columns of the matrix

(8)

[
−T12
I

]
form a basis for Null (A).

We now illustrate this process on the matrix
1 2 1
1 3 0
−1 1 −4

3 5 4

 .

In this case, the augmented system (2) has the form
1 2 1
1 3 0
−1 1 −4

3 5 4

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

After reduction to echelon form, we obtain the matrix
1 2 1
0 1 −1
0 0 0
0 0 0

∣∣∣∣∣∣∣∣
1 0 0 0
−1 1 0 0

4 −3 1 0
−4 1 0 1

 .

In this case, the matrices T1, T2, T3 and T31 appearing in (4) and (5) are

T1 =

[
1 2 1
0 1 −1

]
, T2 =

[
1 0 0 0
−1 1 0 0

]
, T3 =

[
4 −3 1 0
−4 1 0 1

]
,

and T13 =

[
4 −3
−4 1

]
. Therefore, as indicated above,

Ran (AT ) = Span


 1

2
1

 ,

 0
1
−1

 , Null (AT ) = Span




4
−3

1
0

 ,


−4

1
0
1


 ,
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and

Ran (A) = Span




1
0
−4

4

 ,


0
1
3
−1


 .

Finally, transforming T1 to reduced echelon form yields the matrix[
1 0 3
0 1 −1

]
.

Therefore, the matrix T12 appearing in (7) is T12 =

[
3
−1

]
, and so

Null (A) = Span


 −3

1
1

 .

Recapping, we see that beginning with the augmented matrix (2), one can reduce to
echelon form to obtain the matrix (4). At this point one can immediately read off bases for
both Ran (AT ) and Null (AT ). This leads to an alternative method for computing bases for
the subspaces Ran (A) and Null (A). That is to simply repeat the process described above
with A replaced by AT . In this approach one begins with the augmented matrix[

AT | I
]

and reduces to the echelon form

(9)

[
S1

0

∣∣∣∣ S2

S3

]
,

where S1 is in echelon form and has no zero rows. Then the rows of S1 form a basis for
Ran (A), while the rows of S3 form a basis for Null (A). Applying this approach to the
example given above, we begin by reducing the augmented matrix 1 1 −1 3

2 3 1 5
1 0 −4 4

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


to the echelon form  1 1 −1 3

0 1 3 −1
0 0 0 0

∣∣∣∣∣∣
1 0 0
−2 1 0
−3 1 1

 .

Consequently,

S1 =

[
1 1 −1 3
0 1 3 −1

]
and S3 =

[
−3 1 1

]
.

Therefore,

Ran (A) = Span




1
1
−1

3

 ,


0
1
3
−1


 and Null (A) = Span


 −3

1
1

 .
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Working with Block Structured Matrices

Numerical linear algebra lies at the heart of modern scientific computing and computa-
tional science. Today it is not uncommon to perform numerical computations with matrices
having millions of components. The key to understanding how to implement such algorithms
is to exploit underlying structure within the matrices. In these notes we touch on a few ideas
and tools for dissecting matrix structure. Specifically we are concerned with block matrix
structures.

In the 308 Review above, we have already made heavy use of block structures. Indeed, the
augmented matrix associated with the linear system Ax = b given by [A|b] is the first example
of a block structured matrix. But we also made use of block structures associated with
echelon and reduced echelon form to compute bases associated with the four fundamental
subspaces of a matrix. In math 407, we will make even greater use of such structures so it
is very important to understand them well.

To illustrate the general idea of block structures consider the following matrix.

A =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 .

Visual inspection tells us that this matrix has structure. But what is it, and how can it be
represented? We re-write the the matrix given above blocking out some key structures:

A =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 =

[
B I3×3
02×3 C

]
,

where

B =

 3 −4 1
2 2 0
−1 0 0

 , C =

[
2 1 4
1 0 3

]
,

I3×3 is the 3× 3 identity matrix, and 02×3 is the 2× 3 zero matrix. Having established this
structure for the matrix A, it can now be exploited in various ways. As a simple example,
we consider how it can be used in matrix multiplication.

Consider the matrix

M =


1 2
0 4
−1 −1

2 −1
4 3
−2 0

 .
The matrix product AM is well defined since A is 5 × 6 and M is 6 × 2. We show how
to compute this matrix product using the structure of A. To do this we must first block
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decompose M conformally with the block decomposition of A. Another way to say this is
that we must give M a block structure that allows us to do block matrix multiplication with
the blocks of A:

M =

[
X
Y

]
,

where

X =

 1 2
0 4
−1 −1

 , and Y =

 2 −1
4 3
−2 0

 .

Then

AM =

[
B I3×3
02×3 C

] [
X
Y

]
=

[
BX + Y
CY

]

=



 2 −9
2 12
−1 −2

 +

 2 −1
4 3
−2 0


[

4 1
−4 −1

]



=


4 −10
6 15
1 −2
4 1
−4 −1

 .
The example given above is a numerical example of how block matrix multiplication works

and why it might be useful. One of the most powerful uses of block structures is in under-
standing and implementing standard matrix factorizations. We consider one such factoriza-
tion: the LU Factorization.

The LU Factorization
Recall from linear algebra that Gaussian elimination is a method for solving linear systems

of the form

Ax = b,

where A ∈ IRm×n and b ∈ Ran(A). In this method, the augmented system

[A |b ]

is formed and then the three elementary row operations are used to put this system into
row echelon form (or upper triangular form). A solution x is obtained by back substitution,
or back solving, starting with the component xn. We show how the process of bringing a
matrix to upper triangular form can be performed by left matrix multiplication.
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The key step in Gaussian elimination is to transform a vector of the form a
α
b

 ,
where a ∈ IRk, 0 6= α ∈ IR, and b ∈ IRn−k−1 (here the possible values for k are k =
0, 1, . . . , n− 1), into one of the form  a

α
0

 .

This can be accomplished by left matrix multiplication as follows: Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

 a
α
b

 =

 a
α
0

 .
The matrix  Ik×k 0 0

0 1 0
0 −α−1b I(n−k−1)×(n−k−1)


is called a Gaussian elimination matrix. This matrix is invertible with inverse Ik×k 0 0

0 1 0
0 α−1b I(n−k−1)×(n−k−1)

 .
We now use this basic idea to show how a matrix can be put into upper triangular form.

Suppose

A =

[
α1 vT1
u1 Ã1

]
∈ Cm×n,

with 0 6= α1 ∈ C, u1 ∈ Cm−1, v1 ∈ Cn−1, and Ã1 ∈ C(m−1)×(n−1). Then using the first row to
zero out u1 amounts to left multiplication of the matrix A by the matrix[

1 0
−α−11 u1 I

]
to get

(*)

[
1 0

−α−11 u1 I

] [
α1 vT1
u1 Ã1

]
∈ Cm×n =

[
α1 vT1
0 A1

]
,

where
A1 = Ã1 − u1vT1 /α1 .

Define

L1 =

[
1 0
α1 I

]
∈ Cm×m and U1 =

[
α−11 u1 vT1

0 A1

]
∈ Cm×n .

and observe that

L−11 =

[
1 0

−α−11 u1 I

]
.
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Hence (*) becomes

L−11 A = U1, or equivalently, A = L1U1 .

Note that L1 is unit lower triangular (ones on the mail diagonal) and U1 is block upper-
triangular with one 1× 1 block and one (m− 1)× (n− 1) block on the block diagonal. The
multipliers are usually denoted

u/α = [µ21, µ31, . . . , µm1]
T .

If the (1, 1) entry of A1 is not 0, we can apply the same procedure to A1: if

A1 =

[
α2 vT2
u2 Ã2

]
∈ C(m−1)×(n−1)

with α2 6= 0, letting

L̃2 =

[
1 0

α−12 u2 I

]
∈ C(m−1)×(m−1),

and forming

L̃−12 A1 =

[
1 0

−α−12 u2 I

] [
α2 vT2
u2 Ã1

]
=

[
α2 vT2
0 A2

]
≡ Ũ2 ∈ C(m−1)×(n−1),

where A2 ∈ C(m−2)×(n−2). This process amounts to using the second row to zero out elements
of the second column below the diagonal. Setting

L2 =

[
1 0

0 L̃2

]
and U2 =

[
α1 vT

0 Ũ2

]
,

we have

L−12 L−11 A =

[
1 0

0 L̃−12

] [
α1 vT

0 A1

]
= U2,

or equivalently,

A = L2L1U2.

Here U2 is block upper triangular with two 1× 1 blocks and one (m− 2)× (n− 2) block on
the diagonal, and again L2 is unit lower triangular. We can continue in this fashion at most
m̃− 1 times, where

m̃ = min{m,n}.
If we can proceed m̃− 1 times, then

L−1m̃−1 · · ·L−12 L−11 A = Um̃−1 = U

is upper triangular provided that along the way that the (1, 1) entries of

A, A1, A2, . . . , Am̃−2

are nonzero so the process can continue. Define

L = (L−1m̃−1 · · ·L−11 )−1 = L1L2 · · ·Lm̃−1.

The matrix L is square unit lower triangular, and so is invertable. Moreover, A = LU , where
the matrix U is the so called row echelon form of A. In general, a matrix T ∈ Cm×n is said



13

to be in row echelon form if for each i = 1, . . . ,m− 1 the first non-zero entry in the (i+ 1)st

row lies to the right of the first non-zero row in the ith row.
Let us now suppose that m = n and A ∈ Cn×n is invertible. Writing A = LU as a product

of a unit lower triangular matrix L ∈ Cn×n (necessarily invertible) and an upper triangular
matrix U ∈ Cn×n (also nessecarily invertible in this case) is called the LU factorization of
A.

Remarks

(1) If A ∈ Cn×n is invertible and has an LU factorization, it is unique.
(2) One can show that A ∈ Cn×n has an LU factorization iff for 1 ≤ j ≤ n, the upper

left j × j principal submatrix a11 · · · aij
...
aj1 · · · ajj


is invertible.

(3) Not every invertible A ∈ Cn×n has an LU-factorization.

Example:

[
0 1
1 0

]
Typically, one must permute the rows of A to move nonzero entries to the appropriate
spot for the elimination to proceed. Recall that a permutation matrix P ∈ Cn×n is
the identity I with its rows (or columns) permuted: so

P ∈ IRn×n is orthogonal, and P−1 = P T .

Permuting the rows of A amounts to left multiplication by a permutation matrix P T ;
then P TA has an LU factorization, so A = PLU (called the PLU factorization of A).

(4) Fact: Every invertible A ∈ Cn×n has a (not necessarily unique) PLU factorization.
(5) The LU factorization can be used to solve linear systems Ax = b (where A = LU ∈

Cn×n is invertible). The system Ly = b can be solved by forward substitution (1st

equation gives x1, etc.), and Ux = y can be solved by back-substitution (nth equation
gives xn, etc.), giving the solution to? Ax = LUx = b.

Example: We now use the procedure outlined above to compute the LU factorization of
the matrix

A =

 1 1 2
2 4 2
−1 1 3

 .
L−11 A =

 1 0 0
−2 1 0

1 0 1

 1 1 2
2 4 2
−1 1 3


=

 1 1 2
0 2 −3
0 2 5


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L−12 L−11 A =

 1 0 0
0 1 0
0 −1 1

  1 1 2
0 2 −3
0 2 5


=

 1 1 2
0 2 −3
0 0 8


We now have

U =

 1 1 2
0 2 −3
0 0 8

 ,
and

L = L1L2 =

 1 0 0
2 1 0
−1 0 1

  1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1

 .


