Math 407 Section A

SAMPLE PROBLEMS FOR THE FIRST QUIZ

1. Consider the system

$$
\begin{aligned}
& 4 x_{1}-x_{3}=200 \\
& 9 x_{1}+x_{2}-x_{3}=200 \\
& 7 x_{1}-x_{2}+2 x_{3}=200
\end{aligned}
$$

Solution

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
30 \\
-150 \\
-80
\end{array}\right)
$$

2. Represent the linear span of the four vectors

$$
x_{1}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-2
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
2 \\
1 \\
7 \\
1
\end{array}\right], \quad \text { and } \quad x_{4}=\left[\begin{array}{r}
3 \\
-2 \\
0 \\
5
\end{array}\right]
$$

as the range space of some matrix.
Solution The span is the range of A where

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
0 & 1 & 1 & -2 \\
2 & 1 & 7 & 0 \\
1 & -2 & 1 & 5
\end{array}\right]
$$

A null space basis is given by the columns of the matrix

$$
\left[\begin{array}{rr}
3 & 1 \\
1 & -2 \\
-1 & 0 \\
0 & -1
\end{array}\right]
$$

3. Compute a basis for $\operatorname{Nul}\left(A^{T}\right)^{\perp}$ where A is given by

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
0 & 1 & 1 & -2 \\
2 & 1 & 7 & 0 \\
1 & -2 & 1 & 5
\end{array}\right]
$$

Solution Since $\operatorname{Nul}\left(A^{T}\right)^{\perp}=\operatorname{Ran}(A)$ and the range of A is the column space of A, we need only select linearly independent columns from A. Alternatively, we can row reduce A^{T}. If we do this, we get only 2 linearly independent vectors:

$$
\left[\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right] \quad\left[\begin{array}{r}
0 \\
1 \\
3 \\
-1
\end{array}\right]
$$

which form the desired basis.
4. Find the inverse of the matrix $B=\left(\begin{array}{ccc}1 & 2 & 0 \\ -1 & -4 & 1 \\ 0 & 2 & 1\end{array}\right)$.

Solution $\quad B^{-1}=\frac{1}{4}\left(\begin{array}{ccc}6 & 2 & -2 \\ -1 & -1 & 1 \\ 2 & 2 & 2\end{array}\right)$.
5. Compute a basis for the null space of the matrix

$$
\left[\begin{array}{lllll}
2 & 1 & 3 & 4 & 5 \\
1 & 3 & 2 & 7 & 8
\end{array}\right] .
$$

Solution First compute the reduced echelon form

$$
\left(\begin{array}{ccccc}
1 & 0 & 7 / 5 & 1 & 7 / 5 \\
0 & 1 & 1 / 5 & 2 & 11 / 5
\end{array}\right)=\left(\begin{array}{ll}
I & T
\end{array}\right) .
$$

Then the columns of the following matrix form a basis for the null space :

$$
\binom{T}{-I}=\left(\begin{array}{ccc}
7 / 5 & 1 & 7 / 5 \\
1 / 5 & 2 & 11 / 5 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

6. Solve the following system of linear equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
-x_{1}-4 x_{2}+x_{3} & =2 \\
2 x_{2}+x_{3} & =0
\end{aligned}
$$

Solution $\quad\left(x_{1}, x_{2}, x_{3}\right)=(5 / 2,-3 / 4,3 / 2)$
7. Determine whether the following system of linear equations has a solution or not.

$$
\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
-2 \\
0
\end{array}\right) .
$$

Solution No solution exists.
8. Find a 2 by 2 square matrix B satisfying

$$
A=B \cdot C
$$

where $A=\left(\begin{array}{lll}1 & 3 & 0 \\ 2 & 1 & 1\end{array}\right)$ and $C=\left(\begin{array}{ccc}-1 & -3 & 0 \\ 8 & 9 & 3\end{array}\right)$.
Solution

$$
C=\left[\begin{array}{rr}
-1 & 0 \\
2 / 3 & 1 / 3
\end{array}\right]
$$

9. Suppose the matrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

is such that $A \in \mathbb{R}^{a \times 3}, B \in \mathbb{R}^{2 \times b}, C \in \mathbb{R}^{c \times d}$, and $D \in \mathbb{R}^{5 \times 4}$.
(a) What are the values of a, b, c, and d ?
(b) Suppose that the matrix multiplication $M T$ is well defined. Further suppose that it can be done in block form where T has the structure

$$
T=\left[\begin{array}{ccc}
U & V & W \\
Q & R & S
\end{array}\right]
$$

What are the possible dimensions of the matrices U, V, W, Q, R, and S ?
Solution (a) $(a, b, c, d)=(2,4,5,3)$ (b) $U \in \mathbb{R}^{3 \times k_{1}}, V \in \mathbb{R}^{3 \times k_{2}}, W \in \mathbb{R}^{3 \times k_{3}}, Q \in \mathbb{R}^{4 \times k_{1}}, R \in$ $\mathbb{R}^{4 \times k_{2}}, S \in \mathbb{R}^{4 \times k_{3}}$ with k_{1}, k_{2}, k_{3} arbitrary positive integers.
10. Consider the matrix

$$
\left[\begin{array}{rrrrr}
2 & 1 & 3 & 4 & 9 \\
2 & -2 & -4 & 2 & 8 \\
4 & -1 & 2 & 1 & 7 \\
1 & 1 & 3 & 1 & 2
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

If $A \in \mathbb{R}^{a \times 2}$ and $D \in \mathbb{R}^{2 \times d}$, determine a and d then compute the matrix product $C B$.

Solution

$$
C B=\left(\begin{array}{ccc}
16 & 14 & 28 \\
-1 & 6 & 17
\end{array}\right)
$$

