
4 Duality Theory

We now dive deeply into the duality theory of linear programming. As we will see, the
solution to the dual problem is most often just as important as the solution to the primal,
and in some cases more important. Recall from Section 1 that the dual to an LP in standard
form

(P)
maximize cTx
subject to Ax  b, 0  x

is the LP

(D)
minimize bTy
subject to ATy � c, 0  y.

Since the problem D is a linear program, it too has a dual. The duality terminology
suggests that the problems P and D come as a pair implying that the dual to D should be
P . This is indeed the case as we now show. Observe that by using standard techniques the
dual problem can converted to standard form:

minimize bTy
subject to ATy � c,

0  y

standard
form
=)

�maximize (�b)Ty
subject to (�AT )y  (�c),

0  y.

The problem on the right is in standard form so we can take its dual to get an LP which
also can be written in standard form:

minimize (�c)Tx
subject to (�AT )Tx � (�b), 0  x

standard
form
=) maximize cTx

subject to Ax  b, 0  x .

Consequently, the dual of the dual is the primal.
Next recall that the primal-dual pair of LPs P � D are related via the Weak Duality

Theorem.

Theorem 4.1 (Weak Duality Theorem) If x 2 Rn is feasible for P and y 2 Rm is
feasible for D, then

cTx  yTAx  bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded, then P is
necessarily infeasible. Moreover, if cT x̄ = bT ȳ with x̄ feasible for P and ȳ feasible for D,
then x̄ must solve P and ȳ must solve D.

We now use The Weak Duality Theorem in conjunction with The Fundamental Theorem
of Linear Programming to prove the Strong Duality Theorem of Linear Programming. The
key ingredient in this proof is the general form for simplex tableaus derived at the end of
Section 2 in (2.5).
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Theorem 4.2 (The Strong Duality Theorem of Linear Programming) If either P
or D has a finite optimal value, then so does the other, the optimal values coincide, and
optimal solutions to both P and D exist.

Remark: This result states that the finiteness of the optimal value implies the existence of
a solution. This is not always the case for nonlinear optimization problems. Indeed, consider
the problem

min
x2R

ex.

This problem has a finite optimal value, namely zero; however, this value is not attained by
any point x 2 R. That is, it has a finite optimal value, but a solution does not exist. The
existence of solutions when the optimal value is finite is one of the many special properties
of linear programs.

Proof: Since the dual of the dual is the primal, we may as well assume that the primal
has a finite optimal value. In this case, the Fundamental Theorem of Linear Programming
says that an optimal basic feasible solution exists. By our formula for the general form of
simplex tableaus (2.5), we know that there exists a nonsingular record matrix R 2 Rn⇥n and
a vector y 2 Rm such that the optimal tableau has the form


R 0
�yT 1

� 
A I b
cT 0 0

�
=


RA R Rb

cT � yTA �yT �yT b

�
.

Since this is an optimal tableau, we have

c� ATy  0, �yT  0

with yT b equal to optimal value in the primal problem. But then ATy � c and 0  y so that
y is feasible for the dual problem D. In addition, the Weak Duality Theorem implies that

bTy = maximize cTx  bT by
subject to Ax  b, 0  x

for every vector by that is feasible for D. Therefore, y solves D!!!! ⌅

This is an amazing fact! Our method for solving the primal problem P , the simplex
algorithm, simultaneously solves the dual problem D! This fact is of enormous practical
value when we study sensitivity analysis.

4.1 Complementary Slackness

The Strong Duality Theorem tells us that optimality is equivalent to equality in the Weak
Duality Theorem. That is, x solves P and y solves D if and only if (x, y) is a P �D feasible
pair and

cTx = yTAx = bTy.

51



We now carefully examine the consequences of this equivalence. Note that the equation
cTx = yTAx implies that

(4.1) 0 = xT (ATy � c) =
nX

j=1

x
j

(
mX

i=1

a
ij

y
i

� c
j

).

In addition, primal and dual feasibility implies that

0  x
j

and 0 
mX

i=1

a
ij

y
i

� c
j

for j = 1, . . . , n,

respectively, and so

x
j

(
mX

i=1

a
ij

y
i

� c
j

) � 0 for j = 1, . . . , n.

Hence, the only way (4.1) can hold is if

x
j

(
mX

i=1

a
ij

y
i

� c
j

) = 0 for j = 1, . . . , n.

or equivalently,

(4.2) x
j

= 0 or
mX

i=1

a
ij

y
i

= c
j

or both for j = 1, . . . , n.

Similarly, yTAx = yT b tells us that

0 = yT (b� Ax) =
mX

i=1

y
i

(b
i

�
nX

j=1

a
ij

x
j

).

Again, and primal dual feasibility implies that

0  y
i

and 0  b
i

�
nX

j=1

a
ij

x
j

for i = 1, . . . ,m,

respectively. Thus, we must have

y
i

(b
i

�
nX

j=1

a
ij

x
j

) = 0 for j = 1, . . . , n,

or equivalently,

(4.3) y
i

= 0 or
nX

j=1

a
ij

x
j

= b
i

or both for i = 1, . . . ,m.

The two observations (4.2) and (4.3) combine to yield the following theorem.
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Theorem 4.8 (The Complementary Slackness Theorem) The vector x 2 Rn solves
P and the vector y 2 Rm solves D if and only if x is feasible for P and y is feasible for D
and

(i) either 0 = x
j

or
mP
i=1

a
ij

y
i

= c
j

or both for j = 1, . . . , n, and

(ii) either 0 = y
i

or
nP

j=1
a
ij

x
j

= b
i

or both for i = 1, . . . ,m.

Proof: If x solves P and y solves D, then by the Strong Duality Theorem we have equality
in the Weak Duality Theorem. But we have just observed that this implies (4.2) and (4.3)
which are equivalent to (i) and (ii) above.

Conversely, if (i) and (ii) are satisfied, then we get equality in the Weak Duality Theorem.
Therefore, by Theorem 4.2, x solves P and y solves D. ⌅

The Complementary Slackness Theorem can be used to develop a test of optimality for
a putative solution to P (or D). We state this test as a corollary.

Corollary 4.1 The vector x 2 Rn solves P if and only if x is feasible for P and there exists
a vector y 2 Rm feasible for D such that

(i) for each i 2 {1, 2, . . . ,m}, if
nP

j=1
a
ij

x
j

< b
i

, then y
i

= 0, and

(ii) for each j 2 {1, 2, . . . , n}, if 0 < x
j

, then
mP
i=1

a
ij

y
i

= c
j

.

Proof: (i) and (ii) implies equality in the Weak Duality Theorem. The primal feasibility
of x and the dual feasibility of y combined with Theorem 4.1 yield the result. ⌅

We now show how to apply this Corollary to test whether or not a given point solves
an LP. Recall that all of the nonbasic variables in an optimal BFS take the value zero,
and, if the BFS is nondegenerate, then all of the basic variables are nonzero. That is, m
of the variables in the optimal BFS are nonzero since every BFS has m basic variables.
Consequently, among the n original decision variables and the m slack variables, m variables
are nonzero at a nondegenerate optimal BFS. That is, among the constraints

0  x
j

j = 1, . . . , n,

0  x
n+i

= c
i

�
X

i2N

a
ij

x
j

i = 1, . . . ,m

m of them are strict inequalities. If we now look back at Corollary 4.1, we see that every
nondegenerate optimal basic feasible solution yields a total of m equations that an optimal
dual solution y must satisfy. That is, Corollary 4.1 tells us that the m optimal dual variables
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y
i

satisfy m equations. Therefore, we can write an m ⇥m system of equations to solve for
y. We illustrate this by applying Corollary 4.1 to the following LP

(4.10)

maximize 7x1 + 6x2 + 5x3 � 2x4 + 3x5

subject to x1 + 3x2 + 5x3 � 2x4 + 2x5  4
4x1 + 2x2 � 2x3 + x4 + x5  3
2x1 + 4x2 + 4x3 � 2x4 + 5x5  5
3x1 + x2 + 2x3 � x4 � 2x5  1

0  x1, x2, x3, x4, x5.

Does the point

xT = (x1, x2, x3, x4, x5) = (0,
4

3
,
2

3
,
5

3
, 0)

solves this LP? Following Corollary 4.1, if x is optimal, then x must be feasible for (4.10) and
there must exists a vector y 2 R4 feasible for the dual LP to (4.10) and which satisfies the
conditions given in items (i) and (ii) of the corollary. To check that x is primal feasible fist
observe that x is componentwise positive. Next, by plugging x into the remaining constraints
for (4.10) we see that equality is attained in each of the constraints except the third:

(0) + 3
�
4
3

�
+ 5

�
2
3

�
� 2

�
5
3

�
+ 2(0) = 4

4(0) + 2
�
4
3

�
� 2

�
2
3

�
+

�
5
3

�
+ (0) = 3

2(0) + 4
�
4
3

�
+ 4

�
2
3

�
� 2

�
5
3

�
+ 5(0) < 5

3(0) +
�
4
3

�
+ 2

�
2
3

�
�

�
5
3

�
� 2(0) = 1.

Hence, x is primal feasible. Moreover, by item (i) of Corollary 4.1, we see that the vector
y 2 R4 that we seek must have

(4.11) y3 = 0

due to the strict inequality in the associated primal constraint. Since x2 > 0, x3 > 0, and
x4 > 0, item (ii) of Corollary 4.1 implies that the vector y we are looking for must also
satisfy the dual equalities

(4.12) 3y1 + 2y2 + 4y3 + y4 = 6
5y1 � 2y2 + 4y3 + 2y4 = 5
�2y1 + y2 � 2y3 � y4 = �2.

Putting (4.11) and (4.12) together, we see that y must satisfy

2

664

3 2 4 1
5 �2 4 2
�2 1 �2 �1
0 0 1 0

3

775

0

BB@

y1
y2
y3
y4

1

CCA =

0

BB@

6
5
�2
0

1

CCA ,
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where the first three rows come from (4.12) and the last row comes from (4.11). We reduce
the associated augmented system as follows:

3 2 4 1 6
5 �2 4 2 5
�2 1 �2 �1 �2
0 0 1 0 0
3 2 0 1 6 r1 � 4r4
5 �2 0 2 5 r2 � 4r4
�2 1 0 �1 �2 r3 + 2r4
0 0 1 0 0
1 3 0 0 4 r1 + r3
1 0 0 0 1 r2 + 2r3
�2 1 0 �1 �2
0 0 1 0 0
0 3 0 0 3 r1 � r2
1 0 0 0 1
0 1 0 �1 0 r3 + 2r2
0 0 1 0 0
1 0 0 0 1 r2
0 1 0 0 1 1

3r1
0 0 1 0 0 r4
0 0 0 1 1 �r3 + 1

3r1

This gives yT = (1, 1, 0, 1) as the only possible vector y that can satisfy the requirements of
(i) and (ii) in Corollary 4.1. It remains to check that this y is dual feasible, that is, we need
check that y is feasible for the dual LP to (4.10):

minimize 4y1 + 3y2 + 5y3 + y4
subject to y1 + 4y2 + 2y3 + 3y4 � 7

3y1 + 2y2 + 4y3 + y4 � 6
5y1 � 2y2 + 4y3 + 2y4 � 5
�2y1 + y2 � 2y3 � y4 � �2
2y1 + y2 + 5y3 � 2y4 � 3

0  y1, y2, y3, y4.

Clearly, 0  y and, by construction, the 2nd, 3rd, and 4th of the linear inequality constraints
are satisfied with equality. Thus, it only remains to check the first and fifth inequalities:

(1) + 4(1) + 2(0) + 3(1) = 8 � 7
2(1) + (1) + 5(0) � 2(1) = 1 6� 3.

Therefore, y is not dual feasible. But as observed, this is the only possible vector y satisfying
(i) and (ii) of Corollary (4.1), hence xT = (0, 43 ,

2
3 ,

5
3 , 0) cannot be a solution to the LP (4.10).
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4.2 General Duality Theory

Thus far we have discussed duality theory as it pertains to LPs in standard form. Of course,
one can always transform any LP into one in standard form and then apply the duality
theory. However, from the perspective of applications, this is cumbersome since it obscures
the meaning of the dual variables. It is very useful to be able to compute the dual of an LP
without first converting to standard form. In this section we show how this can easily be
done. For this, we still make use of a standard form, but now we choose one that is much
more flexible:

P max
P

n

j=1 cjxj

subject to
P

n

j=1 aijxj

 b
i

i 2 IP
n

j=1 aijxj

= b
i

i 2 E

0  x
j

j 2 R .

Here the index sets I, E, and R are such that

I \ E = ;, I [ E = {1, 2, . . . ,m}, and R ⇢ {1, 2, . . . , n}.

We use the following primal-dual correspondences to compute the dual of an LP.

In the Dual In the Primal
Restricted Variables Inequality Constraints

Free Variables Equality Constraints
Inequality Constraints Restricted Variables
Equality Constraints Free Variables

Using these rules we obtain the dual to P :

D min
P

m

i=1 biyi
subject to

P
m

i=1 aijyi � c
j

j 2 RP
m

i=1 aijyi = c
j

j 2 F
0  y

i

i 2 I ,

where F = {1, 2, . . . , n} \R.
For example, the LP

maximize x1 � 2x2 + 3x3

subject to 5x1 + x2 � 2x3  8
�x1 + 5x2 + 8x3 = 10
x1  10, 0  x3

has dual
minimize 8y1 + 10y2 + 10y3
subject to 5y1 � y2 + y3 = 1

y1 + 5y2 = �2
�2y1 + 8y2 � 3
0  y1, 0  y3 .

The primal-dual pair P and D above are related by the following weak duality theorem.
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Theorem 4.9 [General Weak Duality Theorem]
Let A 2 Rm⇥n, b 2 Rm, and c 2 Rn. If x 2 Rn is feasible for P and y 2 Rm is feasible for
D, then

cTx  yTAx  bTy.

Moreover, the following statements hold.

(i) If P is unbounded, then D is infeasible.

(ii) If D is unbounded, then P is infeasible.

(iii) If x̄ is feasible for P and ȳ is feasibe for D with cT x̄ = bT ȳ, then x̄ is and optimal
solution to P and ȳ is an optimal solution to D.

Proof: Suppose x 2 Rn is feasible for P and y 2 Rm is feasible for D. Then

cTx =
X

j2R

c
j

x
j

+
X

j2F

c
j

x
j


X

j2R

(
mX

i=1

a
ij

y
i

)x
j

+
X

j2F

(
mX

i=1

a
ij

y
i

)x
j

(Since c
j


P

m

i=1 aijyi and x
j

� 0 for j 2 R

and c
j

=
P

m

i=1 aijyi for j 2 F .)

=
mX

i=1

nX

j=1

a
ij

y
i

x
j

= yTAx

=
X

i2I

(
nX

j=1

a
ij

x
j

)y
i

+
X

i2E

(
nX

j=1

a
ij

x
j

)y
i


X

i2I

b
i

y
i

+
X

i2E

b
i

y
i

(Since
P

n

j=1 aijxj

 b
i

and 0  y
i

for i 2 I

and
P

n

j=1 aijxj

= b
i

for i 2 E.

=
mX

i=1

b
i

y
i

= bTy .

⌅
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4.3 The Dual Simplex Algorithm

Consider the linear program

P maximize �4x1 � 2x2 � x3

subject to �x1 � x2 + 2x3  �3
�4x1 � 2x2 + x3  �4

x1 + x2 � 4x3  2
0  x1, x2, x3 ,

and its dual
D minimize �3y1 � 4y2 + 2y3

subject to �y1 � 4y2 + y3 � �4
�y1 � 2y2 + y3 � �2
2y1 + y2 � 4y3 � �1

0  y1, y2, y3 .

Problem P does not have feasible origin, and so it appears that one must apply Phase I of
the two phase simplex algorithm to obtain an initial basic feasible solution. On the other
hand, the dual problem D does have feasible origin. Is it possible to apply the simplex
algorithm to D and avoid Phase I altogether? Yes, however, we do it in a way that may at
first seem odd. We reverse the usual simplex procedure by choosing a pivot row first, and
then choosing the pivot column. The initial tableau for the problem P is

x1 x2 x3 x4 x5 x6

-1 -1 2 1 0 0 -3
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2
-4 -2 -1 0 0 0 0

A striking and important feature of this tableau is that every entry in the cost row is
nonpositive! This is exactly what we are trying to achieve by our pivots in the simplex
algorithm. This is a consequence of the fact that the dual problem D has feasible origin.
Any tableau having this property we will call dual feasible. Unfortunately, the tableau is not
feasible since some of the right hand sides are negative. Henceforth, we will say that such
a tableau is not primal feasible. That is, instead of saying that a tableau (or dictionary) is
feasible or infeasible in the usual sense, we will now say that the tableau is primal feasible,
respectively, primal infeasible.

Observe that if a tableau is both primal and dual feasible, then it must be optimal,
i.e. the basic feasible solution that it identifies is an optimal solution. We now describe
an implementation of the simplex algorithm, called the dual simplex algorithm, that can
be applied to tableaus that are dual feasible but not primal feasible. Essentially it is the
simplex algorithm applied to the dual problem but using the tableau structure associated
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with the primal problem. The goal is to use simplex pivots to attain primal feasibility while
maintaining dual feasibility.

Consider the tableau above. The right hand side coe�cients are �3, �4, and 2. These
correspond to the cost coe�cients of the dual objective. Note that this tableau also identifies
a basic feasible solution for the dual problem by setting the dual variable equal to the negative
of the cost row coe�cients associated with the slack variables:

0

@
y1
y2
y3

1

A =

0

@
0
0
0

1

A .

The dual variables are currently “nonbasic” and so their values are zero. Next note that
by increasing the value of either y1 or y2 we decrease the value of the dual objective since
the coe�cients of these variables are �3 and �4. In the simplex algorithm terminology, we
can pivot on either the first or second row to decrease the value of the dual objective. Let’s
choose the first row as our pivot row. How do we choose the pivot column? Similar to the
primal simplex algorithm, we choose the pivot column to maintain dual feasibility. Let us
have a look at what this means by examining the dual constraints:

(4.13)
�y1 �4y2 +y3 � �4
�y1 �2y2 +y3 � �2
2y1 +y2 �4y3 � �1.

If we plug y = 0 into these inequalities, we interpret the “dual slack” in the three equations
as r := ATy � c = (4, 2, 1)T , while the dual variables are y = (0, 0, 0)T . We call this the
dual basic feasible solution associated with this dual feasible tableau, with the components
of y being non-basic (having the value zero) and those of r basic. If we increase the value of
y1 from zero, we decrease the value of the dual objective since the y1 coe�cient in the dual
objective is �3. The dual inequalities in (4.13) limit the amount by which we can increase
y1 and preserve dual feasibility, i.e. r = ATy � c � 0 and y � 0. The first dual inequality
in (4.13) limits the increase in y1 to 4, the second limits the increase to 2, while the final
inequality does not limit y1 at all since the coe�cient on y1 is positive.

This process of computing the largest possible increase in a dual variable while maintain-
ing dual feasibility corresponds the similar process in the primal simplex algorithm where
we computed ratios and chose the minimum ratio. In the dual simplex algorithm we again
must compute ratios, but this time it is the ratios of the negative entries in the pivot row
with the corresponding cost row entries:

ratios for the first two columns are 4 and 2

-1 -1 2 1 0 0 -3  pivot row
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2
-4 -2 -1 0 0 0 0
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The smallest ratio is 2 so the pivot column is column 2 in the tableau, and the pivot element
is therefore the (1,2) entry of the tableau. Note that this process of choosing the pivot is
the reverse of how the pivot is chosen in the primal simplex algorithm. In the dual simplex
algorithm we first choose a pivot row, then compute ratios to determine the pivot column
which identifies the pivot. We now successive apply this process to the above tableau until
optimality is achieved.

-1 -1 2 1 0 0 -3  pivot row
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2
-4 -2 -1 0 0 0 0

1 1 -2 -1 0 0 3
-2 0 -3 -2 1 0 2
0 0 -2 1 0 1 -1  pivot row
-2 0 -5 -2 0 0 6
1 1 0 -2 0 -1 4
-2 0 0 -7/2 1 -3/2 7/2
0 0 1 -1/2 0 -1/2 1/2
-2 0 0 -9/2 0 -5/2 17/2 optimal

Therefore, the optimal solutions to P and D are

0

@
x1

x2

x3

1

A =

0

@
0
4
1/2

1

A and

0

@
y1
y2
y3

1

A =

0

@
9/2
0
5/2

1

A ,

respectively, with optimal value z = �17/2.
Next consider the LP

P maximize �4x1 � 2x2 � x3

subject to �x1 � x2 + 2x3  �3
�4x1 � 2x2 + x3  �4
x1 + x2 � x3  2

0  x1, x2, x3 .

This LP di↵ers from the previous LP only in the x3 coe�cient of the third linear inequality.
Let’s apply the dual simplex algorithm to this LP.
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-1 -1 2 1 0 0 -3  pivot row
-4 -2 1 0 1 0 -4
1 1 -1 0 0 1 2
-4 -2 -1 0 0 0 0

1 1 -2 -1 0 0 3
-2 0 -3 -2 1 0 2
0 0 1 1 0 1 -1  pivot row
-2 0 -5 -2 0 0 6

The first dual simplex pivot is given above. Repeating this process again, we see that
there is only one candidate for the pivot row in our dual simplex pivoting strategy. What
do we do now? It seems as though we are stuck since there are no negative entries in the
third row with which to compute ratios to determine the pivot column. What does this
mean? Recall that we chose the pivot row because the negative entry in the right hand side
implies that we can decrease the value of the dual objective by bring the dual variable y3
into the dual basis. The ratios are computed to preserve dual feasibility. In this problem,
the fact that there are no negative entries in the pivot row implies that we can increase the
value of y3 as much as we want without violating dual feasibility. That is, the dual problem
is unbounded below, and so, by the weak duality theorem, the primal problem must be
infeasible!

We will make extensive use of the dual simplex algorithm in our discussion of sensitivity
analysis in linear programming.
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