
1 LP Geometry

We now briefly turn to a discussion of LP geometry extending the geometric ideas developed
in Section 1 for 2 dimensional LPs to n dimensions. In this regard, the key geometric idea
is the notion of a hyperplane.

Definition 1.1 A hyperplane in R
n is any set of the form

H(a, β) = {x : aT x = β}

where a ∈ R
n, β ∈ R, and a 6= 0.

We have the following important fact whose proof we leave as an exercise for the reader.

Fact 1.2 H ⊂ R
n is a hyperplane if and only if the set

H − x0 = {x − x0 : x ∈ H}

where x0 ∈ H is a subspace of R
n of dimension (n − 1).

Every hyperplane H(a, β) generates two closed half spaces:

H+(a, β) = {x ∈ R
n : aT x ≥ β}

and
H−(a, β) = {x ∈ R

n : aT x ≤ β}.

Note that the constraint region for a linear program is the intersection of finitely many closed
half spaces: setting

Hj = {x : eT
j x ≥ 0} for j = 1, . . . , n

and

Hn+i = {x :

n∑

j=1

aijxj ≤ bi} for i = 1, . . . , m

we have

{x : Ax ≤ b, 0 ≤ x} =
n+m⋂

i=1

Hi.

Any set that can be represented in this way is called a convex polyhedron.

Definition 1.3 Any subset of R
n that can be represented as the intersection of finitely many

closed half spaces is called a convex polyhedron.

Therefore, a linear programming is simply the problem of either maximizing or minimizing
a linear function over a convex polyhedron. We now develop some of the underlying geometry
of convex polyhedra.
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Fact 1.4 Given any two points in R
n, say x and y, the line segment connecting them is

given by
[x, y] = {(1 − λ)x + λy : 0 ≤ λ ≤ 1}.

Definition 1.5 A subset C ∈ R
n is said to be convex if [x, y] ⊂ C whenever x, y ∈ C.

Fact 1.6 A convex polyhedron is a convex set.

We now consider the notion of vertex, or corner point, for convex polyhedra in R
2. For

this, consider the polyhedron C ⊂ R
2 defined by the constraints

c1 : −x1 − x2 ≤ −2(1.6)

c2 : 3x1 − 4x2 ≤ 0

c3 : −x1 + 3x2 ≤ 6.
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The vertices are v1 =
(

8
7
, 6

7

)
, v2 = (0, 2), and v3 =

(
24
5
, 18

5

)
. One of our goals in this section is

to discover an intrinsic geometric property of these vertices that generalizes to n dimensions
and simultaneously captures our intuitive notion of what a vertex is. For this we examine
our notion of convexity which is based on line segments. Is there a way to use line segments
to make precise our notion of vertex?
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Consider any of the vertices in the polyhedron C defined by (1.7). Note that any line
segment in C that contains one of these vertices must have the vertex as one of its end
points. Vertices are the only points that have this property. In addition, this property easily
generalizes to convex polyhedra in R

n. This is the rigorous mathematical formulation for
our notion of vertex that we seek. It is simple, has intuitive appeal, and yields the correct
objects in dimensions 2 and 3.

Definition 1.7 Let C be a convex polyhedron. We say that x ∈ C is a vertex of C if
whenever x ∈ [u, v] for some u, v ∈ C, it must be the case that either x = u or x = v.

This definition says that a point is a vertex if and only if whenever that point is a member
of a line segment contained in the polyhedron, then it must be one of the end points of the
line segment. In particular, this implies that vertices must lie in the boundary of the set and
the set must somehow make a corner at that point. Our next result gives an important and
useful characterization of the vertices of convex polyhedra.

Theorem 1.8 (Fundamental Representation Theorem for Vertices) A point x in the
convex polyhedron C = {x ∈ R

s | Tx ≤ g}, where T = (tij)s×n and g ∈ R
s, is a vertex of

this polyhedron if and only if there exist an index set I ⊂ {1, . . . , s} with such that x is the
unique solution to the system of equations

(1.7)
n∑

j=1

tijxj = gi i ∈ I.

Moreover, if x is a vertex, then one can take |I| = n in (1.7), where |I| denotes the number
of elements in I.

Proof: We first prove that if there exist an index set I ⊂ {1, . . . , s} such that x = x̄ is the
unique solution to the system of equations (1.7), then x̄ is a vertex of the polyhedron C. We
do this by proving the contraposition, that is, we assume that x̄ ∈ C is not a vertex and show
that it cannot be the unique solution to any system of the form (1.7) with I ⊂ {1, 2, . . . , s}.

If x̄ is not a vertex of C, then there exist u, v ∈ C and 0 < λ < 1 such that x̄ =
(1 − λ)u + λv. Let A(x) denote the set of active indices at x:

A(x) =

{
i

∣∣∣∣∣

n∑

j=1

tijxj = gi

}
.

For every i ∈ A(x̄)

(1.8)

n∑

j=1

tij x̄j = gi,

n∑

j=1

tijuj ≤ gi, and

n∑

j=1

tijvj ≤ gi.
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Therefore,

0 = gi −
n∑

j=1

tij x̄j

= (1 − λ)gi + λgi −

n∑

j=1

tij((1 − λ)u + λv)

= (1 − λ)

[
gi −

n∑

j=1

tijuj

]
+ λ

[
gi −

n∑

j=1

tijvj

]

≥ 0 .

Hence,

0 = (1 − λ)

[

gi −

n∑

j=1

tijuj

]

+ λ

[

gi −

n∑

j=1

tijvj

]

which implies that

gi =

n∑

j=1

tijuj and gi =

n∑

j=1

tijvj

since both
[
gi −

∑n

j=1 tijuj

]
and

[
gi −

∑n

j=1 tijvj

]
are non-negative. That is, A(x̄) ⊂ A(u)∩

A(v). Now if I ⊂ {1, 2, . . . , s} is such that (1.7) holds at x = x̄, then I ⊂ A(x̄). But then
(1.7) must also hold for x = u and x = v since A(x̄) ⊂ A(u) ∩ A(v). Therefore, x̄ is not a
unique solution to (1.7) for any choice of I ⊂ {1, 2, . . . , s}.

Let x̄ ∈ C. We now show that if x̄ is a vertex of C, then there exist an index set
I ⊂ {1, . . . , s} such that x = x̄ is the unique solution to the system of equations (1.7).
Again we establish this by contraposition, that is, we assume that if x̄ ∈ C is such that,
for every index set I ⊂ {1, 2, . . . , s} for which x = x̄ satisfies the system (1.7) there exists
w ∈ R

n with w 6= x̄ such that (1.7) holds with x = w, then x̄ cannot be a vertex of C . To
this end take I = A(x̄) and let w ∈ R

n with w 6= x̄ be such that (1.7) holds with x = w and
I = A(x̄), and set u = w − x̄. Since x̄ ∈ C, we know that

n∑

j=1

tij x̄j < gi ∀ i ∈ {1, 2, . . . , s} \ A(x̄) .

Hence, by continuity, there exists τ ∈ (0, 1] such that

(1.9)
n∑

j=1

tij(x̄j + tuj) < gi ∀ i ∈ {1, 2, . . . , s} \ A(x̄) and |t| ≤ τ̄ .

Also note that
n∑

j=1

tij(x̄j ± τuj) = (

n∑

j=1

tij x̄j) ± τ(

n∑

j=1

tijwj −

n∑

j=1

tij x̄j) = gi ± τ(gi − gi) = gi ∀ i ∈ A(x̄).
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Combining these equivalences with (1.9) we find that x̄+ τu and x̄−τu are both in C. Since
x = 1

2
(x + τu) + 1

2
(x − τu) and τu 6= 0, x̄ cannot be a vertex of C.

It remains to prove the final statement of the theorem. Let x̄ be a vertex of C and
let I ⊂ {1, 2, . . . , s} be such that x̄ is the unique solution to the system (1.7). First note
that since the system (1.7) is consistent and its solution unique, we must have |I| ≥ n;
otherwise, there are infinitely many solutions since the system has a non-trivial null space
when n > |I|. So we may as well assume that |I| > n. Let J ⊂ I be such that the vectors
ti· = (ti1, ti2, . . . , tin)T , i ∈ J is a maximally linearly independent subset of the set of vectors
ti· = (ti1, ti2, . . . , tin)T , i ∈ I. That is, the vectors ti· i ∈ J form a basis for the subspace
spanned by the vectors ti·, i ∈ I. Clearly, |J | ≤ n since these vectors reside in R

n and are
linearly independent. Moreover, each of the vectors tr· for r ∈ I \ J can be written as a
linear combination of the vectors ti· for i ∈ J ;

tr· =
∑

i∈J

λriti·, r ∈ I \ J .

Therefore,

gr = tTr·x̄ =
∑

i∈J

λrit
T
i· x̄ =

∑

i∈J

λrigi, r ∈ I \ J ,

which implies that any solution to the system

(1.10) tTi·x = gi, i ∈ J

is necessarily a solution to the larger system (1.7). But then the smaller system (1.10) must
have x̄ as its unique solution; otherwise, the system (1.7) has more than one solution. Finally,
since the set of solutions to (1.10) is unique and |J | ≤ n, we must in fact have |J | = n

which completes the proof. �

We now apply this result to obtain a characterization of the vertices for the constraint
region of an LP in standard form.

Corollary 1.1 A point x in the convex polyhedron described by the system of inequalities

Ax ≤ b and 0 ≤ x,

where A = (aij)m×n, is a vertex of this polyhedron if and only if there exist index sets
I ⊂ {1, . . . , m} and J ∈ {1, . . . , n} with |I| + |J | = n such that x is the unique solution to
the system of equations

n∑

j=1

aijxj = bi i ∈ I, and(1.9)

xj = 0 j ∈ J .
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Proof: Take

T =

[
A

−I

]
and g

[
b

0

]

in the previous theorem. �

Recall that the symbols |I| and |J | denote the number of elements in the sets I and
J , respectively. The constraint hyperplanes associated with these indices are necessarily a
subset of the set of active hyperplanes at the solution to (1.9).

Theorem 1.1 is an elementary yet powerful result in the study of convex polyhedra. We
make strong use of it in our study of the geometric properties of the simplex algorithm. As
a first observation, recall from Math 308 that the coefficient matrix for the system (1.9) is
necessarily non-singular if this n×n system has a unique solution. How do we interpret this
system geometrically, and why does Theorem 1.1 make intuitive sense?

To answer these questions, let us return to the convex polyhedron C defined by (1.7). In
this case, the dimension n is 2. Observe that each vertex is located at the intersection of
precisely two of the bounding constraint lines. Thus, each vertex can be represented as the
unique solution to a 2 × 2 system of equations of the form

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2,

where the coefficient matrix [
a11 a12

a21 a22

]

is non-singular. For the set C above, we have the following:

(a) The vertex v1 = (8
7
, 6

7
) is given as the solution to the system

−x1 − x2 = −2

3x1 − 4x2 = 0,

(b) The vertex v2 = (0, 2) is given as the solution to the system

−x1 − x2 = −2

−x1 + 3x2 = 6,

and

(c) The vertex v3 =
(

24
5
, 18

5

)
is given as the solution to the system

3x1 − 4x2 = 0

−x1 + 3x2 = 6.
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Theorem 1.1 indicates that any subsystem of the form (1.9) for which the associated
coefficient matrix is non-singular, has as its solution a vertex of the polyhedron

(1.10) Ax ≤ b, 0 ≤ x

if this solution is in the polyhedron. We now connect these ideas to the operation of the
simplex algorithm.

The system (1.10) describes the constraint region for an LP in standard form. It can be
expressed componentwise by

n∑

j=1

aijxj ≤ bi i = 1, . . . , m

0 ≤ xj j = 1, . . . , n.

The associated slack variables are defined by the equations

(1.11) xn+i = bi −

n∑

j=1

aijxj i = 1, . . . , m.

Let x̄ = (x̄1, . . . , x̄n+m) be any solution to the system (1.11) and set x̂ = (x̄1, . . . , x̄n) (x̂ gives
values for the decision variables associated with the underlying LP). Note that if for some
j ∈ J ⊂ {1, . . . , n} we have x̄j = 0, then the hyperplane

Hj = {x ∈ R
n : eT

j x = 0}

is active at x̂, i.e., x̂ ∈ Hj. Similarly, if for some i ∈ I ⊂ {1, 2, . . . , m} we have x̄n+i = 0,
then the hyperplane

Hn+i = {x ∈ R
n :

n∑

j=1

aijxj = bi}

is active at x̂, i.e., x̂ ∈ Hn+i. Next suppose that x̄ is a basic feasible solution for the LP

(P)
max cT x

subject to Ax ≤ b, 0 ≤ x.

Then it must be the case that n of the components x̄k, k ∈ {1, 2, . . . , n + m} are assigned to
the value zero since every dictionary has m basic and n non-basic variables. That is, every
basic feasible solution is in the polyhedron defined by (1.10) and is the unique solution to
a system of the form (1.9). But then, by Theorem 1.1, basic feasible solutions correspond
precisely to the vertices of the polyhedron defining the constraint region for the LP P!!
This amazing geometric fact implies that the simplex algorithm proceeds by moving from
vertex to adjacent vertex of the polyhedron given by (1.10). This is the essential underlying
geometry of the simplex algorithm for linear programming!
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By way of illustration, let us observe this behavior for the LP

(1.12)

maximize 3x1 + 4x2

subject to −2x1 + x2 ≤ 2
2x1 − x2 ≤ 4
0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

The constraint region for this LP is graphed on the next page.

V4

V5

V6

x1

V2

V1

1

1

2

2

3

3

V3

x2

The simplex algorithm yields the following pivots:
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-2 1 1 0 0 0 2 vertex
2 -1 0 1 0 0 4 V1 = (0, 0)
1 0 0 0 1 0 3
0 1 0 0 0 1 4
3 4 0 0 0 0 0

-2 1 1 0 0 0 2 vertex
0 0 1 1 0 0 6 V2 = (0, 2)
1 0 0 0 1 0 3

2 0 -1 0 0 1 2
11 0 -4 0 0 0 -8

0 1 0 0 0 1 4 vertex
0 0 1 1 0 0 6 V3 = (1, 4)

0 0 1
2

0 1 −1
2

2

1 0 −1
2

0 0 1
2

1

0 0 3
2

0 0 −11
2

-19

0 1 0 0 0 1 4 vertex
0 0 0 1 -2 1 2 V4 = (3, 4)
0 0 1 0 2 -1 4
1 0 0 0 1 0 3
0 0 0 0 -3 -4 -25

The Geometry of Degeneracy

We now give a geometric interpretation of degeneracy in linear programming. Recall that a
basic feasible solution, or vertex, is said to be degenerate if one or more of the basic variables
is assigned the value zero. In the notation of (1.11) this implies that more than n of the
hyperplanes Hk, k = 1, 2, . . . , n+m are active at this vertex. By way of illustration, suppose
we add the constraints

−x1 + x2 ≤ 3

and
x1 + x2 ≤ 7

to the system of constraints in the LP (1.12). The picture of the constraint region now looks
as follows:
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V4

V5

V6

x1

V2

V1

1

1

2

2

3

3

V3

x2

Notice that there are redundant constraints at both of the vertices V3 and V4. Therefore,
as we pivot we should observe that the tableaus associated with these vertices are degenerate.
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-2 1© 1 0 0 0 0 0 2 vertex
2 -1 0 1 0 0 0 0 4 V1 = (0, 0)
-1 1 0 0 1 0 0 0 3
1 1 0 0 0 1 0 0 7
1 0 0 0 0 0 1 0 3
0 1 0 0 0 0 0 1 4
3 4 0 0 0 0 0 0 0

-2 1 1 0 0 0 0 0 2 vertex
0 0 1 1 0 0 0 0 6 V2 = (0, 2)
1© 0 -1 0 1 0 0 0 1
3 0 -1 0 0 1 0 0 5
1 0 0 0 0 0 1 0 3
2 0 -1 0 0 0 0 1 2
11 0 -4 0 0 0 0 0 -8

0 1 -1 0 2 0 0 0 4 vertex
0 0 1 1 0 0 0 0 6 V3 = (1, 4)
1 0 -1 0 1 0 0 0 1
0 0 2 0 -3 1 0 0 2
0 0 1 0 -1 0 1 0 2
0 0 1© 0 -2 0 0 1 0 degenerate
0 0 7 0 -11 0 0 0 -19

0 1 0 0 0 0 0 1 4 vertex
0 0 0 1 2 0 0 1 6 V3 = (1, 4)
1 0 0 0 -1 0 0 1 1
0 0 0 0 1© 1 0 -2 2
0 0 0 0 1 0 1 -1 2
0 0 1 0 -2 0 0 1 0 degenerate
0 0 0 0 3 0 0 -7 -19

0 1 0 0 0 0 0 1 4 vertex
0 0 0 1 0 -2 0 5 2 V4 = (3, 4)
1 0 0 0 0 1 0 -1 3
0 0 0 0 1 1 0 -2 2 optimal
0 0 0 0 0 -1 1 1 0 degenerate
0 0 1 0 0 2 0 -3 4
0 0 0 0 0 -3 0 -1 -25

In this way we see that a degenerate pivot arises when we represent the same vertex
as the intersection point of a different subset of n active hyperplanes. Cycling implies that
we are cycling between different representations of the same vertex. In the example given
above, the third pivot is a degenerate pivot. In the third tableau, we represent the vertex
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V3 = (1, 4) as the intersection point of the hyperplanes

−2x1 + x2 = 2 (since x3 = 0)

−x1 + x2 =3. (since x5 = 0)and

The third pivot brings us to the 4th tableau where the vertex V3 = (1, 4) is now represented
as the intersection of the hyperplanes

−x1 + x2 = 3 (since x5 = 0)

x2 =4 (since x8 = 0).and

Observe that the final tableau is both optimal and degenerate. Just for the fun of it let’s
try pivoting on the only negative entry in the 5th row of this tableau (we choose the 5th row
since this is the row that exhibits the degeneracy). Pivoting we obtain the following tableau.

0 1 0 0 0 0 0 0 4
0 0 0 1 0 0 -2 3 2
1 0 0 0 0 0 1 0 3
0 0 0 0 1 0 1 -1 2
0 0 0 0 0 1 -1 -1 0
0 0 1 0 0 0 2 -1 4
0 0 0 0 0 0 -2 -3 -25

Observe that this tableau is also optimal, but it provides us with a different set of optimal
dual variables. In general, a degenerate optimal tableau implies that the dual problem has
infinitely many optimal solutions.

Fact: If an LP has an optimal tableau that is degenerate, then the dual LP has infinitely
many optimal solutions.

We will arrive at an understanding of why this fact is true after we examine the geometry
of duality.

The Geometry of Duality

Consider the linear program

(1.13)

maximize 3x1 + x2

subject to −x1 + 2x2 ≤ 4
3x1 − x2 ≤ 3
0 ≤ x1, x2.

This LP is solved graphically below.

12



n2 = (3,−1)

n1 = (−1, 2)

c = (3, 1)

1

1

3

3

2

2

The solution is x = (2, 3). In the picture, the vector n1 = (−1, 2) is the normal to the
hyperplane

−x1 + 2x2 = 4,

the vector n2 = (3,−1) is the normal to the hyperplane

3x1 − x2 = 3,

and the vector c = (3, 1) is the objective normal. Geometrically, the vector c lies between the
vectors n1 and n2. That is to say, the vector c can be represented as a non-negative linear
combination of n1 and n2: there exist y1 ≥ 0 and y2 ≥ 0 such that

c = y1n1 + y2n2,

or equivalently,
(

3
1

)
= y1

(
−1
2

)
+ y2

(
3
−1

)

=

[
−1 3
2 −1

] [
y1

y2

]
.

Solving for (y1, y2) we have
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-1 3 3
2 -1 1
1 -3 -3
0 5 7
1 -3 -3
0 1 7

5

1 0 6
5

0 1 7
5

or y1 = 6
5
, y2 = 7

5
. I claim that the vector y = (6

5
, 7

5
) is the optimal solution to the dual!

Indeed, this result follows from the complementary slackness theorem and gives another way
to recover the solution to the dual from the solution to the primal, or equivalently, to check
whether a point that is feasible for the primal is optimal for the primal.

Theorem 1.14 (Geometric Duality Theorem) Consider the LP

(P)
maximize cT x

subject to Ax ≤ b, 0 ≤ x.

where A is an m × n matrix. Given a vector x̄ that is feasible for P, define

Z(x̄) = {j ∈ {1, 2, . . . , n} : x̄j = 0} and E(x̄) = {i ∈ {1, . . . , m} :

n∑

j=1

aij x̄j = bi}.

The indices Z(x̄) and E(x̄) are the active indices at x̄ and correspond to the active hyper-
planes at x̄. Then x̄ solves P if and only if there exist non-negative scalars rj, j ∈ Z(x̄) and
yi, i ∈ E(x̄) such that

(1.14) c = −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

yiai•

where for each i = 1, . . . , m, ai• = (ai1, ai2, . . . , ain)T is the ith column of the matrix AT ,
and, for each j = 1, . . . , n, ej is the jth unit coordinate vector. Moreover, the vector ȳ ∈ R

m

given by

(1.15) ȳi =

{
yi for i ∈ E(x̄)
0 otherwise ,

solves the dual problem

(D)
maximize bT x

subject to AT y ≥ c, 0 ≤ y.
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Proof: Let us first suppose that x̄ solves P. Then there is a ȳ ∈ R
n solving the dual D

with cT x̄ = ȳT Ax̄ = bT ȳ by the Strong Duality Theorem. We need only show that there
exist rj, j ∈ Z(x̄) such that (1.14) and (1.15) hold. The Complementary Slackness Theorem
implies that

(1.16) ȳi = 0 for i ∈ {1, 2, . . . , m} \ E(x̄)

and

(1.17)
m∑

i=1

ȳiaij = cj for j ∈ {1, . . . , n} \ Z(x̄).

Note that (1.16) implies that ȳ satisfies (1.15). Define r = AT ȳ − c. Since ȳ is dual feasible
we have both r ≥ 0 and ȳ ≥ 0. Moreover, by (1.17), rj = 0 for j ∈ {1, . . . , n} \ Z(x̄), while

rj =

n∑

i=1

ȳiaij − cj ≥ 0 for j ∈ Z(x̄),

or equivalently,

(1.18) cj = −rj +

m∑

i=1

ȳiaij for j ∈ Z(x̄).

Combining (1.18) with (1.17) and (1.16) gives

c = −
∑

j∈Z(x̄)

rjej + AT ȳ = −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

ȳiai•,

so that (1.14) and (1.15) are satisfied with ȳ solving D.
Next suppose that x̄ is feasible for P with rj, j ∈ Z(x̄) and ȳi, i ∈ E(x̄) non-negative

and satisfying (1.14). We must show that x̄ solves P and ȳ solves D. Let ȳ ∈ R
m be such

that its components are given by the ȳi’s for i ∈ E(x̄) and by (1.15) otherwise. Then the
non-negativity of the rj’s in (1.14) imply that

AT ȳ =
∑

i∈E(x̄)

ȳiai• ≥ −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

ȳiai• = c,

so that ȳ is feasible for D. Moreover,

cT x̄ = −
∑

j∈Z(x̄)

rje
T
j x̄ +

∑

i∈E(x̄)

ȳia
T
i•x̄ = ȳT Ax̄ = ȳT b,

where the final equality follows from the definition of the vector ȳ and the index set E(x̄).
Hence, by the Weak Duality Theorem x̄ solves P and ȳ solves D as required. �
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Remark: As is apparent from the proof, the Geometric Duality Theorem is nearly equivalent
to the complementary Slackness Theorem even though it provides a superficially different
test for optimality.

We now illustrate how to apply this result with an example. Consider the LP

(1.15)

maximize x1 +x2 −x3 +2x4

subject to x1 +3x2 −2x3 +4x4 ≤ −3
4x2 −2x3 +3x4 ≤ 1
−x2 +x3 −x4 ≤ 2

−x1 −x2 +2x3 −x5 ≤ 4
0 ≤ x1, x2, x3, x4 .

Does the vector x̄ = (1, 0, 2, 0)T solve this LP? If it does, then according to Theorem 1.14
we must be able to construct the solution to the dual of (1.15) by representing the objective
vector c = (1, 1,−1, 2)T as a non-negative linear combination of the outer normals to the
active hyperplanes at x̄. Since the active hyperplanes are

x1 + 3x2 − 2x3 + 4x4 = −3
− x2 + x3 − x4 = 2
− x2 = 0

− x4 = 0.

This means that y2 = y4 = 0 and y1 and y3 are obtained by solving




1 0 0 0
3 −1 −1 0
−2 1 0 0
4 −1 0 −1









y1

y3

r2

r4



 =





1
1
−1
2



 .

Row reducing, we get
1 0 0 0 1
3 −1 −1 0 1
−2 1 0 0 −1
4 −1 0 −1 2
1 0 0 0 1
0 1 1 0 2
0 1 0 0 1
0 1 0 1 2

.

Therefore, y1 = 1 and y3 = 1. We now check to see if the vector ȳ = (1, 0, 1, 0) does indeed
solve the dual to (1.15);

(1.16)

minimize −3y1 + y2 + 2y3 + 4y4

subject to y1 − y4 ≥ 1
3y1 + 4y2 − y3 − y4 ≥ 1

−2y1 − 2y2 + y3 + 2y4 ≥ −1
4y1 + 3y2 − y3 − y4 ≥ 2

0 ≤ y1, y2, y3, y4.
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Clearly, ȳ is feasible for (1.16). In addition,

bT ȳ = −1 = cT x̄.

Therefore, ȳ solves (1.16) and x̄ solves (1.15) by the Weak Duality Theorem.
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