Math 407: Linear Optimization

Professor James Burke

Math Dept, University of Washington

Final Exam Comments

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
Use (A, b, c) above to state the structure of an LP in standard form with c used in the objective. Also state the form of the dual.
(Primal) \mathcal{P}
(Dual) \mathcal{D}

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
Use (A, b, c) above to state the structure of an LP in standard form with c used in the objective. Also state the form of the dual.
(Primal) \mathcal{P}
(Dual) \mathcal{D}
$\max c^{T} x$
s.t. $A x \leq b$

$$
0 \leq x
$$

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
Use (A, b, c) above to state the structure of an LP in standard form with c used in the objective. Also state the form of the dual.
(Primal) \mathcal{P}
(Dual) \mathcal{D}
$\max c^{T} x$
$\min b^{T} y$
s.t. $A x \leq b$
$0 \leq x$
s.t. $A^{T} y \geq c$
$0 \leq y$

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
(Primal) \mathcal{P}

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

(Dual) \mathcal{D}
$\min b^{T} y$
s.t. $A^{T} y \geq c$

$$
0 \leq y
$$

Give the initial dictionary for this LP.

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
(Primal) \mathcal{P}

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

(Dual) \mathcal{D}
$\min b^{T} y$
s.t. $A^{T} y \geq c$

$$
0 \leq y
$$

Give the initial dictionary for this LP.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
(Primal) \mathcal{P}
(Dual) \mathcal{D}
$\max c^{T} x$
s.t. $A x \leq b$
$0 \leq x$
$\min b^{T} y$
s.t. $A^{T} y \geq c$
$0 \leq y$
Give the initial simplex tableau for this LP.

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
(Primal) \mathcal{P}
(Dual) \mathcal{D}
$\max c^{T} x$
$\min b^{T} y$
s.t. $A x \leq b$
$0 \leq x$

$$
\begin{gathered}
\text { s.t. } A^{T} y \geq c \\
0 \leq y
\end{gathered}
$$

Give the initial simplex tableau for this LP.

$$
\left[\begin{array}{rrr|r}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
(Primal) \mathcal{P}
$\max c^{\top} x$
s.t. $A x \leq b$
$0 \leq x$
(Dual) \mathcal{D}
$\min b^{T} y$
s.t. $A^{T} y \geq c$

$$
0 \leq y
$$

Give the initial simplex tableau for this LP.

$$
\left[\begin{array}{rrr|r}
0 & A & I & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

What is the relationship between the initial dictionary and the initial simplex tableau?

Dictionaries and Simplex Tableaus

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$.
(Primal) \mathcal{P}
$\max c^{T} x$

$$
\text { s.t. } A x \leq b
$$

$$
0 \leq x
$$

(Dual) \mathcal{D}

$$
\min b^{T} y
$$

$$
\text { s.t. } A^{T} y \geq c
$$

$$
0 \leq y
$$

Give the initial simplex tableau for this LP.

$$
\left[\begin{array}{rrr|r}
0 & A & I & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

What is the relationship between the initial dictionary and the initial simplex tableau?
The tableau is the augmented matrix for the dictionary.

Dictionaries and Simplex Tableaus

The initial dictionary.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- How is the basic solution for this initial dictionary identified?

Dictionaries and Simplex Tableaus

The initial dictionary.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- How is the basic solution for this initial dictionary identified? Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.

Dictionaries and Simplex Tableaus

The initial dictionary.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- How is the basic solution for this initial dictionary identified? Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.
- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?

Dictionaries and Simplex Tableaus

The initial dictionary.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- How is the basic solution for this initial dictionary identified? Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.
- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?
$b_{i} \geq 0 i=1, \ldots, m$

Dictionaries and Simplex Tableaus

The initial dictionary.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- How is the basic solution for this initial dictionary identified? Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.
- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?
$b_{i} \geq 0 i=1, \ldots, m$
- Can one always start the primal simplex algorithm on this dictionary?

Dictionaries and Simplex Tableaus

The initial dictionary.

$$
\begin{aligned}
x_{n+i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
z & =\quad \sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

- How is the basic solution for this initial dictionary identified? Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.
- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?
$b_{i} \geq 0 i=1, \ldots, m$
- Can one always start the primal simplex algorithm on this dictionary? NO! Need $b \geq 0$. The primal simplex algorithm requires primal feasibility for implementation.

Dictionaries and Simplex Tableaus

The initial tableau.

$$
\left[\begin{array}{rrr|r}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

- How is the basic solution for this initial tableau identified?

Dictionaries and Simplex Tableaus

The initial tableau.

$$
\left[\begin{array}{rrr|r}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

- How is the basic solution for this initial tableau identified?

Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.

Dictionaries and Simplex Tableaus

The initial tableau.

$$
\left[\begin{array}{rrr|r}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

- How is the basic solution for this initial tableau identified?

Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.

- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?

Dictionaries and Simplex Tableaus

The initial tableau.

$$
\left[\begin{array}{rrr|r}
0 & A & I & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

- How is the basic solution for this initial tableau identified?

Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.

- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?
$b_{i} \geq 0 i=1, \ldots, m$

Dictionaries and Simplex Tableaus

The initial tableau.

$$
\left[\begin{array}{rrr|r}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

- How is the basic solution for this initial tableau identified?

Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.

- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?
$b_{i} \geq 0 i=1, \ldots, m$
- How does one start the primal simplex algorithm on this tableau?

Dictionaries and Simplex Tableaus

The initial tableau.

$$
\left[\begin{array}{rrr|r}
0 & A & I & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]
$$

- How is the basic solution for this initial tableau identified?

Set the variables $x_{j}=0 j=1, \ldots, n$ which then specifies that $x_{n+i}=b_{i} i=1, \ldots m$.

- Under what conditions is the basic solution identified by the initial dictionary a basic feasible solution?
$b_{i} \geq 0 i=1, \ldots, m$
- How does one start the primal simplex algorithm on this tableau?

If $b \not \geq 0$ start phase 1 of the primal simplex algorithm and solve the auxiliary problem; else, proceed as usual by locating incoming column.

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{gathered}
\max c^{\top} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

$$
\begin{aligned}
x_{i} & =\hat{b}_{i}-\sum_{j \in N}^{n} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N}^{n} \hat{c}_{j} x_{j}
\end{aligned}
$$

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
0 & \leq x
\end{aligned}
$$

$$
\begin{aligned}
x_{i} & =\hat{b}_{i}-\sum_{j \in N}^{n} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N}^{n} \hat{c}_{j} x_{j}
\end{aligned}
$$

where B is a basis for the LP, that is B and N form a partition of $\{1, \ldots, n+m\}$ with B having m elements, and the set of solutions to this linear system coincides with that of the initial dictionary.

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{gathered}
\max c^{\top} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

$$
\begin{aligned}
x_{i} & =\hat{b}_{i}-\sum_{j \in N}^{n} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N}^{n} \hat{c}_{j} x_{j}
\end{aligned}
$$

where B is a basis for the LP, that is B and N form a partition of $\{1, \ldots, n+m\}$ with B having m elements, and the set of solutions to this linear system coincides with that of the initial dictionary.

- How many dictionaries are associated with the basis B ?

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{gathered}
\max c^{\top} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

$$
\begin{aligned}
x_{i} & =\hat{b}_{i}-\sum_{j \in N}^{n} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N}^{n} \hat{c}_{j} x_{j}
\end{aligned}
$$

where B is a basis for the LP, that is B and N form a partition of $\{1, \ldots, n+m\}$ with B having m elements, and the set of solutions to this linear system coincides with that of the initial dictionary.

- How many dictionaries are associated with the basis B ?

One! Every basis uniquely identifies an associated dictionary.

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{gathered}
\max c^{\top} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

$$
\begin{aligned}
x_{i} & =\hat{b}_{i}-\sum_{j \in N}^{n} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N}^{n} \hat{c}_{j} x_{j}
\end{aligned}
$$

where B is a basis for the LP, that is B and N form a partition of $\{1, \ldots, n+m\}$ with B having m elements, and the set of solutions to this linear system coincides with that of the initial dictionary.

- How many dictionaries are associated with the basis B ?

One! Every basis uniquely identifies an associated dictionary.

- If $B \subset\{1, \ldots, n+m\}$ has m elements, is B a basis?

Dictionaries and Simplex Tableaus

What is the structure of a general dictionary for the LP

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

$$
\begin{aligned}
x_{i} & =\hat{b}_{i}-\sum_{j \in N}^{n} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N}^{n} \hat{c}_{j} x_{j}
\end{aligned}
$$

where B is a basis for the LP, that is B and N form a partition of $\{1, \ldots, n+m\}$ with B having m elements, and the set of solutions to this linear system coincides with that of the initial dictionary.

- How many dictionaries are associated with the basis B ?

One! Every basis uniquely identifies an associated dictionary.

- If $B \subset\{1, \ldots, n+m\}$ has m elements, is B a basis?

Not necessarily since solution sets may not coincide.

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

Dictionaries and Simplex Tableaus

$$
D_{B}: \quad \begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned}
$$

- What is the basic solution identified by D_{B} ?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

Dictionaries and Simplex Tableaus

$$
D_{B}: \quad \begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible? $\quad \hat{b}_{i} \geq 0 i \in B$.

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: \quad & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t. $\hat{b}_{i}=0$.

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t. $\hat{b}_{i}=0$.
- When is D_{B} dual degenerate?

Dictionaries and Simplex Tableaus

$$
\begin{array}{ll}
D_{B}: & x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
z & =v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{array}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.
-When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.

- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t.
$\hat{b}_{i}=0$.
- When is D_{B} dual degenerate? D_{B} is dual feasible $\left(\hat{c}_{N} \leq 0\right)$ and $\exists j \in N$ s.t. $\hat{c}_{j}=0$.

Dictionaries and Simplex Tableaus

$$
D_{B}: \quad \begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t.
$\hat{b}_{i}=0$.
- When is D_{B} dual degenerate? D_{B} is dual feasible $\left(\hat{c}_{N} \leq 0\right)$ and $\exists j \in N$ s.t. $\hat{c}_{j}=0$.
- What must be true about D_{B} to show that the LP is unbounded?

Dictionaries and Simplex Tableaus

$$
D_{B}: \quad \begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t.
$\hat{b}_{i}=0$.
- When is D_{B} dual degenerate? D_{B} is dual feasible $\left(\hat{c}_{N} \leq 0\right)$ and $\exists j \in N$ s.t. $\hat{c}_{j}=0$.
- What must be true about D_{B} to show that the LP is unbounded?
$\hat{b} \geq 0$ and $\exists j_{0} \in N$ s.t. $\hat{c}_{j_{0}}>0$ with $\hat{a}_{i_{j}} \leq 0 \forall i \in B$.

Dictionaries and Simplex Tableaus

$$
D_{B}: \quad \begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.

- When is this basic solution a basic feasible solution? $\quad \hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t.
$\hat{b}_{i}=0$.
- When is D_{B} dual degenerate? D_{B} is dual feasible ($\hat{c}_{N} \leq 0$) and $\exists j \in N$ s.t. $\hat{c}_{j}=0$.
- What must be true about D_{B} to show that the LP is unbounded?
$\hat{b} \geq 0$ and $\exists j_{0} \in N$ s.t. $\hat{c}_{j_{0}}>0$ with $\hat{a}_{i_{j}} \leq 0 \forall i \in B$.
- What must be true about D_{B} to show that the LP is infeasible?

Dictionaries and Simplex Tableaus

$$
D_{B}: \quad \begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned}
$$

- What is the basic solution identified by D_{B} ?

Set $x_{j}=0 j \in N$ so that $x_{i}=\hat{b}_{i} i \in B$.
-When is this basic solution a basic feasible solution?

$$
\hat{b}_{i} \geq 0 i \in B .
$$

- When is D_{B} primal feasible?
$\hat{b}_{i} \geq 0 i \in B$.
- When is D_{B} dual feasible? $\quad \hat{c}_{j} \leq 0 j \in N$.
- When is D_{B} optimal?
$\hat{b}_{i} \geq 0 i \in B$ and $\hat{c}_{j} \leq 0 j \in N$, i.e. it is both primal and dual feasible.
- When is D_{B} primal degenerate? D_{B} is primal feasible ($\hat{b}_{B} \geq 0$) and $\exists i \in B$ s.t.
$\hat{b}_{i}=0$.
- When is D_{B} dual degenerate? D_{B} is dual feasible $\left(\hat{c}_{N} \leq 0\right)$ and $\exists j \in N$ s.t. $\hat{c}_{j}=0$.
- What must be true about D_{B} to show that the LP is unbounded?
$\hat{b} \geq 0$ and $\exists j_{0} \in N$ s.t. $\hat{c}_{j_{0}}>0$ with $\hat{a}_{i_{j}} \leq 0 \forall i \in B$.
- What must be true about D_{B} to show that the LP is infeasible?
D_{B} can only show the LP is infeasible by showing that the dual is unbounded. That is, D_{B} is dual feasible ($\hat{c}_{N} \leq 0$) and $\exists i_{0} \in B$ s.t. $\hat{b}_{i_{0}}<0$ with $\hat{a}_{i_{0} j} \geq 0 \forall j \in N$.

Dictionaries and Simplex Tableaus

What is the structure of a general simplex tableau for the LP

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

Dictionaries and Simplex Tableaus

What is the structure of a general simplex tableau for the LP

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
0 \leq x
\end{gathered}
$$

The general simplex tableau T is obtained by multiplying the initial simplex tableau on the left by a product of Gauss-Jordan elimination matrices. It was shown in class that we can display this by the formula

$$
T=\left[\begin{array}{cc}
R & 0 \\
-y^{T} & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & A & I & b \\
-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

In particular, R is invertible. It is called the record matrix.

Dictionaries and Simplex Tableaus

Dictionary

- What is the relationship between a dictionary and its associated simplex tableau?

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{gathered}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{gathered} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{T} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{gathered}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{gathered} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{\top} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible?

Dictionaries and Simplex Tableaus

Dictionary

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{gathered}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{gathered} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{\top} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!
- Is it possible for $0 \leq y$ but $A^{T} y \nsupseteq c$?

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{gathered}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{gathered} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{\top} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!
- Is it possible for $0 \leq y$ but $A^{T} y \nsupseteq c$? Yes!

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{gathered}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{gathered} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!
- Is it possible for $0 \leq y$ but $A^{T} y \nsupseteq c$? Yes!
- Is $-y^{\top} b>0$ or is $-y^{\top} b<0$?

Dictionaries and Simplex Tableaus

Dictionary

$$
\left.\begin{array}{c}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \quad i \in B \quad\left[\begin{array} { c c c c }
{ 0 } & { R A } & { R } & { R b } \\
{ z } & { = v + } & { \sum _ { j \in N } \hat { c } _ { j } x _ { j } }
\end{array} \quad \left[\begin{array}{c}
T \\
-1
\end{array} c^{T}-y^{T} A\right.\right. \\
-y^{T} \\
-y^{\top} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!
- Is it possible for $0 \leq y$ but $A^{T} y \nsupseteq c$? Yes!
- Is $-y^{\top} b>0$ or is $-y^{\top} b<0$? It can be either. This is the value of the objective at the current basic solution.

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{aligned}
& x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
& z=v+\sum_{j \in N} \hat{c}_{j} x_{j}
\end{aligned} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!
- Is it possible for $0 \leq y$ but $A^{T} y \nsupseteq c$? Yes!
- Is $-y^{\top} b>0$ or is $-y^{\top} b<0$? It can be either. This is the value of the objective at the current basic solution.
- If one starts the primal simplex algorithm from a primal feasible tableau, when is it possible for $(R b)_{i}<0$ for some i ?

Dictionaries and Simplex Tableaus

Dictionary

$$
\begin{gathered}
x_{i}=\hat{b}_{i}-\sum_{j \in N} \hat{a}_{i j} x_{j} \\
z= \\
z= \\
v+ \\
\sum_{j \in N} \hat{c}_{j} x_{j}
\end{gathered} \quad i \in B \quad\left[\begin{array}{cccc}
0 & R A & R & R b \\
-1 & c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the relationship between a dictionary and its associated simplex tableau?

The tableau is the augmented matrix for the dictionary.

- Is it possible for a tableau to be dual feasible but not primal feasible? Yes!
- Is it possible for $0 \leq y$ but $A^{T} y \nsupseteq c$? Yes!
- Is $-y^{\top} b>0$ or is $-y^{\top} b<0$? It can be either. This is the value of the objective at the current basic solution.
- If one starts the primal simplex algorithm from a primal feasible tableau, when is it possible for $(R b)_{i}<0$ for some i ?
NEVER! The primal simplex algorithm only applies to primal feasible dictionaries and tableaus and it is designed to preserve primal feasibility on every pivot.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the ith column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{\top} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the ith column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the ith column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the ith column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $\quad c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $\quad c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{\top} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the ith column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the ith column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.
- When is T dual degenerate?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $\quad c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.
- When is T dual degenerate? $\left(c^{T}-y^{T} A,-y^{T}\right) \leq 0$ and \exists a nonbasic i_{0} s.t. $\left(c^{T}-y^{T} A,-y^{T}\right)_{i_{0}}=0$.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{\top} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.
- When is T dual degenerate? $\left(c^{\top}-y^{\top} A,-y^{\top}\right) \leq 0$ and \exists a nonbasic i_{0} s.t. $\left(c^{T}-y^{\top} A,-y^{\top}\right)_{i_{0}}=0$.
- When does T show the LP to be unbounded?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{\top} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.
- When is T dual degenerate? $\left(c^{T}-y^{\top} A,-y^{\top}\right) \leq 0$ and \exists a nonbasic i_{0} s.t. $\left(c^{T}-y^{\top} A,-y^{\top}\right)_{i_{0}}=0$.
- When does T show the LP to be unbounded?
$R b \geq 0$ and $\exists j_{0}$ s.t. $\left(c^{T}-y^{T} A,-y^{T}\right)_{j_{0}}>0$ and the j_{0} column of $[R A R]$ is non-positive.

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $\quad c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{\top} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.
- When is T dual degenerate? $\left(c^{T}-y^{\top} A,-y^{\top}\right) \leq 0$ and \exists a nonbasic i_{0} s.t. $\left(c^{T}-y^{\top} A,-y^{\top}\right)_{i_{0}}=0$.
- When does T show the LP to be unbounded?
$R b \geq 0$ and $\exists j_{0}$ s.t. $\left(c^{T}-y^{\top} A,-y^{T}\right)_{j_{0}}>0$ and the j_{0} column of $[R A R]$ is non-positive.
\bullet When does T show the LP to be infeasible?

Dictionaries and Simplex Tableaus

$$
T=\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{T} b
\end{array}\right]
$$

- What is the basic solution identified by T ?

Set $x_{j}=0 j \in N$ so that for $i \in B, x_{i}=(R b)_{r}$ if the i th column of T is e_{r} the r th unit coordinate vector (or, equivalently, the r th column of the identity matrix).

- When is this basic solution a basic feasible solution? $R b \geq 0$.
- When is T primal feasible? $R b \geq 0$.
- When is T dual feasible? $\quad c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, or equivalently, $A^{T} y \geq c$ and $0 \leq y$ (i.e. y dual feasible).
- When is T optimal? $R b \geq 0, c^{T}-y^{T} A \leq 0$ and $-y \leq 0$, i.e. it is primal-dual feasible.
- When is T primal degenerate? $R b \geq 0$ and $\exists i$ s.t. $(R b)_{i}=0$.
- When is T dual degenerate? $\left(c^{T}-y^{T} A,-y^{T}\right) \leq 0$ and \exists a nonbasic i_{0} s.t. $\left(c^{T}-y^{\top} A,-y^{\top}\right)_{i_{0}}=0$.
- When does T show the LP to be unbounded?
$R b \geq 0$ and $\exists j_{0}$ s.t. $\left(c^{T}-y^{T} A,-y^{T}\right)_{j_{0}}>0$ and the j_{0} column of $[R A R]$ is non-positive.
- When does T show the LP to be infeasible?

Only by showing that the dual is unbounded. That is, T is dual feasible $\left(\left(c^{T}-y^{T} A,-y^{T}\right)^{T} \leq 0\right)$ and $\exists i_{0}$ such that $(R b)_{i_{0}}<0$ with $\hat{a}_{i_{0} j} \geq 0, j=1, \ldots, n+m$.

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

- When does phase I of the primal simplex algorithm apply to this LP?

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

- When does phase I of the primal simplex algorithm apply to this LP? Phase I applies only if $\exists i_{0}$ s.t. $b_{i_{0}}<0$, and $\exists j_{0}$ s.t. $c_{i_{0}}>0$.

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

- When does phase I of the primal simplex algorithm apply to this LP? Phase I applies only if $\exists i_{0}$ s.t. $b_{i_{0}}<0$, and $\exists j_{0}$ s.t. $c_{i_{0}}>0$.
- State the auxiliary problem in component form

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

- When does phase I of the primal simplex algorithm apply to this LP? Phase I applies only if $\exists i_{0}$ s.t. $b_{i_{0}}<0$, and $\exists j_{0}$ s.t. $c_{i_{0}}>0$.
- State the auxiliary problem in component form

$$
\begin{array}{lll}
\max & -x_{0} \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

- When does phase I of the primal simplex algorithm apply to this LP? Phase I applies only if $\exists i_{0}$ s.t. $b_{i_{0}}<0$, and $\exists j_{0}$ s.t. $c_{i_{0}}>0$.
- State the auxiliary problem in component form

$$
\begin{array}{lll}
\max & -x_{0} \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

- State the auxiliary problem in matrix form.

Phase I of the Simplex Algorithm

Consider the following LP in standard form.

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

- When does phase I of the primal simplex algorithm apply to this LP? Phase I applies only if $\exists i_{0}$ s.t. $b_{i_{0}}<0$, and $\exists j_{0}$ s.t. $c_{i_{0}}>0$.
- State the auxiliary problem in component form

$$
\begin{array}{lll}
\max & -x_{0} \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

- State the auxiliary problem in matrix form.

$$
\begin{array}{ll}
\max & \binom{-1}{0}^{T}\binom{x_{0}}{x} \\
\text { s.t. } & {[-\mathbf{1} A]\binom{x_{0}}{x} \leq b \quad \text { (where } \mathbf{1} \text { is the vector of all ones.) }} \\
& 0 \leq\binom{ x_{0}}{x}
\end{array}
$$

Phase I of the Simplex Algorithm

State the initial dictionary for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

Phase I of the Simplex Algorithm

State the initial dictionary for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
w & =\quad-x_{0}
\end{aligned}
$$

Phase I of the Simplex Algorithm

State the initial dictionary for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
w & =\quad-x_{0}
\end{aligned}
$$

Is the initial pivot on this dictionary a standard simplex pivot?

Phase I of the Simplex Algorithm

State the initial dictionary for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
w & =\quad-x_{0}
\end{aligned}
$$

Is the initial pivot on this dictionary a standard simplex pivot?
NO! The initial pivot is designed to make this dictionary primal feasible so that we can then apply the primal simplex algorithm since the primal simplex algorithm requires primal feasibility.

Phase I of the Simplex Algorithm

How does one perform the initial pivot for the initial phase I dictionary

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
w & =-x_{0}
\end{aligned}
$$

Phase I of the Simplex Algorithm

How does one perform the initial pivot for the initial phase I dictionary

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m \\
w & =-x_{0}
\end{aligned}
$$

x_{0} is the entering variable, and the leaving variable is any $x_{n+i_{0}}$ such that

$$
b_{i_{0}}=\min \left\{b_{i} \mid i=1, \ldots, m\right\}<0 .
$$

Phase I of the Simplex Algorithm

State the initial tableau for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

Phase I of the Simplex Algorithm

State the initial tableau for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

$\underset{\sim}{z}$| row |
| ---: |
| w |\(\left[\begin{array}{rrr|r}-\mathbf{1} \& A \& I \& b

\hline 0 \& c^{\top} \& 0 \& 0

\hline-1 \& 0 \& 0 \& 0\end{array}\right]\)

We have written the objective rows for both the original primal problem and the auxiliary problem in this tableau. In phase I, the z-row (original primal objective row) is just along for the ride so that we can easily initialize phase II.

Phase I of the Simplex Algorithm

State the initial tableau for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

$\underset{\sim}{z}$| row |
| ---: |
| w |\(\quad\left[\begin{array}{rrr|r}-\mathbf{1} \& A \& I \& b

\hline 0 \& c^{\top} \& 0 \& 0

\hline-1 \& 0 \& 0 \& 0\end{array}\right]\)

We have written the objective rows for both the original primal problem and the auxiliary problem in this tableau. In phase I, the z-row (original primal objective row) is just along for the ride so that we can easily initialize phase II. How does one perform the initial pivot for the initial phase I tableau?

Phase I of the Simplex Algorithm

State the initial tableau for the phase I problem

$$
\begin{array}{lll}
\max & -x_{0} & \\
\text { s.t. } & -x_{0}+\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\
& 0 \leq x_{j} & j=0,1, \ldots, n
\end{array}
$$

We have written the objective rows for both the original primal problem and the auxiliary problem in this tableau. In phase I, the z-row (original primal objective row) is just along for the ride so that we can easily initialize phase II. How does one perform the initial pivot for the initial phase I tableau?
The first column is the pivot column (i.e. the x_{0} column), and the pivot row is any row i_{0} for which

$$
b_{i_{0}}=\min \left\{b_{i} \mid i=1, \ldots, m\right\}<0 .
$$

Multiple Optimal Solutions

$$
\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{\top} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- If this tableau is optimal, how does one detect the existence of multiple primal optimal solutions, and how does one compute them?

Multiple Optimal Solutions

$$
\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- If this tableau is optimal, how does one detect the existence of multiple primal optimal solutions, and how does one compute them?
Multiple primal solutions exist if the optimal tableau is dual degenerate. That is, there is a nonbasic variable whose objective row coefficient is zero. Alternative primal optimal BFSs are obtained by performing primal simplex pivots where the pivot column is any one of the dual degenerate columns.

Multiple Optimal Solutions

$$
\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- If this tableau is optimal, how does one detect the existence of multiple primal optimal solutions, and how does one compute them?
Multiple primal solutions exist if the optimal tableau is dual degenerate. That is, there is a nonbasic variable whose objective row coefficient is zero. Alternative primal optimal BFSs are obtained by performing primal simplex pivots where the pivot column is any one of the dual degenerate columns.
- If this tableau is optimal, how does one detect the existence of multiple dual optimal solutions, and how does one compute them?

Multiple Optimal Solutions

$$
\left[\begin{array}{ccc}
R A & R & R b \\
c^{T}-y^{T} A & -y^{T} & -y^{\top} b
\end{array}\right]
$$

- If this tableau is optimal, how does one detect the existence of multiple primal optimal solutions, and how does one compute them?
Multiple primal solutions exist if the optimal tableau is dual degenerate. That is, there is a nonbasic variable whose objective row coefficient is zero. Alternative primal optimal BFSs are obtained by performing primal simplex pivots where the pivot column is any one of the dual degenerate columns.
- If this tableau is optimal, how does one detect the existence of multiple dual optimal solutions, and how does one compute them?
Multiple dual solutions exist if the optimal tableau is primal degenerate. That is, $\exists i_{0}$ such that $(R b)_{i_{0}}=0$. Alternative dual optimal solutions are obtained by performing dual simplex pivots where the pivot row is any one of the rows i_{0} for which $(R b)_{i_{0}}=0$.

Auxiliary Problem and Geometry

Describe the two phase simplex algorithm.

Auxiliary Problem and Geometry

Describe the two phase simplex algorithm.

Describe the first pivot of the two phase simplex algorithm and why it is performed.

Auxiliary Problem and Geometry

Describe the two phase simplex algorithm.

Describe the first pivot of the two phase simplex algorithm and why it is performed.

What are the 4 possible outcomes of the two phase simplex algorithm?

What is the geometric understanding of basic feasible solutions?

Auxiliary Problem and Geometry

Describe the two phase simplex algorithm.

Describe the first pivot of the two phase simplex algorithm and why it is performed.

What are the 4 possible outcomes of the two phase simplex algorithm?

What is the geometric understanding of basic feasible solutions?

Auxiliary Problem and Geometry

Describe the two phase simplex algorithm.

Describe the first pivot of the two phase simplex algorithm and why it is performed.

What are the 4 possible outcomes of the two phase simplex algorithm?

What is the geometric understanding of basic feasible solutions?

Describe the geometry of the simplex algorithm.

Auxiliary Problem and Geometry

Describe the two phase simplex algorithm.

Describe the first pivot of the two phase simplex algorithm and why it is performed.

What are the 4 possible outcomes of the two phase simplex algorithm?

What is the geometric understanding of basic feasible solutions?

Describe the geometry of the simplex algorithm.

Describe the geometry of primal degeneracy.

Sensitivity Analysis

What is sensitivity analysis in linear programming?

Sensitivity Analysis

What is sensitivity analysis in linear programming?

What is a break-even price?

Sensitivity Analysis

What is sensitivity analysis in linear programming?

What is a break-even price?

What is the range of and objective coefficient?

Sensitivity Analysis

What is sensitivity analysis in linear programming?

What is a break-even price?

What is the range of and objective coefficient?

What is the range of a right-hand-side coefficient?

Sensitivity Analysis

What is sensitivity analysis in linear programming?

What is a break-even price?

What is the range of and objective coefficient?

What is the range of a right-hand-side coefficient?

What is pricing out?

Sensitivity Analysis

What is sensitivity analysis in linear programming?

What is a break-even price?

What is the range of and objective coefficient?

What is the range of a right-hand-side coefficient?

What is pricing out?
How are all sensitivity analysis questions answered in this class?

Sensitivity Analysis

What is sensitivity analysis in linear programming?

What is a break-even price?

What is the range of and objective coefficient?

What is the range of a right-hand-side coefficient?

What is pricing out?
How are all sensitivity analysis questions answered in this class?
What is the Fundamental Theorem of Sensitivity Analysis for LPs in standard form?

