Computing Dual LPs without Conversion to Standard Form

(1) Compute the dual LP to each of the following LPs without first converting to standard form.
(a)

maximize
$$2x_1 - 3x_2 + 10x_3$$

subject to $x_1 + x_2 - x_3 = 12$
 $x_1 - x_2 + x_3 \le 8$
 $0 \le x_2 \le 10$

(b)

(2) Consider the mini-max problem

$$\min_{x \in \mathbb{R}^n} \max_{i=1,2,\dots,m} \{a_i^T x - b_i\}$$

where $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for i = 1, 2, ..., m.

(a) Show that this mini-max problem is in some sense equivalent to the LP

$$\begin{array}{ll}
\text{maximize} & -x_0\\ \text{subject to} & Ax - b \le x_0 e,
\end{array} \tag{1}$$

where $A = (a_{ij})_{m \times n}$, $b = [b_1, b_2, \dots, b_m]^T$, and $e \in \mathbb{R}^m$ is the vector of all ones.

(b) Show that the dual of the LP (1) is

$$\begin{array}{ll} \text{minimize} & b^T y \\ \text{subject to} & A^T y = 0, \ e^T y = 1, \\ & 0 \leq y \end{array}$$

(3) Consider the system of linear inequalities and equations

$$Ax \le b, \qquad Bx = d,$$
 (2)

where $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{s \times t}$, $d \in \mathbb{R}^{s}$, and $b \in \mathbb{R}^{n}$. We are interested in studying the consistency of this system, that is, we are interested in determining conditions under which the solution set $S = \{x : Ax \leq b, Bx = d\}$ is non-empty. For this purpose, we make use of

the following linear program:

$$\mathcal{P}: \text{ maximize } -e^T z \\ Ax - z \leq b \\ Bx = d \\ 0 \leq z$$

where $e \in \mathbb{R}^m$ is the vector of all ones $(e = (1, 1, 1, \dots, 1)^T)$.

- (a) Show that the system (2) is consistent (i.e. $S \neq \emptyset$) if and only if the optimal value in $\mathcal P$ is zero.
- (b) Show that the dual to the LP \mathcal{P} is the LP

$$\mathcal{D}: \quad \text{minimize} \quad b^T u + d^T v \\ A^T u + B^T v = 0 \\ 0 \leq u \leq e. \label{eq:definition}$$

(c) Show that the system $Ax \leq b$ is inconsistent (i.e. $S = \emptyset$) if and only if there are vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^s$ such that $0 \leq u, \ A^T u + B^T v = 0$, and $b^T u + d^T v < 0$.

Solution to 2.b: The primal problem can be written as

$$\max \begin{pmatrix} -1 \\ 0 \end{pmatrix}^T \begin{pmatrix} x_0 \\ x \end{pmatrix}$$

s.t. $[-e \ A] \begin{pmatrix} x_0 \\ x \end{pmatrix} \le b$.

Therefore the dual objective is b^Ty . The primal variables are free, so the dual contains only the linear equality $\begin{bmatrix} -e^T \\ A^T \end{bmatrix}y = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. The primal only has linear inequalities so the dual variables are non-negative: $0 \le y$. Consequently, the dual is

$$\max b^{T} y$$
s.t.
$$\begin{bmatrix} -e^{T} \\ A^{T} \end{bmatrix} y = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$0 \le y$$

which is equivalent to the given dual.