Computing Dual LPs without Conversion to Standard Form

(1) Compute the dual LP to each of the following LPs without first converting to standard form.
(a)

$$
\begin{array}{ll}
\operatorname{maximize} & 2 x_{1}-3 x_{2}+10 x_{3} \\
\text { subject to } & x_{1}+x_{2}-x_{3}=12 \\
& x_{1}-x_{2}+x_{3} \leq 8 \\
& 0 \leq x_{2} \leq 10
\end{array}
$$

(b)

$$
\begin{array}{llllll}
\operatorname{maximize} & & 42 x_{2} & -30 x_{3} & \\
\text { subject to } & x_{1} & -x_{2} & +x_{3} & -x_{4} & =0 \\
& x_{1} & & +x_{3} & -x_{4} & \leq 5 \\
& & 5 x_{2} & +x_{3} & -5 x_{4} & =-1 \\
& 0 & \leq x_{1}, & 0 \leq & x_{3} \leq 20
\end{array}
$$

(2) Consider the mini-max problem

$$
\min _{x \in \mathbb{\mathbb { R } ^ { n }}} \max _{i=1,2, \ldots, m}\left\{a_{i}^{T} x-b_{i}\right\}
$$

where $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ for $i=1,2, \ldots, m$.
(a) Show that this mini-max problem is in some sense equivalent to the LP

$$
\begin{array}{ll}
\operatorname{maximize} & -x_{0} \\
\text { subject to } & A x-b \leq x_{0} e, \tag{1}
\end{array}
$$

where $A=\left(a_{i j}\right)_{m \times n}, b=\left[b_{1}, b_{2}, \ldots, b_{m}\right]^{T}$, and $e \in \mathbb{R}^{m}$ is the vector of all ones.
(b) Show that the dual of the LP (1) is

$$
\begin{array}{ll}
\operatorname{minimize} & b^{T} y \\
\text { subject to } & A^{T} y=0, e^{T} y=1 \\
& 0 \leq y
\end{array}
$$

(3) Consider the system of linear inequalities and equations

$$
\begin{equation*}
A x \leq b, \quad B x=d, \tag{2}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{s \times t}, d \in \mathbb{R}^{s}$, and $b \in \mathbb{R}^{n}$. We are interested in studying the consistency of this system, that is, we are interested in determining conditions under which the solution set $S=\{x$: $A x \leq b, B x=d\}$ is non-empty. For this purpose, we make use of
the following linear program:

$$
\mathcal{P}: \text { maximize } \begin{aligned}
-e^{T} z & \\
A x-z & \leq b \\
B x & =d \\
0 & \leq z
\end{aligned}
$$

where $e \in \mathbb{R}^{m}$ is the vector of all ones $\left(e=(1,1,1, \ldots, 1)^{T}\right)$.
(a) Show that the system (2) is consistent (i.e. $S \neq \emptyset$) if and only if the optimal value in \mathcal{P} is zero.
(b) Show that the dual to the LP \mathcal{P} is the LP

$$
\begin{array}{ll}
\mathcal{D}: \text { minimize } & b^{T} u+d^{T} v \\
& A^{T} u+B^{T} v=0 \\
& 0 \leq u \leq e
\end{array}
$$

(c) Show that the system $A x \leq b$ is inconsistent (i.e. $S=\emptyset$) if and only if there are vectors $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{s}$ such that $0 \leq u, A^{T} u+B^{T} v=0$, and $b^{T} u+d^{T} v<0$.

Solution to 2.b: The primal problem can be written as

$$
\begin{aligned}
& \max \binom{-1}{0}^{T}\binom{x_{0}}{x} \\
& \text { s.t. }[-e A]\binom{x_{0}}{x} \leq b .
\end{aligned}
$$

Therefore the dual objective is $b^{T} y$. The primal variables are free, so the dual contains only the linear equality $\left[\begin{array}{c}-e^{T} \\ A^{T}\end{array}\right] y=\binom{-1}{0}$. The primal only has linear inequalities so the dual variables are non-negative: $0 \leq y$. Consequently, the dual is

$$
\begin{aligned}
& \max b^{T} y \\
& \text { s.t. } \\
& \quad\left[\begin{array}{c}
-e^{T} \\
A^{T}
\end{array}\right] y=\binom{-1}{0} \\
& 0 \leq y
\end{aligned}
$$

which is equivalent to the given dual.

