Checking Optimality Via Complementary Slackness

We consider LPs in standard form:

$$
\begin{array}{ll}
\mathcal{P}: & \text { maximize } c^{T} x \\
& \text { subject to } \quad A x \leq b, \quad 0 \leq x
\end{array}
$$

1. Does the vector $x=[1,1,1,1,1,1]^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right], \quad c=\left[\begin{array}{c}
2 \\
2 \\
1 \\
0 \\
4 \\
-2
\end{array}\right], \quad b=\left[\begin{array}{c}
10 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

2. Does the vector $x=[1.6,3.6,2.6,0,1.6,0.6]^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right], \quad c=\left[\begin{array}{c}
2 \\
2 \\
1 \\
0 \\
4 \\
-2
\end{array}\right], \quad b=\left[\begin{array}{c}
10 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

3. Does the vector $x=[0,0,0,0,0,5,0]^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{ccccccc}
1 & -2 & 4 & 6 & 2 & 1 & 0 \\
-2 & -2 & 1 & 1 & 1 & 1 & 1 \\
4 & 6 & 8 & 10 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 2 & 2 & 2
\end{array}\right], \quad c=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
0 \\
8 \\
8 \\
-1
\end{array}\right], \quad b=\left[\begin{array}{c}
10 \\
10 \\
20 \\
10
\end{array}\right]
$$

4. Does the vector $x=[0,0,0,0,0,10]^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
-4 & -6 & -10 & 10 & 16 & -20 \\
2 & 4 & 6 & 8 & 10 & 0 \\
0 & 10 & 8 & 6 & 4 & 2 \\
10 & -2 & 10 & -2 & 10 & -2
\end{array}\right], \quad c=\left[\begin{array}{l}
2 \\
4 \\
1 \\
0 \\
6 \\
8
\end{array}\right], \quad b=\left[\begin{array}{l}
10 \\
10 \\
20 \\
20 \\
10
\end{array}\right]
$$

5. Does $x=(3,1,0)^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{rrr}
-1 & 3 & -2 \\
1 & -4 & 2 \\
1 & 2 & 3
\end{array}\right], \quad c=\left[\begin{array}{l}
1 \\
7 \\
3
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right] .
$$

6 . Does $x=(1,2,1,0)^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{rrrr}
3 & 1 & 4 & 2 \\
-3 & 2 & 2 & 1 \\
1 & -2 & 3 & 0 \\
-3 & 2 & -1 & 4
\end{array}\right], \quad c=\left[\begin{array}{r}
-2 \\
0 \\
5 \\
2
\end{array}\right], \quad b=\left[\begin{array}{l}
9 \\
3 \\
0 \\
1
\end{array}\right] .
$$

7. Does $x=(0,1,1,1)^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 2 & 3 \\
2 & 2 & -4 & 1 \\
-2 & -3 & 0 & 1 \\
0 & 1 & 5 & 1 \\
-4 & 2 & 1 & 1 \\
-1 & 4 & 5 & 6
\end{array}\right], \quad c=\left[\begin{array}{l}
3 \\
3 \\
2 \\
6
\end{array}\right], \quad b=\left[\begin{array}{r}
7 \\
-1 \\
-1 \\
7 \\
5 \\
16
\end{array}\right]
$$

8. Change b_{6} from 16 to 15 in problem 7 and check if $x=(0,1,1,1)^{T}$ solves \mathcal{P}.

Answers: 1. No, y does not exist. 2. Yes, $y=\frac{1}{5}(7,4,1,0,3,13)^{T}$. 3. Yes, $y=$ $(0,0,0,4)^{T}$. 4. Yes (but tricky! Multiple dual solutions), $y_{2}=y_{3}=y_{5}=0$ and $y_{1}+2 y_{4}=$ 8 and $0 \leq y_{1}=8-2 y_{4}$ so $0 \leq y_{4} \leq 3,5$. Yes, 6 . No, 7 . No, since no potential dual solution exists.

