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Multi-Variable Calculus

Norms:
A function v : R" — R is a vector norm on R” if

» v(x) >0V x € R"” with equality iff x = 0.

» v(ax) =lajv(x) VxeR"a e R

» v(x+y) <v(x)+rv(y)VxyeR"
We usually denote v(x) by ||x||. Norms are convex functions.
I, norms

1
Ixlp, = (CiilxilP)r, 1<p<oo
[Xllo = maxj=1,.n|Xi|
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Point-Set Topology

Elementary Topological Properties of Sets

Let D C R".

» D is open if for every x € D there exists € > 0 such that
x + eB C D where

x+eB={x+eu:ucB}

and B is the unit ball of some given norm on R”".

» D is closed if every point x satisfying
(x+eB)ND #0
for all € > 0, must be a point in D.

» D is bounded if there exists 5 > 0 such that
lIx|| < B for all x € D.
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Compactness

Elementary Topological Properties of Sets: Compactness

Let D C R".

» x € D is said to be a cluster point of D if
(x+eB)ND #0

for every € > 0.

» D is compact if it is closed and bounded.

Theorem: [Weierstrass Compactness Theorem|
A set D C R" is compact if and only if every infinite subset of D
has a cluster point and all such cluster points lie in D.
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The Weierstrass Extreme Value Theorem

Continuity and The Weierstrass Extreme Value Theorem

The mapping F : R” — R™ is continuous at the point X if
lim ||F(x)— F(x)|| =0.

[[x—X|—0

F is continuous on a set D C R” if F is continuous at every point
of D.

Theorem: [Weierstrass Extreme Value Theorem]
Every continuous function on a compact set attains its extreme
values on that set.
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Operator and

Operator Norms

AER™N  Allpq) = max{[|Ax]lp : [|x]lq < 1}

Examples: [[Allz = [[All22) = max{[|[Ax[l2 : [[x[l2 < 1}
[Allo = [1All(00,00) = Max{[[Ax]|oo : [[x[|oc < 1}
p— n ..
= max >l |ajj| (max row sum)
Al = lIAll@y = max{[|Ax]l : [Ix]ls < 1}
= max y i, |aj| (max column sum)
1<j<n
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Operator and

Operator Norms

Properties:
> [[Ax[lp < [|All(p,q) 1x]lq-
> ||A|| > 0 with equality < ||Ax|| =0V x or A=0.
> oAl

max{[laAx] : [x]| < 1}
max{Ja| [ Ax]| : llal] < 1} = |al [IA]
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Operator and

Operator Norms

Properties:
> [[Ax[lp < [|All(p,q) 1x]lq-
> ||A|| > 0 with equality < ||Ax|| =0V x or A=0.
> aAll = max{[JeAx] - [[x|| < 1}
= max{|al||Ax]| : [l <1} = | [|A]l
>
[A+ Bl = max{[|Ax+ Bx]| : ||Ix|| < 1} < max{||Ax]| + [|Bx|| A < 1}

max{|[|Ax|| + [|Bxz| - 31 = X2, [xa]l <1, []ef| < 1}
max{[[Axi|| + [[Bxo| = [Pall <1, [Ixell <1}
1A+ 1Bl

A
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Operator and

Frobenius Norm and Inner Product

AcR™  |Allp = [trace(ATA)]"/?

Identify R™*" with R(™") by simply stacking the columns of a

matrix one on top of the other to create a very long vector in
R(mn).

This mapping takes a matrix in R™*" to a vector in R(mn) by
stacking columns. It is called vec (or sometimes cvec).

Using vec we can define an inner product on R™*" (called the
Frobenius inner prodiuct) by writting

(A, B) g = vec (A) Tvec (B) = trace(AT B) .

Note A2 = (A, A)r.
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Operator and

Differentiation

Let F:R" — R™, and let F; denote the ith component functioon of F:

F1(X)
F2(X)

Fn(x)

where each F; is a mapping from R"” to R™.
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Operator and

Differentiation

Let F:R" — R™, and let F; denote the ith component functioon of F:

F1(x)
Fa(x)
(X) = . )
Fin(x)
where each F; is a mapping from R"” to R™.

If the limit
im F(x + td) — F(x)

tl0 t
exists, it is called the directional derivative of F at x in the direction h.

=: F'(x;d)
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Operator and

Differentiation

Let F:R" — R™, and let F; denote the ith component functioon of F:

F1(x)
Fa(x)
(X) = )
Fin(x)
where each F; is a mapping from R"” to R™.

If the limit
. F(x+td) — F(x)
lim
tl0 t
exists, it is called the directional derivative of F at x in the direction h.
If this limit exists for all d € R" and is linear in the d argument,

F'(x; ady + Bda) = aF'(x; di) + BF'(x; dv),

then F is said to be differentiable at x, and denote the associated linear
operator by F'(x).
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Operator and

Differentiation

One can show that if F/(x) exists, then

im MEW) = (FO) + FO)y =) _
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i
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Operator and

Differentiation

One can show that if F/(x) exists, then

im MEW) = (FO) + FO)y =) _
lly—x||—+0 ly — x|

i

or equivalently,

F(y) = F()+ F )y = x) +o(lly = xI)),

where o(t) is a function satisfying

Iimﬂzo.
t—0 t
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(ii) If F/(x) exists, then F'(x; d) exists for all d and F'(x;d) = F'(x)d.
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Operator and

Differentiation Facts

(i) If F/(x) exists, it is unique.

(ii) If F'(x) exists, then F’(x;d) exists for all d and F'(x;d) = F'(x)d.
(iif)

(iv)

If F/(x) exists, then F is continuous at x.
(Matrix Representation) Suppose F’(x) is continuous at X, Then

oF  oR ... 0R

Ox1 Oxo Oxp VF ()?) T
oF,  OF oF -
. - e e T 0w VF(x)"
Fe) =vEm = | -
OF, OFp VFn(x)"
s o Ol
where each partial derivative is evaluated at X = (x1,...,X%,)".
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Let F: AC R™ — Rk be differentiable on the open set A.

Let G : B C Rk — R" be differentiable on the open set B.
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Operator and

Chain Rule

Let F: AC R™ — Rk be differentiable on the open set A.
Let G : B C Rk — R" be differentiable on the open set B.

If F(A) C B, then the composite function G o F is differentiable on
A and
(G o F)'(x) = G'(F(x)) o F'(x).
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The Mean Value Theorem

(a) If f:R — R is differentiable, then for every x,y € R there
exists z between x and y such that

Fy) = f(x) + f(2)(y — x).
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The Mean Value Theorem

(a) If f:R — R is differentiable, then for every x,y € R there
exists z between x and y such that

Fy) = f(x) + f(2)(y — x).

(b) If f:R" — R is differentiable, then for every x,y € R there is
a z € [x, y] such that

fly) = F(x) + VF(2)"(y — ).

(c) If F:R"” — R™ continuously differentiable, then for every
x,y € R

IF(y) = F(X)llq < [ sup ”F/(Z)H(p,q)] X = yllp-

z€[x.y]
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The Mean Value Theorem: Proof

If f:R" — R is differentiable, then for every x, y € R" there exists
z € [x,y] such that

fFly) = () + V() (y — x).

Multivariable Calculus Review



The Mean Value Theorem: Proof

If f:R" — R is differentiable, then for every x, y € R" there exists
z € [x,y] such that

fFly) = () + V() (y — x).
Proof: Set p(t) = f(x + t(y — x)).

Multivariable Calculus Review



The Mean Value Theorem: Proof

If f:R" — R is differentiable, then for every x, y € R" there exists
z € [x,y] such that

fFly) = () + V() (y — x).

Proof: Set p(t) = f(x + t(y — x)).
Chain rule = ¢/(t) = VF(x + t(y — x)) T (y — x).

Multivariable Calculus Review



The Mean Value Theorem: Proof

If f:R" — R is differentiable, then for every x, y € R" there exists
z € [x,y] such that

fFly) = () + V() (y — x).

Proof: Set p(t) = f(x + t(y — x)).
Chain rule = ¢/(t) = VF(x + t(y — x)) T (y — x).
In particular, ¢ is differentiable.

Multivariable Calculus Review



The Mean Value Theorem: Proof
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In particular, ¢ is differentiable.

By the 1-D MVT there exists t € (0,1) such that
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The Mean Value Theorem: Proof

If f:R" — R is differentiable, then for every x, y € R" there exists
z € [x,y] such that

fFly) = () + V() (y — x).

Proof: Set p(t) = f(x + t(y — x)).

Chain rule = ¢'(t) = VFf(x + t(y — x)) T (y — x).
In particular, ¢ is differentiable.

By the 1-D MVT there exists t € (0,1) such that

p(1) = ¢(0) + ¢'(£)(1 - 0),
or equivalently,
fy) = f(x) + VFf(2) (v —x)

where z = x + t(y — x).
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The Second Derivative

Let f : R" — R so that Vf : R" — R".
The second derivative of f is just the derivative of Vf as a
mapping from R” to R":

V[VF(x)] = V?f(x).
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The Second Derivative

Let f : R" — R so that Vf : R" — R".
The second derivative of f is just the derivative of Vf as a
mapping from R” to R":

V[VF(x)] = V?f(x).

This is an n X n matrix:
If Vf exists and is continuous at x, then it is given as the matrix
of second partials of f at x:

v = [ 200

Ox;0x; x
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The Second Derivative

Let f : R" — R so that Vf : R" — R".
The second derivative of f is just the derivative of Vf as a
mapping from R” to R":

V[VF(x)] = V?f(x).

This is an n X n matrix:
If Vf exists and is continuous at x, then it is given as the matrix
of second partials of f at x:

V() = g )] .

of
Moreover, D% 8X ax forall i,j=1,.
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The Second Derivative

Let f : R" — R so that Vf : R" — R".
The second derivative of f is just the derivative of Vf as a
mapping from R” to R":

V[VF(x)] = V?f(x).

This is an n X n matrix:
If Vf exists and is continuous at x, then it is given as the matrix
of second partials of f at x:

V() = g )]

of .
Moreover, D% 8X8X forall i,j=1,...,n. The matrix

V2f(x) is called the Hessian of f at x. It is a symmetric matrix.
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Second-Order Taylor Theorem

If f:R"™ — R is twice continuously differentiable on an open set
containing [x, y], then there is a z € [x, y] such that

Ly =0Ty - x).

fly) = F(x) + VF)T(y —x) + >

shown that

F) = (FO) + 76 = XD < Sllx =yl sup 1922l

z€[xy]

for any choice of p and g from [1, o].
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