Multivariable Calculus Review

Multi-Variable Calculus

Point-Set Topology

Compactness

The Weierstrass Extreme Value Theorem

Operator and Matrix Norms

Mean Value Theorem

Multi-Variable Calculus

Norms:
 A function $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm on \mathbb{R}^{n} if

Multi-Variable Calculus

Norms:

A function $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm on \mathbb{R}^{n} if
$-\nu(x) \geq 0 \forall x \in \mathbb{R}^{n}$ with equality iff $x=0$.

Multi-Variable Calculus

Norms:

A function $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm on \mathbb{R}^{n} if
$-\nu(x) \geq 0 \forall x \in \mathbb{R}^{n}$ with equality iff $x=0$.

- $\nu(\alpha x)=|\alpha| \nu(x) \forall x \in \mathbb{R}^{n} \alpha \in \mathbb{R}$
- $\nu(x+y) \leq \nu(x)+\nu(y) \forall x, y \in \mathbb{R}^{n}$

Multi-Variable Calculus

Norms:

A function $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm on \mathbb{R}^{n} if

- $\nu(x) \geq 0 \forall x \in \mathbb{R}^{n}$ with equality iff $x=0$.
- $\nu(\alpha x)=|\alpha| \nu(x) \forall x \in \mathbb{R}^{n} \alpha \in \mathbb{R}$
- $\nu(x+y) \leq \nu(x)+\nu(y) \forall x, y \in \mathbb{R}^{n}$

We usually denote $\nu(x)$ by $\|x\|$. Norms are convex functions.

Multi-Variable Calculus

Norms:

A function $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm on \mathbb{R}^{n} if

- $\nu(x) \geq 0 \forall x \in \mathbb{R}^{n}$ with equality iff $x=0$.
- $\nu(\alpha x)=|\alpha| \nu(x) \forall x \in \mathbb{R}^{n} \alpha \in \mathbb{R}$
- $\nu(x+y) \leq \nu(x)+\nu(y) \forall x, y \in \mathbb{R}^{n}$

We usually denote $\nu(x)$ by $\|x\|$. Norms are convex functions.
Ip norms

$$
\begin{aligned}
& \|x\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty \\
& \|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|
\end{aligned}
$$

Elementary Topological Properties of Sets

Let $D \subset \mathbb{R}^{n}$.

Elementary Topological Properties of Sets

Let $D \subset \mathbb{R}^{n}$.

- D is open if for every $x \in D$ there exists $\epsilon>0$ such that $x+\epsilon \mathbb{B} \subset D$ where

$$
x+\epsilon \mathbb{B}=\{x+\epsilon u: u \in \mathbb{B}\}
$$

and \mathbb{B} is the unit ball of some given norm on \mathbb{R}^{n}.

Elementary Topological Properties of Sets

Let $D \subset \mathbb{R}^{n}$.

- D is open if for every $x \in D$ there exists $\epsilon>0$ such that $x+\epsilon \mathbb{B} \subset D$ where

$$
x+\epsilon \mathbb{B}=\{x+\epsilon u: u \in \mathbb{B}\}
$$

and \mathbb{B} is the unit ball of some given norm on \mathbb{R}^{n}.

- D is closed if every point x satisfying

$$
(x+\epsilon \mathbb{B}) \cap D \neq \emptyset
$$

for all $\epsilon>0$, must be a point in D.

Elementary Topological Properties of Sets

Let $D \subset \mathbb{R}^{n}$ ．
－D is open if for every $x \in D$ there exists $\epsilon>0$ such that $x+\epsilon \mathbb{B} \subset D$ where

$$
x+\epsilon \mathbb{B}=\{x+\epsilon u: u \in \mathbb{B}\}
$$

and \mathbb{B} is the unit ball of some given norm on \mathbb{R}^{n} ．
－D is closed if every point x satisfying

$$
(x+\epsilon \mathbb{B}) \cap D \neq \emptyset
$$

for all $\epsilon>0$ ，must be a point in D ．
－D is bounded if there exists $\beta>0$ such that

$$
\|x\| \leq \beta \text { for all } x \in D
$$

Elementary Topological Properties of Sets: Compactness

Let $D \subset \mathbb{R}^{n}$.

Elementary Topological Properties of Sets: Compactness

Let $D \subset \mathbb{R}^{n}$.

- $\bar{x} \in D$ is said to be a cluster point of D if

$$
(\bar{x}+\epsilon \mathbb{B}) \cap D \neq \emptyset
$$

for every $\epsilon>0$.

Elementary Topological Properties of Sets: Compactness

Let $D \subset \mathbb{R}^{n}$.

- $\bar{x} \in D$ is said to be a cluster point of D if

$$
(\bar{x}+\epsilon \mathbb{B}) \cap D \neq \emptyset
$$

for every $\epsilon>0$.

- D is compact if it is closed and bounded.

Elementary Topological Properties of Sets: Compactness

Let $D \subset \mathbb{R}^{n}$.

- $\bar{x} \in D$ is said to be a cluster point of D if

$$
(\bar{x}+\epsilon \mathbb{B}) \cap D \neq \emptyset
$$

for every $\epsilon>0$.

- D is compact if it is closed and bounded.

Theorem: [Weierstrass Compactness Theorem]
A set $D \subset \mathbb{R}^{n}$ is compact if and only if every infinite subset of D has a cluster point and all such cluster points lie in D.

Continuity and The Weierstrass Extreme Value Theorem

The mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at the point \bar{x} if

$$
\lim _{\|x-\bar{x}\| \rightarrow 0}\|F(x)-F(\bar{x})\|=0
$$

Continuity and The Weierstrass Extreme Value Theorem

The mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at the point \bar{x} if

$$
\lim _{\|x-\bar{x}\| \rightarrow 0}\|F(x)-F(\bar{x})\|=0
$$

F is continuous on a set $D \subset \mathbb{R}^{n}$ if F is continuous at every point of D.

Continuity and The Weierstrass Extreme Value Theorem

The mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at the point \bar{x} if

$$
\lim _{\|x-\bar{x}\| \rightarrow 0}\|F(x)-F(\bar{x})\|=0
$$

F is continuous on a set $D \subset \mathbb{R}^{n}$ if F is continuous at every point of D.

Theorem: [Weierstrass Extreme Value Theorem] Every continuous function on a compact set attains its extreme values on that set.

Operator Norms

$$
A \in \mathbb{R}^{m \times n} \quad\|A\|_{(p, q)}=\max \left\{\|A x\|_{p}:\|x\|_{q} \leq 1\right\}
$$

Operator Norms

$$
A \in \mathbb{R}^{m \times n} \quad\|A\|_{(p, q)}=\max \left\{\|A x\|_{p}:\|x\|_{q} \leq 1\right\}
$$

Examples:

Operator Norms

$$
A \in \mathbb{R}^{m \times n} \quad\|A\|_{(p, q)}=\max \left\{\|A x\|_{p}:\|x\|_{q} \leq 1\right\}
$$

Examples: $\|A\|_{2}=\|A\|_{(2,2)}=\max \left\{\|A x\|_{2}:\|x\|_{2} \leq 1\right\}$

Operator Norms

$A \in \mathbb{R}^{m \times n} \quad\|A\|_{(p, q)}=\max \left\{\|A x\|_{p}:\|x\|_{q} \leq 1\right\}$

Examples: $\|A\|_{2}=\|A\|_{(2,2)}=\max \left\{\|A x\|_{2}:\|x\|_{2} \leq 1\right\}$

$$
\begin{aligned}
\|A\|_{\infty} & =\|A\|_{(\infty, \infty)}=\max \left\{\|A x\|_{\infty}:\|x\|_{\infty} \leq 1\right\} \\
& =\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \quad(\text { max row sum })
\end{aligned}
$$

Operator Norms

$A \in \mathbb{R}^{m \times n}$

$$
\|A\|_{(p, q)}=\max \left\{\|A x\|_{p}:\|x\|_{q} \leq 1\right\}
$$

Examples: $\|A\|_{2}=\|A\|_{(2,2)}=\max \left\{\|A x\|_{2}:\|x\|_{2} \leq 1\right\}$

$$
\begin{aligned}
\|A\|_{\infty} & =\|A\|_{(\infty, \infty)}=\max \left\{\|A x\|_{\infty}:\|x\|_{\infty} \leq 1\right\} \\
& =\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| \quad \text { (max row sum) } \\
\|A\|_{1} & =\|A\|_{(1,1)}=\max \left\{\|A x\|_{1}:\|x\|_{1} \leq 1\right\} \\
& =\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| \quad(\max \text { column sum })
\end{aligned}
$$

Operator Norms

Properties:

Operator Norms

Properties:

- $\|A x\|_{p} \leq\|A\|_{(p, q)}\|x\|_{q}$.

Operator Norms

Properties:

- $\|A x\|_{p} \leq\|A\|_{(p, q)}\|x\|_{q}$.
- $\|A\| \geq 0$ with equality $\Leftrightarrow\|A x\|=0 \forall x$ or $A \equiv 0$.

Operator Norms

Properties:

- $\|A x\|_{p} \leq\|A\|_{(p, q)}\|x\|_{q}$.
- $\|A\| \geq 0$ with equality $\Leftrightarrow\|A x\|=0 \forall x$ or $A \equiv 0$.
- $\|\alpha A\|=\max \{\|\alpha A x\|:\|x\| \leq 1\}$

$$
=\max \{|\alpha|\|A x\|:\|\alpha\| \leq 1\}=|\alpha|\|A\|
$$

Operator Norms

Properties:

- $\|A x\|_{p} \leq\|A\|_{(p, q)}\|x\|_{q}$.
- $\|A\| \geq 0$ with equality $\Leftrightarrow\|A x\|=0 \forall x$ or $A \equiv 0$.
- $\|\alpha A\|=\max \{\|\alpha A x\|:\|x\| \leq 1\}$

$$
=\max \{|\alpha|\|A x\|:\|\alpha\| \leq 1\}=|\alpha|\|A\|
$$

$$
\begin{aligned}
\|A+B\| & =\max \{\|A x+B x\|:\|x\| \leq 1\} \leq \max \{\|A x\|+\|B x\| A \leq 1\} \\
& =\max \left\{\left\|A x_{1}\right\|+\left\|B x_{2}\right\|: x_{1}=x_{2},\left\|x_{1}\right\| \leq 1,\left\|x_{2}\right\| \leq 1\right\} \\
& \leq \max \left\{\left\|A x_{1}\right\|+\left\|B x_{2}\right\|:\left\|x_{1}\right\| \leq 1,\left\|x_{2}\right\| \leq 1\right\} \\
& =\|A\|+\|B\|
\end{aligned}
$$

Frobenius Norm and Inner Product

$$
A \in \mathbb{R}^{m \times n} \quad\|A\|_{F}=\left[\operatorname{trace}\left(A^{T} A\right)\right]^{1 / 2}
$$

Frobenius Norm and Inner Product

$A \in \mathbb{R}^{m \times n} \quad\|A\|_{F}=\left[\operatorname{trace}\left(A^{T} A\right)\right]^{1 / 2}$
Identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(m n)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(m n)}$.

Frobenius Norm and Inner Product

$A \in \mathbb{R}^{m \times n} \quad\|A\|_{F}=\left[\operatorname{trace}\left(A^{T} A\right)\right]^{1 / 2}$
Identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(m n)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(m n)}$.
This mapping takes a matrix in $\mathbb{R}^{m \times n}$ to a vector in $\mathbb{R}^{(m n)}$ by stacking columns. It is called vec (or sometimes cvec).

Frobenius Norm and Inner Product

$A \in \mathbb{R}^{m \times n} \quad\|A\|_{F}=\left[\operatorname{trace}\left(A^{T} A\right)\right]^{1 / 2}$
Identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(m n)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(m n)}$.
This mapping takes a matrix in $\mathbb{R}^{m \times n}$ to a vector in $\mathbb{R}^{(m n)}$ by stacking columns. It is called vec (or sometimes cvec).
Using vec we can define an inner product on $\mathbb{R}^{m \times n}$ (called the Frobenius inner prodiuct) by writting

$$
\langle A, B\rangle_{F}=\operatorname{vec}(A)^{T} \operatorname{vec}(B)=\operatorname{trace}\left(A^{T} B\right)
$$

Frobenius Norm and Inner Product

$$
A \in \mathbb{R}^{m \times n} \quad\|A\|_{F}=\left[\operatorname{trace}\left(A^{T} A\right)\right]^{1 / 2}
$$

Identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(m n)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(m n)}$ ．
This mapping takes a matrix in $\mathbb{R}^{m \times n}$ to a vector in $\mathbb{R}^{(m n)}$ by stacking columns．It is called vec（or sometimes cvec）．
Using vec we can define an inner product on $\mathbb{R}^{m \times n}$（called the Frobenius inner prodiuct）by writting

$$
\langle A, B\rangle_{F}=\operatorname{vec}(A)^{T} \operatorname{vec}(B)=\operatorname{trace}\left(A^{T} B\right)
$$

Note $\|A\|_{F}^{2}=\langle A, A\rangle_{F}$.

Differentiation

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and let F_{i} denote the i th component functioon of F :

$$
F(x)=\left[\begin{array}{c}
F_{1}(x) \\
F_{2}(x) \\
\vdots \\
F_{m}(x)
\end{array}\right]
$$

where each F_{i} is a mapping from \mathbb{R}^{n} to \mathbb{R}^{m}.

Differentiation

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and let F_{i} denote the i th component functioon of F :

$$
F(x)=\left[\begin{array}{c}
F_{1}(x) \\
F_{2}(x) \\
\vdots \\
F_{m}(x)
\end{array}\right]
$$

where each F_{i} is a mapping from \mathbb{R}^{n} to \mathbb{R}^{m}.
If the limit

$$
\lim _{t \downarrow 0} \frac{F(x+t d)-F(x)}{t}=: F^{\prime}(x ; d)
$$

exists, it is called the directional derivative of F at x in the direction h.

Differentiation

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ ，and let F_{i} denote the i th component functioon of F ：

$$
F(x)=\left[\begin{array}{c}
F_{1}(x) \\
F_{2}(x) \\
\vdots \\
F_{m}(x)
\end{array}\right]
$$

where each F_{i} is a mapping from \mathbb{R}^{n} to \mathbb{R}^{m} ．
If the limit

$$
\lim _{t \downarrow 0} \frac{F(x+t d)-F(x)}{t}=: F^{\prime}(x ; d)
$$

exists，it is called the directional derivative of F at x in the direction h ．
If this limit exists for all $d \in \mathbb{R}^{n}$ and is linear in the d argument，

$$
F^{\prime}\left(x ; \alpha d_{1}+\beta d_{2}\right)=\alpha F^{\prime}\left(x ; d_{1}\right)+\beta F^{\prime}\left(x ; d_{2}\right)
$$

then F is said to be differentiable at x ，and denote the associated linear operator by $F^{\prime}(x)$ ．

Differentiation

One can show that if $F^{\prime}(x)$ exists, then

$$
\lim _{\|y-x\| \rightarrow 0} \frac{\left\|F(y)-\left(F(x)+F^{\prime}(x)(y-x)\right)\right\|}{\|y-x\|}=0
$$

Differentiation

One can show that if $F^{\prime}(x)$ exists, then

$$
\lim _{\|y-x\| \rightarrow 0} \frac{\left\|F(y)-\left(F(x)+F^{\prime}(x)(y-x)\right)\right\|}{\|y-x\|}=0
$$

or equivalently,

$$
F(y)=F(x)+F^{\prime}(x)(y-x)+o(\|y-x\|)
$$

Differentiation

One can show that if $F^{\prime}(x)$ exists, then

$$
\lim _{\|y-x\| \rightarrow 0} \frac{\left\|F(y)-\left(F(x)+F^{\prime}(x)(y-x)\right)\right\|}{\|y-x\|}=0
$$

or equivalently,

$$
F(y)=F(x)+F^{\prime}(x)(y-x)+o(\|y-x\|)
$$

where $o(t)$ is a function satisfying

$$
\lim _{t \rightarrow 0} \frac{o(t)}{t}=0
$$

Differentiation Facts

Differentiation Facts

(i) If $F^{\prime}(x)$ exists, it is unique.

Differentiation Facts

(i) If $F^{\prime}(x)$ exists, it is unique.
(ii) If $F^{\prime}(x)$ exists, then $F^{\prime}(x ; d)$ exists for all d and $F^{\prime}(x ; d)=F^{\prime}(x) d$.

Differentiation Facts

(i) If $F^{\prime}(x)$ exists, it is unique.
(ii) If $F^{\prime}(x)$ exists, then $F^{\prime}(x ; d)$ exists for all d and $F^{\prime}(x ; d)=F^{\prime}(x) d$.
(iii) If $F^{\prime}(x)$ exists, then F is continuous at x.

Differentiation Facts

(i) If $F^{\prime}(x)$ exists, it is unique.
(ii) If $F^{\prime}(x)$ exists, then $F^{\prime}(x ; d)$ exists for all d and $F^{\prime}(x ; d)=F^{\prime}(x) d$.
(iii) If $F^{\prime}(x)$ exists, then F is continuous at x.
(iv) (Matrix Representation) Suppose $F^{\prime}(x)$ is continuous at \bar{x}, Then

$$
F^{\prime}(\bar{x})=\nabla F(\bar{x})=\left[\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{n}} \\
\vdots & & & \\
\frac{\partial F_{n}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial F_{m}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\nabla F_{1}(\bar{x})^{T} \\
\nabla F_{2}(\bar{x})^{T} \\
\vdots \\
\nabla F_{m}(\bar{x})^{T}
\end{array}\right]
$$

where each partial derivative is evaluated at $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)^{T}$.

Chain Rule

Let $F: A \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be differentiable on the open set \mathcal{A}.

Chain Rule

Let $F: A \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be differentiable on the open set \mathcal{A}.

Let $G: B \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be differentiable on the open set \mathcal{B}.

Chain Rule

Let $F: A \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be differentiable on the open set \mathcal{A}.

Let $G: B \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be differentiable on the open set \mathcal{B}.

If $F(A) \subset \mathcal{B}$, then the composite function $G \circ F$ is differentiable on \mathcal{A} and

$$
(G \circ F)^{\prime}(x)=G^{\prime}(F(x)) \circ F^{\prime}(x) .
$$

The Mean Value Theorem

The Mean Value Theorem

(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there exists z between x and y such that

$$
f(y)=f(x)+f^{\prime}(z)(y-x) .
$$

The Mean Value Theorem

(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there exists z between x and y such that

$$
f(y)=f(x)+f^{\prime}(z)(y-x) .
$$

(b) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there is a $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)^{T}(y-x) .
$$

The Mean Value Theorem

(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there exists z between x and y such that

$$
f(y)=f(x)+f^{\prime}(z)(y-x) .
$$

(b) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there is a $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)^{T}(y-x) .
$$

(c) If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuously differentiable, then for every $x, y \in \mathbb{R}$

$$
\|F(y)-F(x)\|_{q} \leq\left[\sup _{z \in[x, y]}\left\|F^{\prime}(z)\right\|_{(p, q)}\right]\|x-y\|_{p}
$$

The Mean Value Theorem: Proof

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}^{n}$ there exists $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)(y-x) .
$$

The Mean Value Theorem: Proof

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}^{n}$ there exists $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)(y-x) .
$$

Proof: Set $\varphi(t)=f(x+t(y-x))$.

The Mean Value Theorem: Proof

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}^{n}$ there exists $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)(y-x) .
$$

Proof: Set $\varphi(t)=f(x+t(y-x))$.
Chain rule $\Rightarrow \varphi^{\prime}(t)=\nabla f(x+t(y-x))^{T}(y-x)$.

The Mean Value Theorem: Proof

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}^{n}$ there exists $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)(y-x) .
$$

Proof: Set $\varphi(t)=f(x+t(y-x))$.
Chain rule $\Rightarrow \varphi^{\prime}(t)=\nabla f(x+t(y-x))^{T}(y-x)$.
In particular, φ is differentiable.

The Mean Value Theorem: Proof

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}^{n}$ there exists $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)(y-x) .
$$

Proof: Set $\varphi(t)=f(x+t(y-x))$.
Chain rule $\Rightarrow \varphi^{\prime}(t)=\nabla f(x+t(y-x))^{T}(y-x)$.
In particular, φ is differentiable.
By the 1-D MVT there exists $\bar{t} \in(0,1)$ such that

$$
\varphi(1)=\varphi(0)+\varphi^{\prime}(\bar{t})(1-0),
$$

The Mean Value Theorem: Proof

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}^{n}$ there exists $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(z)(y-x)
$$

Proof: Set $\varphi(t)=f(x+t(y-x))$.
Chain rule $\Rightarrow \varphi^{\prime}(t)=\nabla f(x+t(y-x))^{T}(y-x)$.
In particular, φ is differentiable.
By the 1-D MVT there exists $\bar{t} \in(0,1)$ such that

$$
\varphi(1)=\varphi(0)+\varphi^{\prime}(\bar{t})(1-0)
$$

or equivalently,

$$
f(y)=f(x)+\nabla f(z)^{T}(y-x)
$$

where $z=x+\bar{t}(y-x)$.

The Second Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ so that $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The second derivative of f is just the derivative of ∇f as a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} :

$$
\nabla[\nabla f(x)]=\nabla^{2} f(x)
$$

The Second Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ so that $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The second derivative of f is just the derivative of ∇f as a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} :

$$
\nabla[\nabla f(x)]=\nabla^{2} f(x)
$$

This is an $n \times n$ matrix:

The Second Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ so that $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The second derivative of f is just the derivative of ∇f as a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} :

$$
\nabla[\nabla f(x)]=\nabla^{2} f(x)
$$

This is an $n \times n$ matrix:
If ∇f exists and is continuous at x, then it is given as the matrix of second partials of f at x :

$$
\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right]
$$

The Second Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ so that $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The second derivative of f is just the derivative of ∇f as a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} :

$$
\nabla[\nabla f(x)]=\nabla^{2} f(x)
$$

This is an $n \times n$ matrix:
If ∇f exists and is continuous at x, then it is given as the matrix of second partials of f at x :

$$
\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right]
$$

Moreover, $\frac{\partial f}{\partial x_{i} \partial x_{j}}=\frac{\partial f}{\partial x_{j} \partial x_{i}}$ for all $i, j=1, \ldots, n$.

The Second Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ so that $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
The second derivative of f is just the derivative of ∇f as a mapping from \mathbb{R}^{n} to \mathbb{R}^{n} :

$$
\nabla[\nabla f(x)]=\nabla^{2} f(x)
$$

This is an $n \times n$ matrix:
If ∇f exists and is continuous at x, then it is given as the matrix of second partials of f at x :

$$
\nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right]
$$

Moreover, $\frac{\partial f}{\partial x_{i} \partial x_{j}}=\frac{\partial f}{\partial x_{j} \partial x_{i}}$ for all $i, j=1, \ldots, n$. The matrix $\nabla^{2} f(x)$ is called the Hessian of f at x. It is a symmetric matrix.

Second-Order Taylor Theorem

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable on an open set containing $[x, y]$, then there is a $z \in[x, y]$ such that

$$
f(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) .
$$

shown that

$$
\left|f(y)-\left(f(x)+f^{\prime}(x)(y-x)\right)\right| \leq \frac{1}{2}\|x-y\|_{p}^{2} \sup _{z \in[x, y]}\left\|\nabla^{2} f(z)\right\|_{(p, q)},
$$

for any choice of p and q from $[1, \infty]$.

