
1. Line Search Methods

Let f : Rn → R be given and suppose that xc is our current best estimate of a solution to

P min
x∈Rn

f(x) .

A standard method for improving the estimate xc is to choose a direction of search d ∈ R
n

and the compute a step length t∗ ∈ R so that xc + t∗d approximately optimizes f along
the line {x+ td |t ∈ R}. The new estimate for the solution to P is then x+ = xc + t∗d.
The procedure for choosing t∗ is called a line search method. If t∗ is taken to be the global
solution to the problem

min
t∈R

f(xc + td) ,

then t∗ is called the Curry step length. However, except in certain very special cases, the
Curry step length is far too costly to compute. For this reason we focus on a few easily
computed step lengths. We begin the simplest and the most commonly used line search
method called backtracking.

1.1. The Basic Backtracking Algorithm. In the backtracking line search we assume
that f : Rn → R is differentiable and that we are given a direction d of strict descent at the
current point xc, that is f

′(xc; d) < 0.

Initialization: Choose γ ∈ (0, 1) and c ∈ (0, 1).

Having xc obtain x+ as follows:

Step 1: Compute the backtracking stepsize

t∗ := max γν

subject to ν ∈ {0, 1, 2, . . .} and
f(xc + γνd) ≤ f(xc) + cγνf ′(xc; d).

Step 2: Set x+ = xc + t∗d.

The backtracking line search method forms the basic structure upon which most line search
methods are built. Due to the importance of this method, we take a moment to emphasize
its key features.

(1) The update to xc has the form

(1.1) x+ = xc + t∗d .

Here d is called the search direction while t∗ is called the step length or stepsize.
(2) The search direction d must satisfy

f ′(xc; d) < 0.

Any direction satisfying this strict inequality is called a direction of strict descent for
f at xc. If ∇f(xc) 6= 0, then a direction of strict descent always exists. Just take
d = −∇f ′(xc). As we have already seen

f ′(xc;−∇f ′(xc)) = −‖∇f ′(xc)‖
2
.
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It is important to note that if d is a direction of strict descent for f at xc, then there
is a t > 0 such that

f(xc + td) < f(xc) ∀ t ∈ (0, t).

In order to see this recall that

f ′(xc; d) = lim
t↓0

f(xc + td)− f(xc)

t
.

Hence, if f ′(xc; d) < 0, there is a t > 0 such that

f(xc + td)− f(xc)

t
< 0 ∀ t ∈ (0, t),

that is

f(xc + td) < f(xc) ∀ t ∈ (0, t).

(3) In Step 1 of the algorithm, we require that the step length t∗ be chosen so that

(1.2) f(xc + t∗d) ≤ f(xc) + cγνf ′(xc; d).

This inequality is called the Armijo-Goldstein inequality. It is named after the two
researchers to first use it in the design of line search routines (Allen Goldstein is a Pro-
fessor Emeritus here at the University of Washington). Observe that this inequality
guarantees that

f(xc + t∗d) < f(xc).

For this reason, the algorithm described above is called a descent algorithm. It was
observed in point (2) above that it is always possible to choose t∗ so that f(xc+t∗d) <
f(xc). But the Armijo-Goldstein inequality is a somewhat stronger statement. To
see that it too can be satisfied observe that since f ′(xc; d) < 0,

lim
t↓0

f(xc + td)− f(xc)

t
= f ′(xc; d) < cf ′(xc; d) < 0.

Hence, there is a t > 0 such that

f(xc + td)− f(xc)

t
≤ cf ′(xc; d) ∀ t ∈ (0, t),

that is

f(xc + td) ≤ f(xc) + tcf ′(xc; d) ∀ t ∈ (0, t).

(4) The Armijo-Goldstein inequality is known as a condition of sufficient decrease. It is
essential that we do not choose t∗ too small. This is the reason for setting t∗ equal
to the first (largest) member of the geometric sequence {γν} for which the Armijo-
Goldstein inequality is satisfied. In general, we always wish to choose t∗ as large as
possible since it is often the case that some effort was put into the selection of the
search direction d. Indeed, as we will see, for Newton’s method we must take t∗ = 1
in order to achieve rapid local convergence.
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(5) There is a balance that must be struck between taking t∗ as large as possible and not
having to evaluating the function at many points. Such a balance is obtained with
an appropriate selection of the parameters γ and c. Typically one takes γ ∈ [.5, .8]
while c ∈ [.001, .1] with adjustments depending on the cost of function evaluation
and degree of nonlinearity.

(6) The backtracking procedure of Step 1 is easy to program. A pseudo-Matlab code
follows: 



fc = f(xc)
∆f = cf ′(xc; d)

newf = f(xc + d)
t = 1

while newf > fc + t∆f
t = γt

newf = f(xc + td)
endwhile

Point (3) above guarantees that this procedure is finitely terminating.
(7) The backtracking procedure has a nice graphical illustration. Set ϕ(t) = f(xc + td)

so that ϕ′(0) = f ′(xc; d).

0 γ3 γ2 γ 1

t

ϕ(t)

ϕ(0)+tcϕ′(0)

ϕ(0)+tϕ′(0)

t∗ = γ3, x+ = xc + γ3d.

Before proceeding to a convergence result for the backtracking algorithm, we consider
some possible choices for the search directions d. There are essentially three directions of
interest:

(1) Steepest Descent (or Cauchy Direction):

d = −∇f(xc)/ ‖∇f(xc)‖ .

(2) Newton Direction:

d = −∇2f(xc)
−1∇f(xc) .
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(3) Newton-Like Direction:

d = −H∇f(xc),

where H ∈ R
n×n is symmetric and constructed to approximate the inverse of∇2f(xc).

In order to base a descent method on these directions we must have

f ′(xc; d) < 0.

For the Cauchy direction −∇f(xc)/ ‖∇f(xc)‖, this inequality always holds when∇f(xc) 6= 0;

f ′(xc;−∇f(xc)/ ‖∇f(xc)‖) = −‖∇f(xc)‖ < 0.

On the other hand the Newton and Newton-like directions do not always satisfy this property:

f ′(xc;−H∇f(xc)) = −∇f(xc)
TH∇f(xc).

These directions are directions of strict descent if and only if

0 < ∇f(xc)
TH∇f(xc) .

This condition is related to second-order sufficiency conditions for optimality when H is an
approximation to the inverse of the Hessian.
The advantage of the Cauchy direction is that it always provides a direction of strict

descent. However, once the iterates get “close” to a stationary point, the procedure takes a
very long time to obtain a moderately accurate estimate of the stationary point. Most often
numerical error takes over due to very small stepsizes and the iterates behave chaotically.
On the other hand, Newton’s method (and its approximation, the secant method), may

not define directions of strict descent until one is very close to a stationary point satisfying
the second-order sufficiency condition. However, once one is near such a stationary point,
then Newton’s method (and some Newton-Like methods) zoom in on the stationary point
very rapidly. This behavior will be made precise when we establish our convergence result
from Newton’s method.
Let us now consider the basic convergence result for the backtracking algorithm.

Theorem 1.1. (Convergence for Backtracking) Let f : Rn → R and x0 ∈ R be such
that f is differentiable on R

n with ∇f Lipschitz continuous on an open convex set containing
the set {x : f(x) ≤ f(x0)}. Let {xk} be the sequence satisfying xk+1 = xk if ∇f(xk) = 0;
otherwise,

xk+1 = xk + tkd
k, where dk satisfies f ′(xk; dk) < 0,

and tk is chosen by the backtracking stepsize selection method. Then one of the following
statements must be true:

(i) There is a k0 such that ∇f ′(xk0) = 0.
(ii) f(xk) ց −∞
(iii) The sequence {

∥∥dk
∥∥} diverges (

∥∥dk
∥∥ → ∞).

(iv) For every subsequence J ⊂ N for which {dk : k ∈ J} is bounded, we have

lim
k∈J

f ′(xk; dk) = 0.
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Remark: It is important to note that this theorem says nothing about the convergence
of the sequence {xk}. Indeed, this sequence may diverge. The theorem only concerns the
function values and the first-order necessary condition for optimality.

Before proving this Theorem, we first consider some important corollaries concerning the
Cauchy and Newton search directions. Each corollary assumes that the hypotheses of The-
orem 1.1 hold.

Corollary 1.1.1. If the sequences {dk} and {f(xk)} are bounded, then

lim
k→∞

f ′(xk; dk) = 0.

Proof. The hypotheses imply that either (i) or (iv) with J = N occurs in Theorem 1.1.
Hence, lim

k→∞
f ′(xk; dk) = 0. �

Corollary 1.1.2. If dk = −∇f ′(xk)/
∥∥∇f(xk)

∥∥ is the Cauchy direction for all k, then every

accumulation point, x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. The sequence {f(xk)} is decreasing. If x is any accumulation point of the sequence
{xk}, then we claim that f(x) is a lower bound for the sequence {f(xk)}. Indeed, if this
were not the case, then for some k0 and ǫ > 0

f(xk) + ǫ < f(x)

for all k > k0 since {f(x
k)} is decreasing. But x is a cluster point of {xk} and f is continuous.

Hence, there is a k̂ > k0 such that

|f(x)− f(xk̂)| < ǫ/2.

But then

f(x) <
ǫ

2
+ f(xk̂) and f(xk̂) + ǫ < f(x).

Hence,

f(xk̂) + ǫ <
ǫ

2
+ f(xk̂), or

ǫ

2
< 0.

This contradiction implies that {f(xk)} is bounded below by f(x). But then the sequence
{f(xk)} is bounded so that Corollary 1.1.1 applies. That is,

0 = lim
k→∞

f ′

(
xk;

−∇f(xk)

‖∇f(xk)‖

)
= lim

k→∞
−
∥∥∇f(xk)

∥∥ .

Since ∇f is continuous, ∇f(x) = 0. �

Corollary 1.1.3. Let us further assume that f is twice continuously differentiable and that
there is a β > 0 such that, for all u ∈ R

n, β ‖u‖2 < uT∇2f(x)u on {x : f(x) ≤ f(x0)}. If
the Basic Backtracking algorithm is implemented using the Newton search directions,

dk = −∇2f(xk)−1∇f(xk),

then every accumulation point, x, of the sequence {xk} satisfies ∇f(x) = 0.
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Proof. Let x be an accumulation point of the sequence {xk} and let J ⊂ N be such that

xk J
−→x. Clearly, {xk : k ∈ J} is bounded. Hence, the continuity of ∇f and ∇2f , along

with the Weierstrass Compactness Theorem, imply that the sets {∇f(xk) : k ∈ J} and
{∇2f(xk) : k ∈ J} are also bounded. Let M1 be a bound on the values {

∥∥∇f(xk)
∥∥ : k ∈ J}

and let M2 be an upper bound on the values {
∥∥∇2f(xk)

∥∥ : k ∈ J}. Recall that by hypotheses

β ‖u‖2 is a uniform lower bound on the values {uT∇2f(xk)u} for every u ∈ R
n. Take u = dk

to obtain the bound

β
∥∥dk

∥∥2
≤ ∇f(xk)T∇2f(xk)−1∇f(xk) ≤

∥∥dk
∥∥ ∥∥∇f(xk)

∥∥ ,
and so ∥∥dk

∥∥ ≤ β−1M1 ∀ k ∈ J.

Therefore, the sequence {dk : k ∈ J} is bounded. Moreover, as in the proof of Corollary
1.1.2, the sequence {f(tk)} is also bounded. On the other hand,

∥∥∇f(xk)
∥∥ =

∥∥∇2f(xk)dk
∥∥ ≤ M2

∥∥dk
∥∥ ∀ k ∈ J.

Therefore,
M−1

2

∥∥∇f(xk)
∥∥ ≤

∥∥dk
∥∥ ∀ k ∈ J.

Consequently, Theorem 1.1 Part (iv) implies that

0 = lim
k∈J

|f ′(xk; dk)|

= lim
k∈J

|∇f(xk)T∇2f(xk)−1∇f(xk)|

≥ lim
k∈J

β
∥∥dk

∥∥2

≥ lim
k∈J

βM−2
2

∥∥∇f(xk)
∥∥2

= βM−2
2 ‖∇f(x)‖2.

Therefore, ∇f(x) = 0. �

Proof of Theorem 1.1: We assume that none of (i), (ii), (iii), and (iv) hold and establish
a contradiction.
Since (i) does not occur, ∇f(xk) 6= 0 for all k = 1, 2, . . . . Since (ii) does not occur, the

sequence {f(xk)} is bounded below. Since {f(xk)} is a bounded decreasing sequence in R,
we have f(xk) ց f for some f . In particular, (f(xk+1) − f(xk)) → 0. Next, since (iii) and

(iv) do not occur, there is a subsequence J ⊂ N and a vector d such that dk
J

−→ d and

sup
k∈J

f ′(xk; dk) =: β < 0.

The Armijo-Goldstein inequality combined with the fact that (f(xk+1)− f(xk)) → 0, imply
that

tkf
′(xk; dk) → 0.

Since f ′(xk; dk) ≤ β < 0 for k ∈ J , we must have tk
J

−→ 0. With no loss in generality, we
assume that tk < 1 for all k ∈ J . Hence,

(1.3) cγ−1tkf
′(xk; dk) < f(xk + tkγ

−1dk)− f(xk)



7

for all k ∈ J due to Step 1 of the line search and the fact that τk < 1. By the Mean Value
Theorem, there exists for each k ∈ J a θk ∈ (0, 1) such that

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

where
x̂n := (1− θk)x

k + θk(x
k + tkγ

−1dk)
= xk + θktkγ

−1dk.

Now, since ∇f is Lipschitz continuous, we have

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

= tkγ
−1f ′(xk; dk) + tkγ

−1[f ′(x̂k; dk)− f ′(xk; dk)]

= tkγ
−1f ′(xk; dk) + tkγ

−1[∇f(x̂k)−∇f(xk)]Tdk

≤ tkγ
−1f ′(xk; dk) + tkγ

−1L
∥∥x̂k − xk

∥∥ ∥∥dk
∥∥

= tkγ
−1f ′(xk; dk) + L(tkγ

−1)2θk
∥∥dk

∥∥2
.

Combining this inequality with inequality (1.3) yields the inequality

ctkγ
−1f ′(xk; dk) < tkγ

−1f ′(xk; dk) + L(tkγ
−1)2θk

∥∥dk
∥∥2

.

By rearranging and then substituting β for f ′(xk; dk) we obtain

0 < (1− c)β + (tkγ
−1)L ‖δk‖

2 ∀ k ∈ J.

Now taking the limit over k ∈ J , we obtain the contradiction

0 ≤ (1− c)β < 0.

�

1.2. The Wolfe Conditions. We now consider a couple of modifications to the basic back-
tracking line search that attempt to better approximate an exact line-search (Curry line
search), i.e. the stepsize tk is chosen to satisfy

f(xk + tkd
k) = min

t∈R
f(xk + tdk).

In this case, the first-order optimality conditions tell us that 0 = ∇f(xk + tkd
k)Tdk. The

Wolfe conditions try to combine the Armijo-Goldstein sufficient decrease condition with a
condition that tries to push ∇f(xk + tkd

k)Tdk either toward zero, or at least to a point
where the search direction dk is less of a direction of descent. To describe these line search
conditions, we take parameters 0 < c1 < c2 < 1.

Weak Wolfe Conditions

f(xk + tkd
k) ≤ f(xk) + c1tkf

′(xk; dk)(1.4)

c2f
′(xk; dk) ≤ f ′(xk + tkd

k; dk) .(1.5)

Strong Wolfe Conditions

f(xk + tkd
k) ≤ f(xk) + c1tkf

′(xk; dk)(1.6)

|f ′(xk + tkd
k; dk)| ≤ c2|f

′(xk; dk)| .(1.7)
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The weak Wolfe condition (1.5) tries to make dk less of a direction of descent (and possibly
a direction of ascent) at the new point, while the strong Wolfe condition tries to push the
directional derivative in the direction dk closer to zero at the new point. Imposing one or
the other of the Wolfe conditions on a line search procedure has become standard practice
for optimization software based on line search methods.
We now give a result showing that there exists stepsizes satisfying the weak Wolfe condi-

tions. A similar result (with a similar proof) holds for the strong Wolfe conditions.

Lemma 1.1. Let f : Rn → R be continuously differentiable and suppose that x, d ∈ R
n

are such that the set {f(x + td) : t ≥ 0} is bounded below and f ′(x; d) < 0, then for each
0 < c1 < c2 < 1 the set {

t

∣∣∣∣
t > 0, f ′(x+ td; d) ≥ c2f

′(x; d), and
f(x+ td) ≤ f(x) + c1tf

′(x; d)

}

has non–empty interior.

Proof. Set φ(t) = f(x+td)−(f(x)+c1tf
′(x; d)). Then φ(0) = 0 and φ′(0) = (1−c1)f

′(x; d) <
0. So there is a t̄ > 0 such that φ(t) < 0 for t ∈ (0, t̄). Moreover, since f ′(x; d) < 0 and
{f(x + td) : t ≥ 0} is bounded below, we have φ(t) → +∞ as t ↑ ∞. Hence, by the
continuity of f , there exists t̂ > 0 such that φ(t̂) = 0. Let t∗ = inf

{
t̂
∣∣0 ≤ t, φ(t̂) = 0

}
.

Since φ(t) < 0 for t ∈ (0, t̄), t∗ > 0 and by continuity φ(t∗) = 0. By Rolle’s theorem (or the
mean value theorem) there must exist t̃ ∈ (0, t∗) with φ′(t̃) = 0. That is,

∇f(x+ t̃d)Td = c1∇f(x)Td > c2∇f(x)Td.

From the definition of t∗ and the fact that t̃ ∈ (0, t∗), we also have

f(x+ td)− (f(x) + c1t̃∇f(x)Td) < 0 .

The result now follows from the continuity of f and ∇f . �

We now describe a bisection method that either computes a stepsize satisfying the weak
Wolfe conditions or sends the function values to −∞. Let x and d in R

n be such that
f ′(x; d) < 0.

A Bisection Method for the Weak Wolfe Conditions

Initialization: Choose 0 < c1 < c2 < 1, and set α = 0, t = 1, and β = +∞.

Repeat
If f(x+ td) > f(x) + c1tf

′(x; d),
set β = t and reset t = 1

2
(α+ β).

Else if f ′(x+ td; d) < c2f
′(x; d),

set α = t and reset

t =

{
2α, if β = +∞

1
2
(α+ β), otherwise.

Else, STOP.
End Repeat
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Lemma 1.2. Let f : Rn → R be continuously differentiable and suppose that x, d ∈ R
n are

such that f ′(x; d) < 0. Then one of the following two possibilities must occur in the Bisection
Method for the Weak Wolfe Condition described above.

(i) The procedure terminates finitely at a value of t for which the weal Wolfe conditions
are satisfied.

(ii) The procedure does not terminate finitely, the parameter β is never set to a finite
value, the parameter α becomes positive on the first iteration and is doubled in mag-
nitude at every iteration thereafter, and f(x+ td) ↓ −∞.

Proof. Let us suppose that the procedure does not terminate finitely. If the parameter β is
never set to a finite value, then it must be the case that that α becomes positive on the first
iteration (since we did not terminate) and is doubled on each subsequent iteration with

f(x+ αd) ≤ f(x) + c1αf
′(x; d).

But then f(x + td) ↓ −∞ since f ′(x; d) < 0. That is, option (ii) above occurs. Hence, we
may as well assume that β is eventually finite and the procedure is not finitely terminating.
For the sake of clarity, let us index the bounds and trial steps by iteration as follows:
αk < tk < βk, k = 1, 2, . . . . Since β is eventually finite, the bisection procedure guarantees
that there is a t̄ > 0 such that

(1.8) αk ↑ t̄, tk → t̄, and βk ↓ t̄ .

If αk = 0 for all k, then t̄ = 0 and

f(x+ tkd)− f(x)

tk
− c1f

′(x; d) > 0 ∀k.

But then, taking the limit in k, we obtain f ′(x; d) ≥ c1f
′(x; d), or equivalently, 0 > (1 −

c1)f
′(x; d) ≥ 0 which is a contradiction. Hence, we can assume that eventually αk > 0.

We now have that the sequences {αk}, {tk}, and {βk} are infinite with (1.8) satisfied, and
there is a k0 such that 0 < αk < tk < βk < ∞ for all k ≥ k0. By construction, we know that
for all k > k0

f(x+ αkd) ≤ f(x) + c1αkf
′(x; d)(1.9)

f(x) + c1βkf
′(x; d) < f(x+ βkd)(1.10)

f ′(x+ αkd; d) < c2f
′(x; d) .(1.11)

Taking the limit in k in (1.11) tells us that

(1.12) f ′(x+ t̄d; d) ≤ c2f
′(x; d) .

Adding (1.9) and (1.10) together and using the Mean Value Theorem gives

c1(βk − αk)f
′(x; d) ≤ f(x+ βkd)− f(x+ αkd) = (βk − αk)f

′(x+ t̂kd; d) ∀ k > k0,

where αk ≤ t̂k ≤ βk. Dividing by (βk − αk) > 0 and taking the limit in k gives c1f
′(x; d) ≤

f ′(x+ t̄d; d) which combined with (1.12) yields the contradiction f ′(x+ t̄d; d) ≤ c2f
′(x; d) <

c1f
′(x; d) ≤ f ′(x+ t̄d; d) . Consequently, option (i) above must occur if (ii) does not. �

A global convergence result for a line search routine based on the Weak Wolfe conditions
now follows.
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Theorem 1.2. Let f : Rn → R, x0 ∈ R
n, and 0 < c1 < c2 < 1. Assume that ∇f(x) exists

and is Lipschitz continuous on an open set containing the set {x |f(x) ≤ f(x0)}. Let {xν}
be a sequence initiated at x0 and generated by the following algorithm:

Step 0: Set k = 0.
Step 1: Choose dk ∈ R

n such that f ′(xk; dk) < 0.
If no such dk exists, then STOP.
First-order necessary conditions for optimality are satisfied at xk.

Step 2: Let tk be a stepsize satisfying the Weak Wolfe conditions (1.4) and (1.5).
If no such tk exists, then STOP.
The function f is unbounded below.

Step 3: Set xk+1 = xk + tkd
k, reset k = k + 1, and return to Step 1.

One of the following must occur:

(i) The algorithm terminates finitely at a first-order stationary point for f .
(ii) For some k the stepsize selection procedure generates a sequence of trial stepsizes

tkν ↑ +∞ such that f(xk + tkνd
k) → −∞.

(iii) f(xk) ↓ −∞.

(iv)

∞∑

k=0

∥∥∇f(xk)
∥∥2

cos2 θk < +∞, where cos θk =
∇f(xk)Tdk

‖∇f(xk)‖ ‖dk‖
for all k = 1, 2, . . . .

Proof. We assume that (i), (ii), and (iii) do not occur and show that (iv) occurs. Since (i)
and (ii) do not occur the sequence {xν} is infinite and f ′(xk; dk) < 0 for all k = 1, 2, . . . .
Since (ii) does not occur, the weak Wolfe conditions are satisfied at every iteration. The
condition (1.4) implies that the sequence {f(xk)} is strictly decreasing. In particular, this
implies that {xν} ⊂ {x |f(x) ≤ f(x0)}. The condition (1.5) implies that

(c2 − 1)∇f(xk)Tdk ≤ (∇f(xk+1)−∇f(xk))Tdk

for all k. Combining this with the Lipschitz continuity of ∇f on an open neighborhood of
{x |f(x) ≤ f(x0)}, gives

(c2 − 1)∇f(xk)Tdk ≤ (∇f(xk+1)−∇f(xk))Tdk ≤ Ltk
∥∥dk

∥∥2
.

Hence

tk ≥
c2 − 1

L

∇f(xk)Tdk

‖dk‖2
> 0.

Plugging this into (1.4) give the inequality

f(xk+1) ≤ f(xk)− c1
1− c2
L

(∇f(xk)Tdk)2

‖dk‖2
= f(xk)− c1

1− c2
L

∥∥∇f(xk)
∥∥2

cos2 θk.

Setting c = c1
1−c2
L

and summing over k gives

f(xk+1) ≤ f(x0)− c

k∑

ν=0

‖∇f(xν)‖2 cos2 θν .
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Since (iii) does not occur, we can take the limit in k and obtain
∞∑

ν=0

‖∇f(xν)‖2 cos2 θν < +∞ .

�

If the function f is bounded below and the algorithm does not terminate finitely, then
Part (iv) of this theorem states that

∥∥∇f(xk)
∥∥ cos2 θk → 0 .

Hence, if the search directions dk are chosen so that there is a δ > 0, independent of the
iteration k, such that cos θk < −δ for all k, then it must be the case that

∥∥∇f(xk)
∥∥ → 0

so that every cluster point of the sequence {xk} is a first-order stationary point for f . For
example, we have the following corollary to the theorem.

Corollary 1.2.1. Let f and {xk} be as in the theorem, and let {Bk} be a sequence of
symmetric positive definite matrices for which there exists λ > λ > 0 such that

(1.13) λ ‖u‖2 ≤ uTBku ≤ λ ‖u‖2 ∀ u ∈ R
n and k = 1, 2, . . . .

Let us further assume that f is bounded below. If the search directions dk are given by

dk = −Bk∇f(xk) ∀ k = 1, 2, . . . ,

then ∇f(xk) → 0.

Proof. It is easily shown (see exercises) that the condition (1.13) implies that the eigenvalues
of the sequence {Bk} are uniformly lower bounded by λ and uniformly upper bounded by λ.
In particular, this implies that

λ ‖u‖ ≤ ‖Bku‖ ≤ λ ‖u‖ ∀ u ∈ R
n and k = 1, 2, . . .

(see exercises). Hence for all k

cos θk =
∇f(xk)Tdk

‖∇f(xk)‖ ‖dk‖

= −
∇f(xk)TBk∇f(xk)

‖∇f(xk)‖ ‖Bk∇f(xk)‖

≤ −
λ
∥∥∇f(xk)

∥∥2

‖∇f(xk)‖ ‖Bk∇f(xk)‖

≤ −
λ
∥∥∇f(xk)

∥∥2

‖∇f(xk)‖ λ ‖∇f(xk)‖

= −λ/λ

< 0 .

Therefore ∇f(xk) → 0. �

A possible choice for the matrices Bk in the above result is Bk = I for all k. This essentially
gives the method of steepest descent.
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Exercises for Chapter on Line Search Methods

(1) Let Q be an n× n symmetric positive definite matrix.
(a) Show that the eigenvalues of Q2 are the square of the eigenvalues of Q.
(b) If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigen values of Q, show that

λn ‖u‖
2
2 ≤ uTQu ≤ λ1 ‖u‖

2
2 ∀ u ∈ R

n.

(c) If 0 < λ < λ are such that

λ ‖u‖22 ≤ uTQu ≤ λ ‖u‖22 ∀ u ∈ R
n,

then all of the eigenvalues of Q must lie in the interval [λ, λ].
(d) Let λ and λ be as in Part (c) above. Show that

λ ‖u‖2 ≤ ‖Qu‖2 ≤ λ ‖u‖2 ∀ u ∈ R
n .

Hint: ‖Qu‖22 = uTQ2u.
(2) Let Q be an n× n symmetric positive definite matrix, g ∈ R

n, and α ∈ R. Consider
the quadratic function

f(x) =
1

2
xTQx+ gTx+ α .

(a) Show that there exists a λ > 0 such that

f(y) ≥ f(x) +∇f(x)T (y − x) +
λ

2
‖y − x‖22

for all x, y ∈ R
n.

(b) Show that f is a strictly convex function.
(c) Given x and d in R

n compute the solution t∗ to the one dimensional optimization
problem

min
t∈Rn

f(x+ td)

(you must also verify that it is the unique global solution). This is the Curry
stepsize for this function.

(3) Let f : R
m → R̄ be convex, A ∈ R

m×n, and b ∈ R
m. Show that the function

h : Rn → R̄ defined by
h(y) = f(Ay + b)

is also a convex function.
(4) Let M ∈ R

m×n.
(a) Show that the matrices MTM and MMT are always symmetric and positive

semi-definite.
(b) Provide a necessary and sufficient condition on the matrix M for the matrix

MTM to be positive definite.
(5) Let A ∈ R

m×n and b ∈ R
m and consider the function

f(x) =
1

2
‖Ax+ b‖22 .

(a) Show that f is a convex function.
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(b) Provide a necessary and sufficient condition on the matrix A for f to be strictly
convex.

(c) Assume that A satisfies the condition that you have identified in Part (b). Given
x and d in R

n compute the solution t∗ to the one dimensional optimization
problem

min
t∈R

f(x+ td) .

(d)∗ Show that a solution to the problem minx∈Rn f(x) must always exist for every
A ∈ R

m×n and b ∈ R
m.

(6) Provide an example to show that the set
{
t

∣∣∣∣
t > 0, f ′(x+ td; d) ≥ c2f

′(x; d), and
f(x+ td) ≤ f(x) + c1tf

′(x; d)

}

may be empty if 0 < c2 < c1 < 1.
(7)∗ Let f : Rn → R and x0 ∈ R be such that f is differentiable on R

n with ∇f Lipschitz
continuous on an open convex set containing the set {x : f(x) ≤ f(x0)}. Let {Hk} be
a sequence of symmetric positive definite matrices for which there exists λ > λ > 0
such that

λ ‖u‖2 ≤ uTHku ≤ λ ‖u‖2 ∀ u ∈ R
n and k = 1, 2, . . . .

Finally, let {xk} be the sequence satisfying xk+1 = xk if ∇f(xk) = 0; otherwise,

xk+1 = xk + tkd
k, where dk = −Hk∇f(xk),

and tk is chosen by the backtracking stepsize selection method. Show that every
accumulation point, x, of the sequence {xk} satisfies ∇f(x) = 0.


