
June 9, 2014
MATH 408 FINAL EXAM SOLUTIONS TO SAMPLE QUESTIONS

This exam will consist of three parts: (I) Linear Least Squares, (II) Quadratic Optimization, and (III) Opti-
mality Conditions and Lagrangian Duality. The first two parts ((I) Linear Least Squares and (II) Quadratic
Optimization) will have 2 multipart questions, and the third part ((III) Optimality Conditions and Lagrangian
Duality) will have 3 multipart questions. This give a total of 7 questions is worth 50 points for a total of 350
points. The first two parts ((I) Linear Least Squares and (II) Quadratic Optimization) are identical to the
two parts of the midterm exam, however, on the final, the questions will be taken from only two of the three
question types ((i) theory, (ii) linear algebra, and (iii) computations). Please use the midterm exam study
guide to prepare for these questions. A more detailed description of the third part of the final exam is given
below.

III Optimality Conditions and Lagrangian Duality

1 Theory Question: For this question you will need to review all of the vocabulary words as well as
the theorems from the notes on Elements of Multivariable Calculus, Optimality Conditions for Un-
constrained Problems, and Optimality Conditions for Constrained Optimization. You may be asked
to provide statements of first- and second-order optimality conditions for both constrained and un-
constrained problems. In addition, you may be asked about the role of convexity in optimization,
how it is detected, as well as first- and second-order conditions under which it is satisfied.

2 Computation: In this question you will be asked to compute gradients and Hessians, located and
classify stationary points for specific optimizations problems, as well as test for the convexity of a
problem. You may be asked to verify whether a function or set is convex.

3 Lagrangian Duality: In this problem you will be given a primal formulation of a convex optimization
problem and then asked to compute its dual.

Sample Questions
(III) Optimality Conditions and Lagrangian Duality

Question 1: Theory Question

1. State the first- and second-order conditions for optimality for the following two problems:

(a) Linear least squares: minx∈Rn
1
2‖Ax− b‖

2
2, where A ∈ Rm×n and b ∈ Rm.

Solution

Let f(x) := 1
2‖Ax− b‖

2
2.

First order: If x̄ is a local solution, then AT (Ax̄− b) = ∇f(x̄) = 0.

Second order: Since∇2f(x) = ATA for all x, f is convex. Hence the first-order optimality condition
is both necessary and sufficient for optimality.

(b) Quadratic Optimization: minx∈Rn
1
2x

TQx+ gTx, where Q ∈ Rn×n is symmetric and g ∈ Rn.

Solution

Let f(x) := 1
2x

TQx+ gTx.

First order: If x̄ is a local solution, then Qx̄+ g = ∇f(x̄) = 0.

Second order: (Necessary) If x̄ is a local solution, then Qx̄ + g = ∇f(x̄) = 0 and Q = ∇2f(x̄) is
PSD.

(Sufficient) Since Q = ∇2f(x) for all x, f s convex if and only if Q is PSD. Hence the second-order
necessary conditions for optimality are also sufficient for any point x̄ satisfying ∇f(x̄) = 0 to a
global optimal solution to minx∈Rn f(x).



2. Provide necessary and sufficient conditions under which a quadratic optimization problem be written as
a linear least squares problem.

Solution Consider minx∈Rn
1
2x

TQx+ gTx, then the necessary and sufficient condition is Q is PSD and
g ∈ Ran(Q). Indeed, if Q is PSD, then Q has a Cholesky factorization Q = LLT where L ∈ Rn×k with
k = rank(Q). Since g ∈ Ran(Q) = Ran(L), there is a vector b ∈ Rk such that −g = Lb. Then

1

2
xTQx+ gTx =

1

2
xTLLTx− (Lb)Tx

=

[
1

2
(LTx)T (LTx)− bT (LTx) +

1

2
bT b

]
− 1

2
bT b

=
1

2
‖LTx− b‖T2 −

1

2
bT b .

3. State the second-order necessary and sufficient optimality conditions for the problem minx∈Rn f(x),
where f : Rn → R is twice continuously differentiable.

Solution

Theorem 1.6 from Chapter 6.

4. State the first-order optimally conditions for the problem

min
x∈Ω

f0(x), (♠)

where
Ω := {x : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = s+ 1, . . . ,m}. (♣)

Solution

Theorem 1.3 from Chapter 7.

5. State the second-order sufficient conditions for optimality for the problem (♠) where Ω is given by (♣).

Solution Theorem 3.2 from Chapter 7.

6. State first- and second-order necessary and sufficient conditions for a function f : Rn → R to be convex.

Solution

Theorem 1.14 from Chapter 6.

7. Use a first-order necessary and sufficient condition for convexity to show that if f : Rn → R is a
differentiable convex function and C ⊂ Rn is a convex set, then x̄ solves minx∈C f(x) if and only if
∇f(x̄)T (x− x̄) ≥ 0 for all x ∈ C.

Solution If x̄ solves minx∈C f(x), then f((1−t)x̄+tx) ≥ f(x̄) ∀x ∈ C and 0 ≤ t ≤ 1 since (1−t)x̄+tx ∈
C by the convexity of C. Hence, for all x ∈ C,

∇f(x̄)T (x− x̄) = f ′(x̄;x− x̄) = lim
t↓0

f(x̄+ t(x− x̄))− f(x̄)

t
= lim

t↓0

f((1− t)x̄+ tx)− f(x̄)

t
≥ 0,

since (1− t)x̄+ tx ∈ C for all 0 ≤ t ≤ 1.

On the other hand, since f is convex

f(y) ≥ f(x) +∇f(x)T (y − x) ∀ y ∈ Rn and x ∈ dom (f).



Therefore, if ∇f(x̄)T (x− x̄) ≥ 0 for all x ∈ C, then

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) ≥ f(x̄) ∀ x ∈ C,

or equivalently, x̄ solves minx∈C f(x).

Question 2: Computation

1. If f1 and f2 are convex functions mapping Rn into R, show that f(x) := max{f1(x), f2(x)} is also a
convex function.

Solution

f((1− λ)x1 + λx2) = max{f1((1− λ)x1 + λx2), f2((1− λ)x1 + λx2)}
≤ max{(1− λ)f1(x1) + λf1(x2), (1− λ)f2(x1) + λf2(x2)}
≤ max{(1− λ) max{f1(x1), f2(x1)}+ λmax{f1(x2), f2(x2)},

(1− λ) max{f1(x1), f2(x1)}+ λmax{f1(x2), f2(x2)}}
= (1− λ) max{f1(x1), f2(x1)}+ λmax{f1(x2), f2(x2)}
= (1− λ)f(x1) + λf(x2)

2. Let F : Rn → Rm. Use the delta method to show that the gradient of the function f(x) := 1
2‖F (x)‖22 is

∇f(x) = ∇F (x)TF (x) .

Solution

Section 4 from Chapter 5.

3. A critical point of a function f : Rn → R is any point x at which ∇f(x) = 0. Compute all of the critical
points of the following functions. If no critical point exists, explain why.

(a) f(x) = x2
1 − 4x1 + 2x2

2 + 7

(b) f(x) = e−‖x‖
2

(c) f(x) = x2
1 − 2x1x2 + 1

3x
3
2 − 8x2

(d) f(x) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution

(a) ∇f(x) = [2x1 − 4, 4x2]T = 0, then x = (2, 0).

(b) ∇f(x) = −2e−‖x‖
2
x = 0, then x = 0.

(c) ∇f(x) = [2x1 − 2x2,−2x1 + x2
2 − 8]T = 0, then x = (−2,−2) or x = (4, 4).

(d) ∇f(x) = [4(2x1−x2),−2(2x1−x2) + 2(x2−x3),−2(x2−x3) + 2(x3−1)]T = 0, then x = (0.5, 1, 1).

4. Show that the functions

f(x1, x2) = x2
1 + x3

2, and g(x1, x2) = x2
1 + x4

2

both have a critical point at (x1, x2) = (0, 0) and that their associated Hessians are positive semi-definite.
Then show that (0, 0) is a local (global) minimizer for g but is not a local minimizer for f .

Solution



Both f and g are completely separable. The origin is the unique critical point for both functions.
However,

∇2f(x1, x2) =

[
2 0
0 6x2

]
∇2g(x1, x2) =

[
2 0
0 12x2

2

]
.

Clearly, ∇2f is not positive semi-definite for x2 < 0, so f is not convex, while ∇2g is everywhere
positive semi-definite and so is convex. Thus, f has no local (global) optima, while the origin is a global
minimizer of g.

5. Find the local minimizers and maximizers for the following functions if they exist:

(a) f(x) = x2 + cosx

(b) f(x1, x2) = x2
1 − 4x1 + 2x2

2 + 7

(c) f(x1, x2) = e−(x2
1+x2

2)

(d) f(x1, x2, x3) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution

(a) x = 0 is local (global, since f is convex) minimizer;

(b) (x1, x2)T = (2, 0)T is local (global, since f is convex) minizer;

(c) (x1, x2) = (0, 0) is local (global, since f is convex) maximizer;

(d) (x1, x2, x3) = (1
2 , 1, 1) is local (global, since f is convex) minimizer.

6. Locate all of the KKT points for the following problems. Can you show that these points are local
solutions? Global solutions?

(a)

minimize e(x1−x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

Solution

This is convex problem so any local solution is a global solution. Obviously, we wish to make x1 as
small as possible and x2 as big as possible. Hence, we must have x1 = 0 which gives the solution
(x1, x2) = (0, ln(19)). By plugging this solution into the KKT conditions, we obtain the multipliers
(y1, y2) = (1/19)2(1, 20).

(b)

minimize e(−x1+x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

Solution: Here we want to make x1 as big as possible and x2 as small as possible. By fixing x1 at
zero and sending x2 to −∞, the constraints are satisfied and the objective goes to zero. Hence, no
solution exists and the optimal value is 0.

(c)
minimize x2

1 + x2
2 − 4x1 − 4x2

subject to x2
1 ≤ x2

x1 + x2 ≤ 2

Solution: This is a convex optimization problem where the objective x2
1 + x2

2 − 4x1 − 4x2 =
(x1− 2)2 + (x2− 2)2− 8 is strictly convex. Hence any KKT point will give a unique global optimal
solution. Check that (x1, x2) = (1, 1) and (y1, y2) = (0, 2) is a KKT pair for this problem.



(d)
minimize 1

2‖x‖
2

subject to Ax = b

where b ∈ Rm and A ∈ Rm×n satisfies Nul (AT ) = {0}.
Solution: This is a convex problem so x̄ is a solution if and only if there is a ȳ such that (x̄, ȳ) is a
KKT pair for this problem. The Lagrangian is L(x, y) = 1

2‖x‖
2
2 +yT (b−Ax). The KKT conditions

are Ax̄ = b and x̄ = AT ȳ. Hence b = Ax̄ = AAT ȳ. Since Nul (AT ) = {0}, Nul (AAT ) = {0} so that
the matrix AAT is invertible. Consequently, ȳ = (AAT )−1b and x̄ = AT ȳ = AT (AAT )−1b.

Question 3: Lagrangian Duality

1. Let A ∈ Rm×n, c ∈ Rn, and b ∈ Rm and compute the Lagrangian dual to the problem

P minimize cTx
subject to Ax ≤ b, 0 ≤ x .

Solution:

g(y, z) = min
x∈Rn

L(x, y, z) := cTx+ yT (Ax− b)− zTx

0 = ∇xL(x, y, z) = c+AT y − z
g(y, z) = −yT b

Then the dual problem is

max
y,z

g(y, z)

s.t. c+AT y − z = 0

y ≥ 0, z ≥ 0,

which is equivalent to

max
y
− yT b

s.t. c+AT y ≥ 0

y ≥ 0.

2. Let Q ∈ Rn×n be symmetric and positive definite, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm and compute the
Lagrangian dual to the problem

P minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x .

Solution:

Section 5.2 from Chapter 7.

3. Let Q ∈ Rn×n be symmetric and positive definite. Consider the optimization problem

P minimize 1
2x

TQx+ cTx
subject to ‖x‖∞ ≤ 1 .



(a) Show that this problem is equivalent to the problem

P̂ minimize 1
2x

TQx+ cTx
subject to −e ≤ x ≤ e ,

where e is the vector of all ones.

Solution:

{x|‖x‖∞ ≤ 1} = {x| |xi| ≤ 1 ∀i = 1, · · · , n} = {x| − e ≤ x ≤ e}.
(b) What is the Lagrangian for P̂?

Solution:

L(x, u, v) =
1

2
xTQx+ cTx− uT (x+ e) + vT (x− e)

(c) Show that the Lagrangian dual for P̂ is the problem

D max −1

2
(y − c)TQ−1(y − c)− ‖y‖1 = − min

1

2
(y − c)TQ−1(y − c) + ‖y‖1 .

This is also the Lagrangian dual for P.

Solution:

g(u, v) = min
x
L(x, u, v) = min

x

1

2
xTQx+ cTx− uT (x+ e) + vT (x− e)

0 = ∇xL(x, u, v) = Qx+ c− u+ v

x = Q−1(u− v − c)

g(u, v) = −1

2
(u− v − c)TQ−1(u− v − c)− (u+ v)T e

then the Lagrangian dual of P̂ is

max
u≥0,v≥0

g(u, v) = −1

2
(u− v − c)TQ−1(u− v − c)− (u+ v)T e.

Set y = u − v, then −v ≤ y ≤ u and so −vi ≤ yi ≤ ui, i = 1, . . . , n which implies that ‖y‖1 ≤
eT (u+ v). Therefore, we can eliminate u and v to obtain the dual

max
y

g(y) = −1

2
(y − c)TQ−1(y − c)− ‖y‖1.

4. Let A ∈ Rm×n and b ∈ Rm. Consider the optimization problem

P minimize 1
2‖Ax− b‖

2
2

subject to ‖x‖1 ≤ 1 .

(a) Show that this problem is equivalent to the problem

P̂
minimize(x,z,w)

1
2‖w‖

2
2

subject to Ax− b = w,
−z ≤ x ≤ z and eT z ≤ 1,

where e is the vector of all ones.

Solution:

Observe that {x| − z ≤ x ≤ z and eT z ≤ 1} = {x|‖x‖1 ≤ 1}.



(b) What is the Lagrangian for P̂?

Solution:

L(w, x, z, y, u, v, λ) =
1

2
wTw + yT (Ax− b− w)− uT (x+ z) + vT (x− z) + λ(eT z − 1)

(c) Show that the Lagrangian dual for P̂ is the problem

D max −1

2
‖y‖22 − yT b− ‖AT y‖∞ = − min

1

2
‖y − b‖22 + ‖AT y‖∞ −

1

2
‖b‖22 .

This is also the Lagrangian dual for P.

Solution:

L(w, x, z, y, u, v, λ) =
1

2
wTw + yT (Ax− b− w)− uT (x+ z) + vT (x− z) + λ(eT z − 1)

g(y, u, v, λ) = min
w,x,z

L(w, x, z, y, u, v, λ)

0 = ∇wL = w − y
0 = ∇xL = AT y − u+ v

0 = ∇zL = −u− v + λe,

hence g(y, u, v, λ) = −1
2y

T y − yT b− λ and the Lagrangian dual is

(D̃) max − 1

2
yT y − yT b− λ

s.t. AT y = u− v
λe = u+ v

λ ≥ 0, u ≥ 0, v ≥ 0.

Observe that

{(y, λ)|AT y = u−v, λe = u+v, u ≥ 0, v ≥ 0, λ ≥ 0} = {(y, λ)|AT y+λe ≥ 0,−AT y+λe ≥ 0, λ ≥ 0},

hence (D̃) is equivalent to

(D̃) max − 1

2
yT y − yT b− λ

s.t. − λe ≤ AT y ≤ λe

which is equivalent to D.


