1. Conjugate Direction Methods

1.1. General Discussion. In this section we are again concerned with the problem of unconstrained optimization:

$$
\begin{array}{ll}
\mathcal{P}: & \text { minimize } f(x) \\
& \text { subject to } x \in \mathbb{R}^{n}
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{2}. However, the emphasis will be on local quadratic approximations to f. In particular, we study the problem \mathcal{P} when f has the form

$$
\begin{equation*}
f(x):=\frac{1}{2} x^{T} Q x-b^{T} x \tag{1.1}
\end{equation*}
$$

where Q is a symmetric positive definite matrix. In this regard the notion of Q-conjugacy plays a key role.

Definition 1.1 (Conjugacy). Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. We say that the vectors $x, y \in \mathbb{R}^{n} \backslash\{0\}$ are Q-conjugate (or Q-orthogonal) if $x^{T} Q y=0$.

Proposition 1.0.1 (Conjugacy implies Linear Independence). If $Q \in \mathbb{R}^{n \times n}$ is positive definite and the set of nonzero vectors $d_{0}, d_{1}, \ldots, d_{k}$ are (pairwise) Q-conjugate, then these vectors are linearly independent.

Proof. If $0=\sum_{i=0}^{k} \alpha_{i} d_{i}$, then for $i_{0} \in\{0,1, \ldots, k\}$

$$
0=d_{i_{0}}^{T} Q\left[\sum_{i=0}^{k} \alpha_{i} d_{i}\right]=\alpha_{i_{0}} d_{i_{0}}^{T} Q d_{i}
$$

Hence $\alpha_{i}=0$ for each $i=0, \ldots, k$.
Observe that the unique solution to \mathcal{P} when f is given by (1.1) is

$$
x^{*}=Q^{-1} b
$$

If $\left\{d_{0}, d_{1}, \ldots, d_{n-1}\right\}$ is a Q-conjugate basis for \mathbb{R}^{n}, there are scalars $\alpha_{0}, \ldots, \alpha_{n-1}$ such that

$$
\begin{equation*}
x^{*}=\alpha_{0} d_{0}+\ldots+\alpha_{n-1} d_{n-1} . \tag{1.2}
\end{equation*}
$$

Multiplying this expression through by $Q d_{i}$ for each $i=0, \ldots, n-1$ we find that

$$
\alpha_{i}=\frac{d_{i}^{T} Q x^{*}}{d_{i}^{T} Q d_{i}}=\frac{d_{i}^{T} b}{d_{i}^{T} Q d_{i}}
$$

for each $i=0, \ldots, n-1$. Therefore

$$
x^{*}=\sum_{i=0}^{n-1} \frac{d_{i}^{T} b}{d_{i}^{T} Q d_{i}}=\left[\sum_{i=0}^{n-1} \frac{d_{i} d_{i}^{T}}{d_{i}^{T} Q d_{i}}\right] b
$$

so that

$$
Q^{-1}=\sum_{i=0}^{n-1} \frac{d_{i} d_{i}^{T}}{d_{i}^{T} Q d_{i}}
$$

It is important to note that the coefficients α_{i} in the representation (1.2) can be computed without knowledge of x^{*}. This observation is the basis of the following result.

Theorem 1.1 (Conjugate Direction Algorithm). Let $\left\{d_{i}\right\}_{i=0}^{n-1}$ be a set of nonzero Q-conjugate vectors. For any $x_{0} \in \mathbb{R}^{n}$ the sequence $\left\{x_{k}\right\}$ generated according to

$$
x_{k+1}:=x_{k}+\alpha_{k} d_{k}, \quad k \geq 0
$$

with

$$
\alpha_{k}:=\arg \min \left\{f\left(x_{k}+\alpha d_{k}\right): \alpha \in \mathbb{R}\right\}
$$

converges to the unique solution, x^{*} of \mathcal{P} with f given by (1.1) after n steps, that is $x_{n}=x^{*}$.
Proof. Let us first compute the value of the α_{k} 's. Set

$$
\begin{aligned}
\varphi_{k}(\alpha) & =f\left(x_{i}+\alpha d_{k}\right) \\
& =\frac{\alpha^{2}}{2} d_{k}^{T} Q d_{k}+\alpha g_{k}^{T} d_{k}+f\left(x_{k}\right)
\end{aligned}
$$

where $g_{k}=\nabla f\left(x_{k}\right)=Q x_{k}-b$. Then $\varphi_{k}^{\prime}(\alpha)=\alpha d_{k}^{T} Q d_{k}+g_{k}^{T} d_{k}$, hence

$$
\alpha_{k}=-\frac{g_{k}^{T} d_{k}}{d_{k}^{T} Q d_{k}} .
$$

Now suppose $x^{*}-x_{0}$ has representation

$$
\begin{equation*}
x^{*}-x_{0}=\hat{\alpha}_{0} d_{0}+\hat{\alpha}_{1} d_{1}+\ldots+\hat{\alpha}_{n-1} d_{n-1} \tag{1.3}
\end{equation*}
$$

Since $x_{n}=x_{0}+\alpha_{0} d_{0}+\ldots+\alpha_{n-1} d_{n-1}$, the result is established if we can show that $\hat{\alpha}_{k}=\alpha_{k}$ for each $k=0,1, \ldots, n-1$. Multiplying (1.3) through by $Q d_{k}$ yields

$$
\begin{equation*}
\hat{\alpha}_{k}=\frac{d_{k}^{T} Q\left(x^{*}-x_{0}\right)}{d_{k}^{T} Q d_{k}} \tag{1.4}
\end{equation*}
$$

But $Q x^{*}=b$ and

$$
\begin{aligned}
d_{k}^{T} Q x_{0} & =d_{k}^{T} Q\left(x_{0}+\alpha_{0} d_{0}+\ldots+\alpha_{k-1} d_{k-1}\right) \\
& =d_{k}^{T} Q d_{k} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\hat{\alpha}_{k} & =-\frac{d_{k}^{T} Q\left(x_{0}-x^{*}\right)}{d_{k}^{T} Q d_{k}} \\
& =-\frac{d_{k}^{T}\left(Q x_{k}-b\right)}{d_{k}^{T} Q d_{k}} \\
& =-\frac{d_{k}^{T} g_{k}}{d_{k}^{T} Q d_{k}}=\alpha_{k} .
\end{aligned}
$$

The following result provides further geometric insight into how the algorithm is proceeding.

Theorem 1.2. [Expanding Subspace Theorem]

Let $\left\{d_{i}\right\}_{i=0}^{n-1}$ be a sequence of nonzero Q-conjugate vectors in \mathbb{R}^{n}. Then for any $x_{0} \in \mathbb{R}^{n}$ the sequence $\left\{x_{k}\right\}$ generated according to

$$
\begin{aligned}
x_{k+1} & =x_{k}+\alpha_{k} d_{k} \\
\alpha_{k} & =-\frac{g_{k}^{T} d_{k}}{d_{k}^{T} Q d_{k}}
\end{aligned}
$$

has the property that $f(x)=\frac{1}{2} x^{T} Q x-b^{T} x$ attains its minimum value on the affine set $x_{0}+\operatorname{Span}\left\{d_{0}, \ldots, d_{k-1}\right\}$ at the point x_{k}.

Proof. We establish the result by directly computing the solution to

$$
\begin{align*}
& \min f(x) \\
& \text { subject to } x-x_{0} \in \operatorname{Span}\left\{d_{0}, d_{1}, \ldots, d_{k-1}\right\} . \tag{1.5}
\end{align*}
$$

By setting $D_{k}=\left[d_{0}, d_{1}, \ldots, d_{k-1}\right]$ and $z=x-x_{0}$ we can rewrite (1.5) as

$$
\begin{aligned}
& \min _{(z, y)} f\left(z+x_{0}\right) \\
& \text { subject to } z=D_{k} y,
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\min _{y} f\left(D_{k} y+x_{0}\right) \tag{1.6}
\end{equation*}
$$

Writing

$$
\begin{aligned}
\varphi(y) & =f\left(D_{k} y+x_{0}\right) \\
& =\frac{1}{2} y^{T} D_{k}^{T} Q D_{k} Y+g_{0}^{T} D_{k} y+f\left(x_{0}\right),
\end{aligned}
$$

where $g_{0}=\nabla f\left(x_{0}\right)$, we see that the solution to (1.6) is obtained by setting

$$
0=\nabla \varphi(y)=D_{k}^{T} Q D_{k} y+D_{k}^{T} g_{0}
$$

Now

$$
\begin{aligned}
D_{k}^{T} Q D_{k} & =\left[d_{i}^{T} Q d_{j}\right]_{i, j=0}^{k-1} \\
& =\operatorname{diag}\left[d_{i}^{T} Q d_{i}\right]_{i=0}^{k-1},
\end{aligned}
$$

and

$$
D_{k}^{T} g_{0}=\left[d_{0}^{T} g_{0}, d_{1}^{T} g_{0}, \ldots, d_{k-1}^{T} g,\right]^{T} .
$$

Hence

$$
y_{i}=\frac{-d_{i}^{T} g_{0}}{d_{i}^{T} Q d_{i}} \quad \text { for } i=0, \ldots, k-1
$$

Therefore, the solution (1.5) is

$$
x_{k}^{*}=x_{0}+\sum_{i=0}^{k-1}-\frac{d_{i}^{T} g_{0}}{d_{i}^{T} Q d_{i}} d_{i} .
$$

Consequently, the result will be established if we can show that

$$
\begin{equation*}
-\frac{d_{i}^{T} g_{0}}{d_{i}^{T} Q d_{i}}=-\frac{d_{i}^{T} g_{i}}{d_{i}^{T} Q d_{i}} \tag{1.7}
\end{equation*}
$$

for each $i=0,1, \ldots, k-1$. But this follows immediately from (1.4) since

$$
\begin{array}{ccc}
\alpha_{i}=-\frac{d_{i}^{T} g_{i}}{d_{i}^{T} Q d_{i}} & = & \frac{d_{i}^{T}\left(Q x_{i}-b\right)}{d_{i}^{T} Q d_{i}} \\
=-\frac{d_{i}^{T}\left(Q\left(x_{0}+\alpha_{0} d_{0}+\alpha_{1} d_{1}+\cdots+\alpha_{i-1} d_{i-1}-b\right)\right.}{d_{i}^{T} Q d_{i}} \\
=-\frac{d_{i}^{T} g_{0}}{d_{i}^{T} Q d_{i}} &
\end{array}
$$

where the global minimum value of f is attained at x^{*} and so satisfies $Q x^{*}=b$.

Corollary 1.2.1. [Subspace Orthogonality Condition]

In the method of Conjugate directions the gradients $g_{k}, k=0,1, \ldots, n$ satisfy

$$
g_{k}^{T} d_{i}=0 \quad \text { for } i<k
$$

Proof. This follows from a general property of minimization on affine sets. Consider the problem

$$
\begin{aligned}
& \min \varphi(x) \\
& \text { subject to } x \in x_{0}+S,
\end{aligned}
$$

where $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} and S is the subspace $S:=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$. If V is the matrix whose columns are given by v_{1}, \ldots, v_{k}, then this problem is equivalent to the problem

$$
\begin{aligned}
& \min \varphi\left(x_{0}+V z\right) \\
& \text { subject to } z \in \mathbb{R}^{k}
\end{aligned}
$$

Setting $\hat{\phi}(z)=\varphi\left(x_{0}+V z\right)$, we get that if \bar{z} solves the latter problem, then $V^{T} \nabla \varphi\left(x_{0}+V \bar{z}\right)=$ $\nabla \bar{\phi}(\bar{z})=0$. Setting $\bar{x}=x_{0}+V \bar{z}$, we conclude that \bar{x} solves the original problem if and only if \bar{z} solves the latter problem in which case $V^{T} \nabla \varphi(\bar{x})=0$, or equivalently, $v_{i}^{T} \nabla \varphi(\bar{x})=0$ for $i=1,2, \ldots, k$.
1.2. The Conjugate Gradient Algorithm. The conjugate direction algorithm of the previous section appears to be seriously flawed in that one must have on hand a set of conjugate directions $\left\{d_{0}, \ldots, d_{n-1}\right\}$ in order to apply it. However, one builds a set of Q conjugate directions as the algorithm proceeds. The example of such a procedure studied in this section is called the conjugate gradient algorithm.

The C-G Algorithm:

Initialization: $x_{0} \in \mathbb{R}^{n}, d_{0}=-g_{0}=-\nabla f\left(x_{0}\right)=b-Q x_{0}$.
For $k=0,1,2, \ldots$

$$
\begin{array}{ll}
\alpha_{k} & :=-g_{k}^{T} d_{k} / d_{k}^{T} Q d_{k} \\
x_{k+1} & :=x_{k}+\alpha_{k} d_{k} \\
g_{k+1} & :=Q x_{k+1}-b \\
\beta_{k} & :=g_{k+1}^{T} Q d_{k} / d_{k}^{T} Q d_{k} \\
d_{k+1} & :=-g_{k+1}+\beta_{k} d_{k} \\
k & :=k+1 .
\end{array}
$$

Theorem 1.3. [Conjugate Gradient Theorem]
The C-G algorithm is a conjugate direction method. If it does not terminate at x_{k}, then
(1) Span $\left[g_{0}, g_{1}, \ldots, g_{k}\right]=\operatorname{span}\left[g_{0}, Q g_{0}, \ldots, Q^{k} g_{0}\right]$
(2) $\operatorname{Span}\left[d_{0}, d_{1}, \ldots, d_{k}\right]=\operatorname{span}\left[g_{0}, Q g_{0}, \ldots, Q^{k} g_{0}\right]$
(3) $d_{k}^{T} Q d_{i}=0$ for $i \leq k-1$
(4) $\alpha_{k}=g_{k}^{T} g_{k} / d_{k}^{T} Q d_{k}$
(5) $\beta_{k}=g_{k+1}^{T} g_{k+1} / g_{k}^{T} g_{k}$.

Proof. We first prove (1)-(3) by induction. The results are clearly true for $k=0$. Now suppose they are true for k, we show they are true for $k+1$. First observe that

$$
g_{k+1}=g_{k}+\alpha_{k} Q d_{k}
$$

so that $g_{k+1} \in \operatorname{Span}\left[g_{0}, \ldots, Q^{k+1} g_{0}\right]$ by the induction hypothesis on (1) and (2). Also $g_{k+1} \notin$ Span $\left[d_{0}, \ldots, d_{k}\right]$ otherwise $g_{k+1}=0$ (by Theorem 1.2.1 since the method is a conjugate direction method up to step k by the induction hypothesis. Hence $g_{k+1} \notin \operatorname{Span}\left[g_{0}, \ldots, Q^{k} g_{0}\right]$ and so $\operatorname{Span}\left[g_{0}, g_{1}, \ldots, g_{k+1}\right]=\operatorname{Span}\left[g_{0}, \ldots, Q^{k+1} g_{0}\right]$, which proves (1).

To prove (2) write

$$
d_{k+1}=-g_{k+1}+\beta_{k} d_{k}
$$

so that (2) follows from (1) and the induction hypothesis on (2).
To see (3) observe that

$$
d_{k+1}^{T} Q d_{i}=-g_{k+1} Q d_{i}+\beta_{k} d_{k}^{T} Q d_{i}
$$

For $i=k$ the right hand side is zero by the definition of β_{k}. For $i<k$ both terms vanish. The term $g_{k+1}^{T} Q d_{i}=0$ by Theorem 1.2 since $Q d_{i} \in \operatorname{Span}\left[d_{0}, \ldots, d_{k}\right]$ by (1) and (2). The term $d_{i}^{T} Q d_{i}$ vanishes by the induction hypothesis on (3).

To prove (4) write

$$
-g_{k}^{T} d_{k}=g_{k}^{T} g_{k}-\beta_{k-1} g_{k}^{T} d_{k-1}
$$

where $g_{k}^{T} d_{k-1}=0$ by Theorem 1.2.
To prove (5) note that $g_{k+1}^{T} g_{k}=0$ by Theorem 1.2 because $g_{k} \in \operatorname{Span}\left[d_{0}, \ldots, d_{k}\right]$. Hence

$$
g_{k+1}^{T} Q d_{k}=\frac{1}{\alpha_{k}} g_{k+1}^{T}\left[g_{k+1}-g_{k}\right]=\frac{1}{\alpha_{k}} g_{k+1}^{T} g_{k+1} .
$$

Therefore,

$$
\beta_{k}=\frac{1}{\alpha_{k}} \frac{g_{k+1}^{T} g_{k+1}}{d_{k}^{T} Q d_{k}}=\frac{g_{k+1}^{T} g_{k+1}}{g_{k}^{T} g_{k}}
$$

Remarks:

(1) The C-G method decribed above is a descent method since the values

$$
f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)
$$

form a decreasing sequence. Moreover, note that

$$
\nabla f\left(x_{k}\right)^{T} d_{k}=-g_{k}^{T} g_{k} \quad \text { and } \quad \alpha_{k}>0 .
$$

Thus, the C-G method behaves very much like the descent methods discussed peviously.
(2) It should be observed that due to the occurrence of round-off error the C-G algorithm is best implemented as an iterative method. That is, at the end of n steps, f may not attain its global minimum at x_{n} and the intervening directions d_{k} may not be Q-conjugate. Consequently, at the end of the $n^{\text {th }}$ step one should check the value $\left\|\nabla f\left(x_{n}\right)\right\|$. If it is sufficiently small, then accept x_{n} as the point at which f attains its global minimum value; otherwise, reset $x_{0}:=x_{n}$ and run the algorithm again. Due to the observations in remark above, this approach is guarenteed to continue to reduce the function value if possible since the overall method is a descent method. In this sense the $\mathrm{C}-\mathrm{G}$ algorithm is self correcting.
1.3. Extensions to Non-Quadratic Problems. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is not quadratic, then the Hessian matrix $\nabla^{2} f\left(x_{k}\right)$ changes with k. Hence the C-G method needs modification in this case. An obvious approach is to replace Q by $\nabla^{2} f\left(x_{k}\right)$ everywhere it occurs in the C-G algorithm. However, this approach is fundamentally flawed in its explicit use of $\nabla^{2} f$. By using parts (4) and (5) of the conjugate gradient Theorem 1.3 and by trying to mimic the descent features of the C-G method, one can obtain a workable approximation of the C-G algorithm in the non-quadratic case.

The Non-Quadratic C-G Algorithm

Initialization: $x_{0} \in \mathbb{R}^{n}, g_{0}=\nabla f\left(x_{0}\right), d_{0}=-g_{0}, 0<c<\beta<1$.
Having x_{k} otain x_{k+1} as follows:
Check restart criteria. If a restart condition is satisfied, then reset $x_{0}=x_{n}, g_{0}=\nabla f\left(x_{0}\right)$, $d_{0}=-g_{0}$; otherwise, set

$$
\left.\begin{array}{rl}
\alpha_{k} & \in\left\{\lambda \left\lvert\, \begin{array}{rl}
\lambda>0, \nabla f\left(x_{k}+\lambda d_{k}\right)^{T} d \geq \beta \nabla f\left(x_{k}\right)^{T} d_{k}, \text { and } \\
f\left(x_{k}+\lambda d_{k}\right)-f\left(x_{k}\right) \leq c \lambda \nabla f\left(x_{k}\right)^{T} d_{k}
\end{array}\right.\right.
\end{array}\right\}
$$

Remarks

(1) The Polak-Ribiere update for β_{k} has a demonstrated experimental superiority. One way to see why this might be true is to observe that

$$
g_{k+1}^{T}\left(g_{k+1}-g_{k}\right) \approx \alpha_{k} g_{k+1}^{T} \nabla^{2} f\left(x_{k}\right) d_{k}
$$

thereby yielding a better second-order approximation. Indeed, the formula for β_{k} in in the quadratic case is precisely

$$
\frac{\alpha_{k} g_{k+1}^{T} \nabla^{2} f\left(x_{k}\right) d_{k}}{g_{k}^{T} g_{k}}
$$

(2) Observe that the Hessian is never explicitly refered to in the above algorithm.
(3) At any given iteration the procedure requires the storage of only 2 vectors if FletcherReeves is used and 3 vectors if Polak-Ribiere is used. This is of great significance if n is very large, say $n=50,000$. Thus we see that one of the advantages of the C-G method is that it can be practically applied to very large scale problems.
(4) Aside from the cost of gradient and function evaluations the greatest cost lies in the line search employed for the computation of α_{k}.
We now consider appropriate restart criteria. Clearly, we should restart when $k=n$ since this is what we do in the quadratic case. But there are other issues to take into consideration. First, since $\nabla^{2} f\left(x_{k}\right)$ changes with each iteration, there is no reason to think that we are preserving any sort of conjugacy relation from one iteration to the next. In order
to get some kind of control on this behavior, we define a measure of conjugacy and if this measure is violated, then we restart. Second, we need to make sure that the search directions d_{k} are descent directions. Moreover, (a) the angle between these directions and the negative gradient should be bounded away from zero in order to force the gradient to zero, and (b) the directions should have a magnitude that is comparable to that of the gradient in order to prevent ill-conditioning. The precise restart conditions are given below.

Restart Conditions

(1) $k=n$
(2) $\left|g_{k+1}^{T} g_{k}\right| \geq 0.2 g_{k}^{T} g_{k}$
(3) $-2 g_{k}^{T} g_{k} \geq g_{k}^{T} d_{k} \geq-0.2 g_{k}^{T} g_{k}$

Conditions (2) and (3) above are known as the Powell restart conditions.

