
1. Conjugate Direction Methods

1.1. General Discussion. In this section we are again concerned with the problem of
unconstrained optimization:

P : minimize f(x)
subject to x ∈ Rn

where f : Rn → R is C2. However, the emphasis will be on local quadratic approximations
to f . In particular, we study the problem P when f has the form

(1.1) f(x) :=
1

2
xT Qx− bT x,

where Q is a symmetric positive definite matrix. In this regard the notion of Q-conjugacy
plays a key role.

Definition 1.1 (Conjugacy). Let Q ∈ Rn×n be symmetric and positive definite. We say
that the vectors x, y ∈ Rn\{0} are Q-conjugate (or Q-orthogonal) if xT Qy = 0.

Proposition 1.0.1 (Conjugacy implies Linear Independence). If Q ∈ Rn×n is pos-
itive definite and the set of nonzero vectors d0, d1, . . . , dk are (pairwise) Q-conjugate, then
these vectors are linearly independent.

Proof. If 0 =
k∑

i=0

αidi, then for i0 ∈ {0, 1, . . . , k}

0 = dT
i0
Q[

k∑
i=0

αidi] = αi0d
T
i0
Qdi,

Hence αi = 0 for each i = 0, . . . , k. �

Observe that the unique solution to P when f is given by (1.1) is

x∗ = Q−1b.

If {d0, d1, . . . , dn−1} is a Q-conjugate basis for Rn, there are scalars α0, . . ., αn−1 such that

(1.2) x∗ = α0d0 + . . . + αn−1dn−1.

Multiplying this expression through by Qdi for each i = 0, . . . , n− 1 we find that

αi =
dT

i Qx∗

dT
i Qdi

=
dT

i b

dT
i Qdi

for each i = 0, . . . , n− 1. Therefore

x∗ =
n−1∑
i=0

dT
i b

dT
i Qdi

=

[
n−1∑
i=0

did
T
i

dT
i Qdi

]
b

so that

Q−1 =
n−1∑
i=0

did
T
i

dT
i Qdi

.

It is important to note that the coefficients αi in the representation (1.2) can be computed
without knowledge of x∗. This observation is the basis of the following result.

1



2

Theorem 1.1 (Conjugate Direction Algorithm). Let {di}n−1
i=0 be a set of nonzero

Q-conjugate vectors. For any x0 ∈ Rn the sequence {xk} generated according to

xk+1 := xk + αkdk, k ≥ 0

with
αk := arg min{f(xk + αdk) : α ∈ R}

converges to the unique solution, x∗ of P with f given by (1.1) after n steps, that is xn = x∗.

Proof. Let us first compute the value of the αk’s. Set

ϕk(α) = f(xi + αdk)

= α2

2
dT

k Qdk + αgT
k dk + f(xk),

where gk = ∇f(xk) = Qxk − b. Then ϕ′
k(α) = αdT

k Qdk + gT
k dk, hence

αk = − gT
k dk

dT
k Qdk

.

Now suppose x∗ − x0 has representation

(1.3) x∗ − x0 = α̂0d0 + α̂1d1 + . . . + α̂n−1dn−1.

Since xn = x0 + α0d0 + . . . + αn−1dn−1, the result is established if we can show that α̂k = αk

for each k = 0, 1, . . . , n− 1. Multiplying (1.3) through by Qdk yields

(1.4) α̂k =
dT

k Q(x∗ − x0)

dT
k Qdk

.

But Qx∗ = b and
dT

kQx0 = dT
k Q(x0 + α0d0 + . . . + αk−1dk−1)

= dT
k Qdk.

Therefore

α̂k = −dT
k Q(x0−x∗)

dT
k Qdk

= −dT
k (Qxk−b)

dT
k Qdk

= − dT
k gk

dT
k Qdk

= αk.

�

The following result provides further geometric insight into how the algorithm is proceed-
ing.

Theorem 1.2. [Expanding Subspace Theorem]
Let {di}n−1

i=0 be a sequence of nonzero Q-conjugate vectors in Rn. Then for any x0 ∈ Rn the
sequence {xk} generated according to

xk+1 = xk + αkdk

αk = − gT
k dk

dT
k Qdk

has the property that f(x) = 1
2
xT Qx − bT x attains its minimum value on the affine set

x0 + Span {d0, . . . , dk−1} at the point xk.



3

Proof. We establish the result by directly computing the solution to

(1.5)
min f(x)
subject to x− x0 ∈ Span {d0, d1, . . . , dk−1}.

By setting Dk = [d0, d1, . . . , dk−1] and z = x− x0 we can rewrite (1.5) as

min
(z,y)

f(z + x0)

subject to z = Dky,

which can be written as

(1.6) min
y

f(Dky + x0).

Writing
ϕ(y) = f(Dky + x0)

= 1
2
yT DT

k QDkY + gT
0 Dky + f(x0),

where g0 = ∇f(x0), we see that the solution to (1.6) is obtained by setting

0 = ∇ϕ(y) = DT
k QDky + DT

k g0.

Now
DT

k QDk = [dT
i Qdj]

k−1
i,j=0

= diag[dT
i Qdi]

k−1
i=0 ,

and

DT
k g0 = [dT

0 g0, d
T
1 g0, . . . , d

T
k−1g, ]T .

Hence

yi =
−dT

i g0

dT
i Qdi

for i = 0, . . . , k − 1.

Therefore, the solution (1.5) is

x∗
k = x0 +

k−1∑
i=0

− dT
i g0

dT
i Qdi

di.

Consequently, the result will be established if we can show that

(1.7) − dT
i g0

dT
i Qdi

= − dT
i gi

dT
i Qdi

for each i = 0, 1, . . . , k − 1. But this follows immediately from (1.4) since

αi = − dT
i gi

dT
i Qdi

=
dT

i (Qxi − b)

dT
i Qdi

= −dT
i (Q(x0+α0d0+α1d1+···+αi−1di−1−b)

dT
i Qdi

= − dT
i g0

dT
i Qdi

where the global minimum value of f is attained at x∗ and so satisfies Qx∗ = b. �



4

Corollary 1.2.1. [Subspace Orthogonality Condition]
In the method of Conjugate directions the gradients gk, k = 0, 1, . . . , n satisfy

gT
k di = 0 for i < k.

Proof. This follows from a general property of minimization on affine sets. Consider the
problem

min ϕ(x)
subject to x ∈ x0 + S,

where ϕ : Rn → R is C1 and S is the subspace S := span {v1, . . . , vk}. If V is the matrix
whose columns are given by v1, . . . , vk, then this problem is equivalent to the problem

min ϕ(x0 + V z)
subject to z ∈ Rk .

Setting φ̂(z) = ϕ(x0+V z), we get that if z̄ solves the latter problem, then V T∇ϕ(x0+V z̄) =
∇φ̄(z̄) = 0. Setting x̄ = x0 + V z̄, we conclude that x̄ solves the original problem if and only
if z̄ solves the latter problem in which case V T∇ϕ(x̄) = 0, or equivalently, vT

i ∇ϕ(x̄) = 0 for
i = 1, 2, . . . , k. �

1.2. The Conjugate Gradient Algorithm. The conjugate direction algorithm of the
previous section appears to be seriously flawed in that one must have on hand a set of
conjugate directions {d0, . . . , dn−1} in order to apply it. However, one builds a set of Q–
conjugate directions as the algorithm proceeds. The example of such a procedure studied in
this section is called the conjugate gradient algorithm.

The C-G Algorithm:

Initialization: x0 ∈ Rn, d0 = −g0 = −∇f(x0) = b−Qx0.

For k = 0, 1, 2, . . .
αk := −gT

k dk/d
T
k Qdk

xk+1 := xk + αkdk

gk+1 := Qxk+1 − b
βk := gT

k+1Qdk/d
T
k Qdk

dk+1 := −gk+1 + βkdk

k := k + 1.

Theorem 1.3. [Conjugate Gradient Theorem]
The C-G algorithm is a conjugate direction method. If it does not terminate at xk, then

(1) Span [g0, g1, . . . , gk] = span [g0, Qg0, . . . , Q
kg0]

(2) Span [d0, d1, . . . , dk] = span [g0, Qg0, . . . , Q
kg0]

(3) dT
k Qdi = 0 for i ≤ k − 1

(4) αk = gT
k gk/d

T
k Qdk

(5) βk = gT
k+1gk+1/g

T
k gk.

Proof. We first prove (1)-(3) by induction. The results are clearly true for k = 0. Now
suppose they are true for k, we show they are true for k + 1. First observe that

gk+1 = gk + αkQdk



5

so that gk+1 ∈ Span[g0, . . . , Q
k+1g0] by the induction hypothesis on (1) and (2). Also gk+1 /∈

Span [d0, . . . , dk] otherwise gk+1 = 0 (by Theorem 1.2.1 since the method is a conjugate
direction method up to step k by the induction hypothesis. Hence gk+1 /∈ Span [g0, . . . , Q

kg0]
and so Span [g0, g1, . . . , gk+1] = Span [g0, . . . , Q

k+1g0], which proves (1).
To prove (2) write

dk+1 = −gk+1 + βkdk

so that (2) follows from (1) and the induction hypothesis on (2).
To see (3) observe that

dT
k+1Qdi = −gk+1Qdi + βkd

T
k Qdi.

For i = k the right hand side is zero by the definition of βk. For i < k both terms vanish.
The term gT

k+1Qdi = 0 by Theorem 1.2 since Qdi ∈ Span[d0, . . . , dk] by (1) and (2). The
term dT

i Qdi vanishes by the induction hypothesis on (3).
To prove (4) write

−gT
k dk = gT

k gk − βk−1g
T
k dk−1

where gT
k dk−1 = 0 by Theorem 1.2.

To prove (5) note that gT
k+1gk = 0 by Theorem 1.2 because gk ∈ Span[d0, . . . , dk]. Hence

gT
k+1Qdk =

1

αk

gT
k+1[gk+1 − gk] =

1

αk

gT
k+1gk+1.

Therefore,

βk =
1

αk

gT
k+1gk+1

dT
k Qdk

=
gT

k+1gk+1

gT
k gk

.

�

Remarks:

(1) The C–G method decribed above is a descent method since the values

f(x0), f(x1), . . . , f(xn)

form a decreasing sequence. Moreover, note that

∇f(xk)
T dk = −gT

k gk and αk > 0 .

Thus, the C–G method behaves very much like the descent methods discussed pevi-
ously.

(2) It should be observed that due to the occurrence of round-off error the C-G algorithm
is best implemented as an iterative method. That is, at the end of n steps, f may
not attain its global minimum at xn and the intervening directions dk may not be
Q-conjugate. Consequently, at the end of the nth step one should check the value
‖∇f(xn)‖. If it is sufficiently small, then accept xn as the point at which f attains
its global minimum value; otherwise, reset x0 := xn and run the algorithm again.
Due to the observations in remark above, this approach is guarenteed to continue to
reduce the function value if possible since the overall method is a descent method.
In this sense the C–G algorithm is self correcting.



6

1.3. Extensions to Non-Quadratic Problems. If f : Rn → R is not quadratic, then
the Hessian matrix ∇2f(xk) changes with k. Hence the C-G method needs modification in
this case. An obvious approach is to replace Q by ∇2f(xk) everywhere it occurs in the C-G
algorithm. However, this approach is fundamentally flawed in its explicit use of ∇2f . By
using parts (4) and (5) of the conjugate gradient Theorem 1.3 and by trying to mimic the
descent features of the C–G method, one can obtain a workable approximation of the C–G
algorithm in the non–quadratic case.

The Non-Quadratic C-G Algorithm

Initialization: x0 ∈ Rn, g0 = ∇f(x0), d0 = −g0, 0 < c < β < 1.
Having xk otain xk+1 as follows:
Check restart criteria. If a restart condition is satisfied, then reset x0 = xn, g0 = ∇f(x0),
d0 = −g0; otherwise, set

αk ∈
{

λ

∣∣∣∣ λ > 0,∇f(xk + λdk)
Td ≥ β∇f(xk)

Tdk, and
f(xk + λdk)− f(xk) ≤ cλ∇f(xk)

Tdk

}
xk+1 := xk + αkdk

gk+1 := ∇f(xk+1)

βk :=


gT

k+1gk+1

gT
k gk

Fletcher-Reeves

max
{

0,
gT

k+1(gk+1−gk)

gT
k gk

}
Polak-Ribiere

dk+1 := −gk+1 + βkdk

k := k + 1.

Remarks

(1) The Polak-Ribiere update for βk has a demonstrated experimental superiority. One
way to see why this might be true is to observe that

gT
k+1(gk+1 − gk) ≈ αkg

T
k+1∇2f(xk)dk

thereby yielding a better second–order approximation. Indeed, the formula for βk in
in the quadratic case is precisely

αkg
T
k+1∇2f(xk)dk

gT
k gk .

(2) Observe that the Hessian is never explicitly refered to in the above algorithm.
(3) At any given iteration the procedure requires the storage of only 2 vectors if Fletcher-

Reeves is used and 3 vectors if Polak-Ribiere is used. This is of great significance if
n is very large, say n = 50, 000. Thus we see that one of the advantages of the C-G
method is that it can be practically applied to very large scale problems.

(4) Aside from the cost of gradient and function evaluations the greatest cost lies in the
line search employed for the computation of αk.

We now consider appropriate restart criteria. Clearly, we should restart when k = n
since this is what we do in the quadratic case. But there are other issues to take into
consideration. First, since ∇2f(xk) changes with each iteration, there is no reason to think
that we are preserving any sort of conjugacy relation from one iteration to the next. In order



7

to get some kind of control on this behavior, we define a measure of conjugacy and if this
measure is violated, then we restart. Second, we need to make sure that the search directions
dk are descent directions. Moreover, (a) the angle between these directions and the negative
gradient should be bounded away from zero in order to force the gradient to zero, and (b)
the directions should have a magnitude that is comparable to that of the gradient in order
to prevent ill–conditioning. The precise restart conditions are given below.

Restart Conditions

(1) k = n
(2) |gT

k+1gk| ≥ 0.2gT
k gk

(3) −2gT
k gk ≥ gT

k dk ≥ −0.2gT
k gk

Conditions (2) and (3) above are known as the Powell restart conditions.


