
1. Search Directions

In this chapter we again focus on the unconstrained optimization problem

P min
x∈Rn

f(x),

where f : Rn → R is assumed to be twice continuously differentiable, and consider the
selection of search directions. The algorithms we consider are descent methods having an
iteration scheme of the form

xk+1 = xk + tkd
k .

Line search methods for choosing a suitable stepsize tk were the focus of our work in last
chapter. We now devote our attention to choices for the search directions dk.

All of the search directions considered in this chapter can be classified as Newton-like since
they are all of the form

dk = −Hk∇f(xk)

for some matrix Hk. If Hk = I for all k, we recover the method of steepest descent. However,
in general we wish to choose Hk to be an approximation to ∇2f(xk)−1 which gives Newton’s
method for optimization. The significance of Newton’s method is that when it converges,
it converges very fast, typically doubling the accuracy of the solution at each iteration. In
order to understand this behavior, we must first learn a bit about rate of convergence.

1.1. Rate of Convergence. In this section we focus on notions of quotient convergence,
or Q-convergence. There are corresponding notions of root convergence, or R-convergence.
These notions are derived from the quotient or root test for the convergence of power series.
In all instances the discussion given below only refers to Q-convergence.

Let {xν} ⊂ Rn and x̄ ∈ Rn be such that x̄ν → x̄. We say that x̄ν → x̄ at a linear rate if

lim sup
ν→∞

‖xν+1 − x̄‖
‖xν − x̄‖

< 1 .

The convergence is said to be superlinear if this limsup is 0.
The convergence is said to be quadratic if

lim sup
ν→∞

‖xν+1 − x̄‖
‖xν − x̄‖2

< ∞ .

For example, given γ ∈ (0, 1) the sequence {γν} converges linearly to zero, but not su-

perlinearly. The sequence {γν2} converges superlinearly to 0, but not quadratically. Finally,
the sequence {γ2ν} converges quadratically to zero. Superlinear convergence is much faster
than linear convergences, but quadratic convergence is much, much faster than superlinear
convergence.

1.2. Newton’s Method for Solving Equations. Consider the following problem:

E : Given g : Rn → Rn, find x ∈ Rn for which g(x) = 0.

A great variety of problems can be posed in this format. It is a problem of great practical
importance and various versions of this problem continue to be the focus of much ongoing
scientific, mathematical, and numerical research. It is important in the context of optimiza-
tion because of the first–order necessary conditions for optimality, ∇f(x) = 0. A standard

1

2

approach to solving optimization problems is to locate all critical points, or, equivalently, the
zero set of the gradient. Newton’s method for equation solving (or just, Newton’s method)
is designed for this purpose. When one applies Newton’s method to solve for the critical
points of a function, it is refered to Newton’s method for optimization. Before moving on to
optimization though, we first consider the standard Newton’s method for equations.

Assume that the function g in E is continuously differentiable and that we have an ap-
proximate solution x0 ∈ Rn to E . We now wish to improve on this approximation. If x is a
solution to E , then

0 = g(x) = g(x0) + g′(x0)(x− x0) + o‖x− x0‖.
Thus, if x0 is “close” to x, it is reasonable to suppose that the solution to the linearized
system

(1.1) 0 = g(x0) + g′(x0)(x− x0)

is even closer. This proceedure is known as Newton’s method for finding the roots of the
equation g(x) = 0. It has one obvious pitfall. Equation (1.1) may not be consistent. That
is, there may not exist an x solving (1.1). In general, the set of solutions to (1.1) is either

(1) the empty set,
(2) an infinite set, or
(3) a single point.

For the sake of the present argument, we assume that (3) holds, i.e. g′(x0)−1 exists. Under
this assumption (1.1) defines the iteration scheme,

(1.2) xk+1 := xk − [g′(xi)]−1g(xk),

called the Newton iteration. The associated direction

(1.3) dk := −[g′(xk)]−1g(xk).

is called the Newton direction. We analyze the convergence behavior of this scheme under
the additional assumption that only an approximation to g′(xk)−1 is available. We denote
this approximation by Jk. The resulting iteration scheme is

(1.4) xk+1 := xk − Jkg(xk).

Methods of this type are called Newton-Like methods.

Theorem 1.1. Let g : Rn → Rn be differentiable, x0 ∈ Rn, and J0 ∈ Rn×n. Suppose that
there exists x̄, x0 ∈ Rn, and ε > 0 with ‖x0 − x̄‖ < ε such that

(1) g(x) = 0,
(2) g′(x)−1 exists for x ∈ B(x; ε) := {x ∈ Rn : ‖x− x‖ < ε} with

sup{‖g′(x)−1‖ : x ∈ B(x; ε)] ≤ M1

(3) g′ is Lipschitz continuous on c`B(x; ε) with Lipschitz constant L, and
(4) θ0 := LM1

2
‖x0 − x‖+ M0K < 1 where K ≥ ‖(g′(x0)−1 − J0)y

0‖, y0 := g(x0)/‖g(x0)‖,
and M0 = max{‖g′(x)‖ : x ∈ B(x; ε)}.

Further suppose that iteration (1.4) is initiated at x0 where the Jk’s are chosen to satisfy one
of the following conditions;

3

(i) ‖(g′(xk)−1 − Jk)y
k‖ ≤ K,

(ii) ‖(g′(xk)−1 − Jk)y
k‖ ≤ θk

1K for some θ1 ∈ (0, 1),
(iii) ‖(g′(xk)−1 − Jk)y

k‖ ≤ min{M2‖xk − xk−1‖, K}, for some M2 > 0, or
(iv) ‖(g′(xk)−1 − Jk)y

k‖ ≤ min{M2‖g(xk)‖, K}, for some M3 > 0,

where for each k = 1, 2, . . . , yk := g(xk)/‖g(xk)‖.
These hypotheses on the accuracy of the approximations Jk yield the following conclusions

about the rate of convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadratically.

Proof. We begin by establishing the basic inequalities

(1.5) ‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖,

and

(1.6) ‖xk+1 − x‖ ≤ θ0‖xk − x‖

and the inclusion

(1.7) xk+1 ∈ B(x̄; ε)

by induction on k. For k = 0 we have

x1 − x = x0 − x− g′(x0)−1g(x0) + [g′(x0)−1 − J0]g(x0)

= g′(x0)−1[g(x)− (g(x0) + g′(x0)(x− x0))]

+[g′(x0)−1 − J0]g(x0),

since g′(x0)−1 exists by the hypotheses. Consequently, the hypothese (1)–(4) plus the qua-
dratic bound lemma imply that

‖xk+1 − x‖ ≤ ‖g′(x0)−1‖‖g(x)− (g(x0) + g′(x0)(x− x0))‖
+‖(g′(x0)−1 − J0)g(x0)‖

≤ M1L

2
‖x0 − x‖2 + K‖g(x0)− g(x)‖

≤ M1L

2
‖x0 − x‖2 + M0K‖x0 − x‖

≤ θ0‖x0 − x‖ < ε,

whereby (1.5) – (1.6) are established for k = 0.
Next suppose that (1.5) – (1.6) hold for k = 0, 1, . . . , s − 1. We show that (1.5) – (1.6)

hold at k = s. Since xs ∈ B(x, ε), hypotheses (2)–(4) hold at xs, one can proceed exactly as
in the case k = 0 to obtain (1.5). Now if any one of (i)–(iv) holds, then (i) holds. Thus, by

4

(1.5), we find that

‖xs+1 − x‖ ≤ M1L
2
‖xs − x‖2 + ‖(g′(xs)−1 − Js)g(xs)‖

≤ [M1L
2

θs
0‖x0 − x‖+ M0K]‖xs − x‖

≤ [M1L
2
‖x0 − x‖+ M0K]‖xs − x‖

= θ0‖xs − x‖.

Hence ‖xs+1−x‖ ≤ θ0‖xs−x‖ ≤ θ0ε < ε and so xs+1 ∈ B(x, ε). We now proceed to establish
(a)–(d).
(a) This clearly holds since the induction above established that

‖xk+1 − x‖ ≤ θ0‖xk − x‖.

(b) From (1.5), we have

‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖

≤ LM1

2
‖xk − x‖2 + θk

1K‖g(xk)‖

≤ [
LM1

2
θk
0‖x0 − x‖+ θk

1M0K]‖xk − x̄‖

Hence xk → x superlinearly.
(c) From (1.5) and the fact that xk → x̄, we eventually have

‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖

≤ LM1

2
‖xk − x‖2 + M2‖xk − xk−1‖‖g(xk)‖

≤ [
LM1

2
‖xk − x‖+ M0M2[‖xk−1 − x̄‖+ ‖xk − x̄‖]]‖xk − x̄‖

≤ [
LM1

2
θ0‖xk−1 − x‖+ M0M2(1 + θ0)‖xk−1 − x‖]

×θ0‖xk−1 − x‖

= [
LM1

2
θ0 + M0M2(1 + θ0)]θ0‖xk−1 − x‖2.

Hence xk → x two step quadratically.

5

(d) Again by (1.5) and the fact that xk → x̄, we eventually have

‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖

≤ LM1

2
‖xk − x‖2 + M2‖g(xk)‖2

≤ [
LM1

2
+ M2M

2
0]‖xk − x‖2 .

�

Note that the conditions required for the approximations to the Jacobian matrices g′(xk)−1

given in (i)–(ii) do not imply that Jk → g′(x̄)−1. The stronger conditions

(i)′ ‖g′(xk)−1 − Jk‖ ≤ ‖g′(x0)−1 − J0‖,
(ii)′ ‖g′(xk+1)−1 − Jk+1‖ ≤ θ1‖g′(xk)−1 − Jk‖ for some θ1 ∈ (0, 1),

(iii)′ ‖g′(xk)−1 − Jk‖ ≤ min{M2‖xk+1 − xk‖, ‖g′(x0)−1 − J0‖} for some M2 > 0, or
(iv)′ g′(xk)−1 = Jk,

which imply the conditions (i) through (iv) of Theorem 1.1 respectively, all imply the con-
vergence of the inverse Jacobian approximates to g′(x̄)−1. Clearly the conditions (i)′–(iv)′

are not as desirable since they require a great deal more expense and care in the construction
of the inverse Jacobian approximates.

1.3. Newton’s Method for Minimization. In this section we translate the results of
previous section in the context of minimization. Here the underlying problem is

P min
x∈Rn

f(x) .

The Newton-like iterations are of the form

xk+1 = xk −Hk∇f(xk),

where Hk is an approximation to the inverse of the Hessian matrix ∇2f(xk).

Theorem 1.2. Let f : Rn → R be twice differentiable, x0 ∈ Rn, and H0 ∈ Rn×n. Suppose
that

(1) there exists x ∈ Rn and ε > ‖x0 − x̄‖ such that f(x) ≤ f(x) whenever ‖x− x̄‖ ≤ ε,
(2) there is a δ > 0 such that δ‖z‖2

2 ≤ zT∇2f(x)z for all x ∈ B(x, ε),
(3) ∇2f is Lipschitz continuous on clB(x; ε) with Lipschitz constant L, and
(4) θ0 := L

2δ
‖x0 − x‖ + M0K < 1 where M0 > 0 satisfies zT∇2f(x)z ≤ M0‖z‖2

2 for all
x ∈ B(x, ε) and K ≥ ‖(∇2f(x0)−1 −H0)y

0‖ with y0 = ∇f(x0)/norm∇f(x0).

Further, suppose that the iteration

(1.8) xk+1 := xk −Hk∇f(xk)

is initiated at x0 where the Hk’s are chosen to satisfy one of the following conditions:

(i) ‖(∇2f(xk)−1 −Hk)y
k‖ ≤ K,

(ii) ‖(∇2f(xk)−1 −Hk)y
k‖ ≤ θk

1K for some θ1 ∈ (0, 1),
(iii) ‖(∇2f(xk)−1 −Hk)y

k‖ ≤ min{M2‖xk − xk−1‖, K}, for some M2 > 0, or
(iv) ‖(∇2f(xk)−1 −Hk)y

k‖ ≤ min{M2‖∇f(xk)‖, K}, for some M3 > 0,

6

where for each k = 1, 2, . . . yk := ∇f(xk)/‖∇f(xk)‖.
These hypotheses on the accuracy of the approximations Hk yield the following conclusions

about the rate of convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xε → x two step quadratically.
(d) If (iv) holds, then xk → k quadradically.

In order to more fully understand the convergence behavior described in the above result
a careful study of the role of the controling parameters L, M0, and M1 needs to be made.
Although we do not attempt this study, we do make a few observations. First observe that
since L is a Lipschitz constant for ∇2f it represents a bound on the third–order behavior
of f . Thus the assumptions for convergence make implicit demands on the third derivative.
Next, the constant δ in the context of minimization represents a local uniform lower bound
on the eigenvalues of ∇2f . That is, f behaves locally as if it were a strongly convex function
(see exercises) with modulus δ. Finally, M0 can be interpreted as a local Lipschitz constant
for ∇f and only plays a role when ∇2f is approximated inexactly by Hk’s.

We now consider the performance differences between the method of steepest descent and
Newton’s method on a simple one dimensional problem. For this we consider the function
f(x) = x2 + ex. Clearly, f is a strongly convex function with

f(x) = x2 + ex

f ′(x) = 2x + ex

f ′′(x) = 2 + ex > 2

f ′′′(x) = ex.

If we apply the steepest descent algorithm with backtracking (γ = α, c = 0.01) initiated at
x0 = 1, we get the following table

k xk f(xk) f ′(xk) s
0 1 .37182818 4.7182818 0
1 0 1 1 0
2 −.5 .8565307 −0.3934693 1
3 −.25 .8413008 0.2788008 2
4 −.375 .8279143 −.0627107 3
5 −.34075 .8273473 .0297367 5
6 −.356375 .8272131 −.01254 6
7 −.3485625 .8271976 .0085768 7
8 −.3524688 .8271848 −.001987 8
9 −.3514922 .8271841 .0006528 10
10 −.3517364 .827184 −.0000072 12

7

Let us now apply Newton’s method from the same starting point taking a unit step at
each iteration. This time we get

x f ′(x)
1 4.7182818
0 1

−1/3 .0498646
−.3516893 .00012
−.3517337 .00000000064

and one more iteration give |f ′(x5)| ≤ 10−20. This is a stunning improvement in performance
and shows why one always uses Newton’s method (or an approximation to it) whenever
possible.

Our next objective is to develop numerically viable methods for approximating Jacobians
and Hessians in Newton-like methods. We begin with a brief excursion into numerical linear
algebra.

1.4. Numerical Linear Algebra.

1.4.1. The LU Factorization. Recall from linear algebra that Gaussian elimination is a
method for solving linear systems of the form

Ax = b,

where A ∈ Rm×n and bRan(A). In this method one first forms the augmented system

[A |b]

and then uses the three elementary row operations to put this system into row echelon form
(or upper triangular form). A solution x is then obtained by back substitution, or back
solving, starting with the component xn. We now show how the process of bringing a matrix
to upper triangular form can be performed by left matrix multiplication.

The key step in Gaussian elimination is to transform a vector of the form a
α
b

 ,

where a ∈ Rk, 0 6= α ∈ R, and b ∈ Rn−k−1, into one of the form a
α
0

 .

This can be accomplished by left matrix multiplication as follows: Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

 a
α
b

 =

 a
α
0

 .

8

The matrix Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

is called a Gaussian elimination matrix. This matrix is invertible with inverse Ik×k 0 0

0 1 0
0 α−1b I(n−k−1)×(n−k−1)

 .

We now use this basic idea to show how a matrix can be put into upper triangular form.
Suppose

A =

[
a1 vT

1

u1 Ã1

]
∈ Cn×m,

with 0 6= a1 ∈ C, u1 ∈ Cm−1, v1 ∈ Cn−1, and Ã1 ∈ C(m−1)×(n−1). Then using the first row to
zero out u1 amounts to left multiplication of the matrix A by the matrix[

1 0
−u1

a1
I

]
to get

(*)

[
1 0
−u1

a1
I

] [
a1 vT

1

u1 Ã1

]
∈ Cn×m =

[
a1 vT

1

0 A1

]
,

where
A1 = Ã1 − u1v

T
1 /a1 .

Define

L1 =

[
1 0
u1

a1
I

]
∈ Cm×m and U1 =

[
a1 vT

1

0 A1

]
∈ Cm×n .

and observe that

L−1
1 =

[
1 0
−u1

a1
I

]
.

Hence (*) becomes
L−1

1 A = U1, or equivalently, A = L1U1 .

Note that L1 is unit lower triangular (ones on the mail diagonal) and U1 is block upper-
triangular with one 1× 1 block and one (m− 1)× (n− 1) block on the block diagonal. The
multipliers are usually denoted

u/a = [µ21, µ31, . . . , µm1]
T .

If the (1, 1) entry of A1 is not 0, we can apply the same procedure to A1: if

A1 =

[
a2 vT

2

u2 Ã2

]
∈ C(m−1)×(n−1)

with a2 6= 0, letting

L̃2 =

[
I 0
u2

a2
I

]
∈ C(m−1)×(m−1),

9

and forming

L̃−1
2 A1 =

[
1 0
−u1

a2
I

] [
a2 vT

2

u2 Ã1

]
=

[
a2 vT

2

0 A2

]
≡ Ũ2 ∈ C(m−1)×(n−1),

where A2 ∈ C(m−2)×(n−2). This process amounts to using the second row to zero out elements
of the second column below the diagonal. Setting

L2 =

[
1 0

0 L̃2

]
and U2 =

[
a vT

0 Ũ2

]
,

we have

L−1
2 L−1

1 A =

[
1 0

0 L̃−1
2

] [
a vT

0 A1

]
= U2,

or equivalently,
A = L2L1U2.

Here U2 is block upper triangular with two 1× 1 blocks and one (m− 2)× (n− 2) block on
the diagonal, and again L2 is unit lower triangular. We can continue in this fashion at most
m̃− 1 times, where

m̃ = min{m, n}.
If we can proceed m̃− 1 times, then

L−1
m̃−1 · · ·L−1

2 L−1
1 A = Um̃−1 = U

is upper triangular provided that along the way that the (1, 1) entries of

A, A1, A2, . . . , Am̃−2

are nonzero so the process can continue. Define

L = (L−1
m̃−1 · · ·L−1

1)−1 = L1L2 · · ·Lm̃−1.

The matrix L is square unit lower triangular, and so is invertable. Moreover, A = LU , where
the matrix U is the so called row echelon form of A. In general, a matrix T ∈ Cm×n is said

to be in row echelon form if for each i = 1, . . . ,m− 1 the first non-zero entry in the (i + 1)st

row lies to the right of the first non-zero row in the ith row.
Let us now suppose that m = n and A ∈ Cn×n is invertible. Writing A = LU as a product

of a unit lower triangular matrix L ∈ Cn×n (necessarily invertible) and an upper triangular
matrix U ∈ Cn×n (also nessecarily invertible in this case) is called the LU factorization of
A.

Remarks

(1) If A ∈ Cn×n is invertible and has an LU factorization, it is unique.
(2) One can show that A ∈ Cn×n has an LU factorization iff for 1 ≤ j ≤ n, the upper

left j × j principal submatrix a11 · · · aij
...

aj1 · · · ajj

is invertible.

10

(3) Not every invertible A ∈ Cn×n has an LU-factorization.

Example:

[
0 1
1 0

]
Typically, one must permute the rows of A to move nonzero entries to the appropriate
spot for the elimination to proceed. Recall that a permutation matrix P ∈ Cn×n is
the identity I with its rows (or columns) permuted: so

P ∈ Rn×n is orthogonal, and P−1 = P T .

Permuting the rows of A amounts to left multiplication by a permutation matrix P T ;
then P T A has an LU factorization, so A = PLU (called the PLU factorization of A).

(4) Fact: Every invertible A ∈ Cn×n has a (not necessarily unique) PLU factorization.
(5) The LU factorization can be used to solve linear systems Ax = b (where A = LU ∈

Cn×n is invertible). The system Ly = b can be solved by forward substitution (1st

equation gives x1, etc.), and Ux = y can be solved by back-substitution (nth equation
gives xn, etc.), giving the solution to? Ax = LUx = b.

Example: We now use the procedure outlined above to compute the LU factorization of
the matrix

A =

 1 1 2
2 4 2

−1 1 3

 .

L−1
1 A =

 1 0 0
−2 1 0

1 0 1

 1 1 2
2 4 2

−1 1 3

=

 1 1 2
0 2 −3
0 2 5

L−1
2 L−1

1 A =

 1 0 0
0 1 0
0 −1 1

 1 1 2
0 2 −3
0 2 5

=

 1 1 2
0 2 −3
0 0 8

We now have

U =

 1 1 2
0 2 −3
0 0 8

 ,

and

L = L1L2 =

 1 0 0
2 1 0

−1 0 1

 1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0

−1 1 1

 .

11

1.4.2. The Cholesky Factorization. We now consider the application of the LU factorization
to a symmetric positive definite matrix, but with a twist. Suppose the n × n matrix H
is symmetric and we have performed the first step in the procedure for computing the LU
factorization of H so that

L−1
1 H = U1 .

Clearly, U1 is no-longer symmetric (assuming L1 is not the identity matrix). To recover
symmetry we could multiply U1 on the right by the upper triangular matrix L−T

1 so that

L−1
1 HL−T

1 = U1L
−T
1 = H1 .

We claim that H1 necessarily has the form

H1 =

[
h(1,1) 0

0 Ĥ1

]
,

where h(1,1) is the (1, 1) element of H and Ĥ1 is an (n− 1)× (n− 1) symmetric matrix. For
example, consider the matrix

H =

 1 2 −1
2 5 1

−1 1 3

 .

In this case, we get

L−1
1 HL−T

1 =

 1 0 0
−2 1 0

1 0 1

 1 2 −1
2 5 1

−1 1 3

 1 −2 1
0 1 0
0 0 1

=

 1 0 0
0 1 3
0 3 2

 .

If we now continue this process with the added feature of multiplying on the right by L−T
j

as we proceed, we obtain

L−1HL−T = D,

or equivalently,

H = LDLT ,

where L is a unit lower triangular matrix and D is a diagonal matrix. Note that the entries on
the diagonal of D are not necessarily the eigenvalues of H since the transformation L−1HL−T

is not a similarity transformation.
Observe that if it is further assumed that H is positive definite, then the diagonal entries

of D are necessarity all positive and the factorization H = LDLT can always be obtained,
i.e. no zero pivots can arise in computing the LU factorization (see exercises).

12

Let us apply this approach by continuing the computation of the LU factorization for the
matrix given above. Thus far we have

L−1
1 HL−T

1 =

 1 0 0
−2 1 0

1 0 1

 1 2 −1
2 5 1

−1 1 3

 1 −2 1
0 1 0
0 0 1

=

 1 0 0
0 1 3
0 3 2

 .

Next

L−1
2 L−1

1 HL−T
1 L−T

2 =

 1 0 0
0 1 0
0 −3 1

 1 0 0
0 1 3
0 3 2

 1 0 0
0 1 −3
0 0 1

=

 1 0 0
0 1 0
0 0 −7

 ,

giving the desired factorization

H = LDLT =

 1 0 0
2 1 0

−1 3 1

 1 0 0
0 1 0
0 0 −7

 1 2 −1
0 1 3
0 0 1

 .

Note that this implies that the matrix H is not positive definite.
We make one final comment on the positive definite case. When H is symmetric and

positive definite, an LU factorization always exists and we can use it to obtain a fac-
torization of the form H = LDLT , where L is unit lower triangular and D is diago-
nal with positive diagonal entries. If D = diag(d1, d2, . . . , dn) with each di > 0, the
D1/2 = diag(

√
d1,

√
d2, . . . ,

√
dn). Hence we can write

H = LDLT = LD1/2D1/2LT = L̂L̂T ,

where L̂ = LD1/2 is a non-singular lower triangular matrix. The factorization H = L̂L̂T

where L̂ is a non-singular lower triangula matrix is called the Cholesky factorization of H.
In this regard, the process of computing a Chlesky factorization is an effective means for
determining is a symmetric matrix is positive definite.

1.4.3. The QR Factorization. Recall the Gram-Schmidt orthogonalization process for a se-
quence of linearly independent vectors a1, . . . , an ∈ Rn. Define q1, . . . , qn inductively, as

13

follows: set

p1 = a1, q1 = p1/‖p1‖,

pj = aj −
j−1∑
i=1

〈aj, qj〉 qi for 2 ≤ j ≤ n, and

qj = pj/‖pj‖ .

For 1 ≤ j ≤ n,
qj ∈ Span{a1, . . . , aj},

so each pj 6= 0 by the lin. indep. of {a1, . . . , an}. Thus each qj is well-defined. We have
{q1, . . . , qn} is an orthonormal basis for Span{a1, . . . , an}. Also

ak ∈ Span{q1, . . . , qk} 1 ≤ k ≤ n,

so {q1, . . . , qk} is an orthonormal basis of Span{a1, . . . , ak}.
Define

rjj = ‖pj‖ and rij = 〈aj, qi〉 for 1 ≤ i < j ≤ n,

we have:

a1 = r11 q1,

a2 = r12 q1 + r22 q2,

a3 = r13 q1 + r23 q2 + r33 q3,
...

an =
n∑

i=1

rin qi.

Set
A = [a1 a2 . . . an] , R = [rij], and Q = [q1 q2 . . . qn] ,

where rij = 0, i > j. Then
A = QR ,

where Q is unitary and R is upper triangular.

Remarks

(1) If a1, a2, · · · is a linearly independent sequence, apply Gram-Schmidt to obtain an
orthonormal sequence q1, q2, . . . such that {q1, . . . , qk} is an orthonormal basis for
Span{a1, . . . , ak}, k ≥ 1.

(2) If the aj’s are linearly dependent, for some value(s) of k,

ak ∈ Span{a1, . . . , ak−1}, so pk = 0.

The process can be modified by setting rkk = 0, not defining a new qk for this
iteration and proceeding. We end up with orthogonal qj’s. Then for k ≥ 1, the
vectors {q1, . . . , qk} form an orthonormal basis for Span{a1, . . . , a`+k} where ` is the
number of rjj = 0. Again we obtain A = QR, but now Q may not be square.

14

(3) The classical Gram-Schmidt algorithm as described does not behave well computa-
tionally. This is due to the accumulation of round-off error. The computed qj’s are
not orthogonal: 〈qj, qk〉 is small for j 6= k with j near k, but not so small for j � k
or j � k.

An alternate version, “Modified Gram-Schmidt,” is equivalent in exact arithmetic,
but behaves better numerically. In the following “pseudo-codes,” p denotes a tempo-
rary storage vector used to accumulate the sums defining the pj’s.

Classic Gram-Schmidt Modified Gram-Schmidt
For j = 1, · · · , n do For j = 1, . . . , n do∣∣∣ p := aj

∣∣∣ p := aj∣∣∣ For i = 1, . . . , j − 1 do
∣∣∣ For i = 1, . . . , j − 1 do∣∣∣ ∣∣∣ rij = 〈aj, qi〉
∣∣∣ ∣∣∣ rij = 〈p, qi〉∣∣∣ ⌊

p := p− rijqi

∣∣∣ ⌊
p := p− rijqi∣∣∣ rjj := ‖p‖

∣∣∣ rjj = ‖p‖⌊
qj := p/rjj

⌊
qj := p/rjj

The only difference is in the computation of rij: in Modified Gram-Schmidt, we
orthogonalize the accumulated partial sum for pj against each qi successively.

Theorem 1.3. Suppose A ∈ Rm×n with m ≥ n. Then

∃ unitary Q ∈ Rm×m upper triangular R ∈ Rm×n

for which

A = QR.

If Q̃ ∈ Rm×n denotes the first n columns of Q and R̃ ∈ Rn×n denotes the first n rows of R,
then

A = QR = [Q̃ ∗]
[

R̃
0

]
= Q̃R̃.

Moreover

(a) We may choose an R to have nonnegative diagonal entries.
(b) If A is of full rank, then we can choose R with positive diagonal entries, in which case

the condensed factorization A = Q̃R̃ is unique (and thus if m = n, the factorization

A = QR is unique since then Q = Q̃ and R = R̃).

Proof. If A has full rank, apply the Gram-Schmidt. Define

Q̃ = [q1, . . . , qn] ∈ Rm×n and R̃ = [rij] ∈ Rn×n

as above, so

A = Q̃R̃.

15

Extend {q1, . . . , qn} to an orthonormal basis {q1, . . . , qm} of Rm, and set

Q = [q1, . . . , qm] and R =

[
R̃
0

]
∈ Cm×n, so A = QR.

As rjj > 0 in the G-S process, we have (b). Uniqueness follows by induction passing through
the G-S process again, noting that at each step we have no choice. �

Remarks

(1) In practice, there are more efficient and better computationally behaved ways of
calculating the Q and R factors. The idea is to create zeros below the diagonal
(successively in columns 1, 2, . . .) as in Gaussian Elimination, except we now use
Householder transformations (which are unitary) instead of the unit lower triangular
matrices Lj.

(2) A QR factorization is also possible when m < n.

A = Q[R1 R2] ,

where Q ∈ Cm×m is unitary and R1 ∈ Cm×m is upper triangular.

Every A ∈ Rm×n has a QR-factorization, even when m < n. Indeed, if

rank(A) = k,

there always exist
Q ∈ Rm×k with orthonormal columns,

R ∈ Rk×n full rank upper triangular,

and a permutation matrix P ∈ Rn×n such that

(∗) AP = QR.

Moreover, if A has rank n (so m ≥ n), then R ∈ Rn×n is nonsingular. On the other hand, if
m < n, then

R = [R1 R2],

where R1 ∈ Rk×k is nonsingular. Finally, if A ∈ Rm×n, then the same facts hold, but now
both Q and R can be chosen to be real matrices.

QR-Factorization and Orthogonal Projections
Let A ∈ Rm×n have condensed QR-factorization

A = Q̃R̃ .

Then by construction the columns of Q̃ form an orthonormal basis for the range of A. Hence

P = Q̃Q̃T is the orthogonal projector onto the range of A. Similarly, if the condensed
QR-factorization of AT is

AT = Q̃1R̃1 ,

then
P1 = Q̃1Q̃

T
1

is the orthogonal projector onto Ran(AT) = ker(A)⊥, and so

I − Q̃1Q̃
T
1

16

is the orthogonal projector onto ker(A).
The QR-factorization can be computed using either Givens rotations or Householder re-

flections. Although, the approach via rotations is arguably more stable numerically, it is
more difficult to describe so we only illustrate the approach using Householder reflections.

QR using Householder Reflections
Given w ∈ Rn we can associate the matrix

U = I − 2
wwT

wT w

which reflects Rn across the hyperplane Span{w}⊥. The matrix U is call the Householder
reflection across this hyperplane.

Given a pair of vectors x and y with

‖x‖2 = ‖y‖2, and x 6= y,

there is a Householder reflection such that y = Ux:

U = I − 2
(x− y)(x− y)T

(x− y)T (x− y)
.

Proof.

Ux = x− 2(x− y)
‖x‖2 − yT x

‖x‖2 − 2yT x + ‖y‖2

= x− 2(x− y)
‖x‖2 − yT x

2(‖x‖2 − yT x)

= y

since ‖x‖ = ‖y‖. �

QR using Householder Reflections
We now describe the basic deflation step in the QR-factorization.

A0 =

[
α0 aT

0

b0 A0

]
.

Set

ν0 =

∥∥∥∥(
α0

b0

)∥∥∥∥
2

.

17

Let H0 be the Householder transformation that maps(
α0

bT
0

)
7→ ν0 e1 :

H0 = I − 2
wwT

wT w
where w =

(
α0

b0

)
− ν0e1 =

(
α0 − ν0

b0

)
.

Thus,

H0A =

[
ν0 aT

1

0 A1

]
.

A problem occurs if ν0 = 0 or (
α0

b0

)
= 0 .

In this case, permute the offending column to the right bringing in the column of greatest
magnitude. Now repeat with A1.

If the above method if implemented by always permuting the column of greatest magnitude
into the current pivot column, then

AP = QR

gives a QR-factorization with the diagonal entries of R nonnegative and listed in the order
of descending magnitude.

1.5. Matrix Secant Methods. Let us return to the problem of finding x ∈ Rn such that
g(x) = 0 where g : Rn → Rn is C1. In this section we consider Newton-Like methods of a
special type. Recall that in a Newton-Like method the iteration scheme takes the form

(1.9) xk+1 := xk − Jkg(xk),

where Jk is meant to approximate the inverse of g′(xk). In the one dimensional case, a
method proposed by the Babylonians 3700 years ago is of particular significance. Today we
call it the secant method:

(1.10) Jk =
xk−1 − xk

g(xk−1)− g(xk)
.

With this approximation one has

g′(xk)−1 − Jk =
g(xk−1)− [g(xk) + g′(xk)(xk−1 − xk)]

g′(xk)[g(xk−1)− g(xk)]
.

Also, near a point x∗ at which g′(x∗) 6= 0 there exists an α > 0 such that

α‖x− y‖ ≤ ‖g(x)− g(y)‖.
Consequently, by the Quadratic Bound Lemma,

‖g′(xk)−1 − Jk‖ ≤
L
2
‖xk−1 − xk‖2

α‖g′(xk)‖‖xk−1 − xk‖
≤ K‖xk−1 − xk‖

18

for some constant K > 0 whenever xk and xk−1 are sufficiently close to x∗. Therefore,
by Theorem 1.1, the secant method is locally two step quadratically convergent to a non–
singular solution of the equation g(x) = 0. An additional advantage of this approach is that
no extra function evaluations are required to obtain the approximation Jk.

1.5.1. Matrix Secant Methods for Equations. Unfortunately, the secant approximation (1.10)
is meaningless if the dimension n is greater than 1 since division by vectors is undefined.
But this can be rectified by simply writing

(1.11) Jk(g(xk−1)− g(xk)) = xk−1 − xk.

Equation (1.11) is called the Quasi-Newton equation (QNE), or matrix secant equation
(MSE), at xk and it determines Jk along an n dimensional manifold in Rn×n. Equation
(1.11) is not enough to uniquely determine Jk since (1.11) is n linear equations in n2 un-
knowns. To nail down a specific Jk further conditions on the update Jk must be given.
In order to determine sensible conditions, let us consider an overall iteration scheme based
on (1.9). At every iteration we have (xk, Jk) and compute xk+1 by (1.9). Then Jk+1 is
constructed to satisfy (1.11). If Bk = J−1

k is close to g′(xk) and xk+1 is close to xk, then
Jk+1 should be chosen not only to satisfy (1.11) but also to be as “close” to Jk as possible.
In what sense should we mean “close” here? In order to facilitate the computations it is
reasonable to mean “algebraically” close in the sense that Jk+1 (or Bk+1 = J−1

k+1) is only a

rank 1 modification of Jk (respectively, Bk = J−1
k). Since it may happen that g′(xk) is not

invertible, we first see what happens when we use this idea to approximate Bk+1. Since we
are assuming that Bk+1 is a rank 1 modification to Bk, there are vectors u, v ∈ Rn such that

(1.12) Bk+1 = Bk + uvT .

We now use the matrix secant equation (MSE) to derive conditions on the choice of u and
v. In this setting, the MSE becomes

Bk+1s
k = yk,

where

sk := xk+1 − xk and yk := g(xk−1)− g(xk) .

Multiplying (1.12) by sk gives

yk = Bk+1s
k = Bks

k + uvTsk .

Hence, if vTsk 6= 0, we obtain

u =
yk −Bks

k

vTsk

and

(1.13) Bk+1 = Bk +
(yk −Bks

k)vT

vTsk
.

Equation (1.13) determines a whole class of rank one updates that satisfy the MSE where
one is allowed to choose v ∈ Rn as long as vTsk 6= 0. If sk 6= 0, then an obvious choice for v

19

is sk yielding the update

(1.14) Bk+1 = Bk =
(yk −Bks

k)skT

skTsk
.

This is known as Broyden’s update. It turns out that the Broyden update is also analytically
close.

Theorem 1.4. Let A ∈ Rn×n, s, y ∈ Rn, s 6= 0. Then for any matrix norms ‖ · ‖ and ‖| · ‖|
such that

‖AB‖ ≤ ‖A‖ ‖|B‖|
and

‖|vvT

vTv
‖| ≤ 1,

the solution to

(1.15) min{‖B − A‖ : Bs = y}

is

(1.16) A+ = A +
(y − As)sT

sTs
.

In particular, (1.16) solves (1.15) when ‖ · ‖ is the `2 matrix norm, and (1.16) solves (1.15)
uniquely when ‖ · ‖ is the Frobenius norm.

Proof. Let B ∈ {B ∈ Rn×n : Bs = y}, then

‖A+ − A‖ = ‖(y − As)sT

sTs
‖ = ‖(B − A)

ssT

sTs
‖

≤ ‖B − A‖ ‖|ss
T

sTs
‖| ≤ ‖B − A‖.

Note that if ‖| · ‖| = ‖ · ‖2, then

‖vvT

vTv
‖2 = sup{‖vvT

vTv
x‖2 : ‖x‖2 = 1}

= sup{

√
(vTx)2

‖v‖2
: ‖x‖2 = 1}

= 1,

so that the conclusion of the result is not vacuous. For uniqueness observe that the Frobenius
norm is strictly convex and ‖A ·B‖F ≤ ‖A‖F‖B‖2. �

Therefore, the Broyden update (1.14) is both algebraically and analytically close to Bk.
These properties indicate that it should perform well in practice and indeed it does.

Algorithm: Broyden’s Method

Initialization: x0 ∈ Rn, B0 ∈ Rn×n

Having (xk, Bk) compute (xk+1, Bx+1) as follows:

20

Solve Bks
k = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk)− g(xk+1)

Bk+1 : = Bk +
(yk −Bks

k)skT

skTsk
.

Let us now see if we can compute Jk = B−1
k so that we can write the step computation

as sk = −Jkg(xk) avoiding the need to solve an equation. For this we employ the following
important lemma.

Lemma 1.1. (Sherman-Morrison-Woodbury) Suppose A ∈ Rn×n, U ∈ Rn×k, V ∈ Rn×k are
such that both A−1 and (I + V TA−1U)−1 exist, then

(A + UV T)−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1

The above lemma verifies that if B−1
k = Jk exists and skT

Jky
k = skT

B−1
k yk 6= 0, then

(1.17)

Jk+1 = [Bk +
(yk −Bks

k)skT

skTsk
]−1 = B−1

k +
(sk −B−1

k yk)skT
B−1

k

skTB−1
k y

= Jk +
(sk − Jky

k)skT
Jk

skTJky
.

In this case, it is possible to directly update the inverses Jk. But this process can become
numerically unstable if |skT

Jky
k| is small. Therefore, in practise, the Broyden update is

usually implemented in forward mode described by the algorithm for Broyden’s method
above.

Although we do not pause to establish the convergence rates here, we do give the following
result due to Dennis and Moré (1974).

Theorem 1.5. Let g : Rn → Rn be continuously differentiable in an open convex set D ⊂
Rn. Assume that there exists x∗ ∈ Rn and r, β > 0 such that x∗ + rB ⊂ D, g(x∗) = 0,
g′(x∗)−1 exists with ‖g′(x∗)−1‖ ≤ β, and g′ is Lipschitz continuous on x∗+ rB with Lipschitz
constant γ > 0. Then there exist positive constants ε and δ such that if ‖x0 − x∗‖2 ≤ ε and
‖B0 − g′(x0)‖ ≤ δ, then the sequence {xk} generated by the iteration[

xk+1 := xk + sk where sk solves 0 = g(xk) + Bks

Bk+1 := Bk +
(yk−Bksk)sT

k

sT
k sk where yk = g(xk+1)− g(xk)

is well-defined with xk → x∗ superlinearly.

1.5.2. Matrix Secant Methods for Minimization. Let us now see how we can mimic these
matrix secant ideas in the context of optimization where the underlying problem is one of
minimization:

P : minimize
x∈Rn

f(x)

where f : Rn → R is C2. How can we modify and/or extend the matrix secant methods for
equations to the setting of minimization where one wishes to solve the equation ∇f(x) = 0.
In this context the MSE (matrix secant equation) becomes

sk = Hk+1y
k

21

where sk := xk+1 − xk and

yk := ∇f(xk+1)−∇f(xk).

In this context the matrix Hk is intended to be an approximation to the inverse of the
Hessian matrix ∇2f(xk). Writing Mk = H−1

k , a straightforward application of Broyden’s
method gives the update

Mk+1 = Mk +
(yk −Mks

k)skT

skTsk
.

However, this is unsatisfactory for two reasons:

(1) Since Mk approximates ∇2f(xk) it must be symmetric.
(2) Since we are minimizing, then Mk must be positive definite to insure that sk =

−M−1
k ∇f(xk) is a direction of descent for f at xk.

To address problem 1 above, one could return to equation (1.13) an find an update that
preserves symmetry. Such an update is uniquely obtained by setting

v = (yk −Mks
k).

This is called the symmetric rank 1 update or SR1. Although this update can on occasion
exhibit problems with numerical stability, it has recently received a great deal of renewed
interest. The stability problems occur whenever

(1.18) vTsk = −∇f(xk+1)T M−1
k ∇f(xk)

has small magnitude.
We now approach the question of how to update Mk in a way that addresses both the

issue of symmetry and positive definiteness while still using the Broyden updating ideas.
Given a symmetric positive definite matrix M and two vectors s and y, our goal is to find a
symmetric positive definite matrix M̄ such that M̄s = y. Since M is symmertic and positive
definite, there is a non-singular n × n matrix L such that M = LLT . Indeed, L can be
chosent to be lower triangular Cholesky factor of M . If M is also symmetric and positive
definite then there is a matrix J ∈ Rn×n such that M = JJT . The MSE implies that if

(1.19) JTs = v

then

(1.20) Jv = y.

Let us apply the Broyden update technique to (1.20), J , and L. That is, suppose that

(1.21) J = L +
(y − Lv)vT

vTv
.

Then by (1.19)

(1.22) v = JTs = LTs +
v(y − Lv)Ts

vTv
.

This expression implies that v must have the form

v = αLTs

22

for some α ∈ R. Substituting this back into (1.22) we get

αLTs = LTs +
αLTs(y − αLLTs)Ts

α2sTLLTs
.

Hence

(1.23) α2 =

[
sTy

sTMs

]
.

Consequently, such a matrix J satisfying (1.22) exists only if sTy > 0 in which case

J = L +
(y − αMs)sTL

αsTMs
,

with

α =

[
sTy

sTMs

]1/2

,

yielding

(1.24) M = M +
yyT

yTs
− MssTM

sTMs
.

Moreover, the Cholesky factorization for M can be obtained directly from the matrices J .
Specifically, if the QR factorization of JT is JT = QR, we can set L = R yielding

M = JJT = RTQTQR = LL
T
.

We have shown that beginning with a symmetric positive definite matrix Mk we can
obtain a symmetric and positive definite update Mk+1 that satisfies the MSE Mk+1sk = yk

by applying the formula (1.24) whenever skT
yk > 0. We must now address the question of

how to choose xk+1 so that skT
yk > 0. Recall that

y = yk = ∇f(xk+1)−∇f(xk)

and
sk = −tkM

−1
k ∇f(xk),

where tk is the stepsize. Hence

ykT
sk = ∇f(xk+1)Tsk −∇f(xk)Tsk

= tk(∇f(xk + tkdk)
Tdk −∇f(xk)Tdk) ,

where dk := −M−1
k ∇f(xk). Now since Mk is positive definite the direction dk is a descent

direction for f at xk and so tk > 0. Therefore, to insure that skT
yk > 0 we need only show

that tk > 0 can be choosen so that

(1.25) ∇f(xk + tkd
k)Tdk ≥ β∇f(xk)Tdk

for some β ∈ (0, 1) since in this case

∇f(xk + tkdk)
Tdk −∇f(xk)Tdk ≥ (β − 1)∇f(xk)Tdk > 0.

But this precisely the second condition in the weak Wolfe conditions with β = c2.
The update (1.24) is called the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) update and is currently considered the best available matrix secant type update

23

for minimization. Observe in (1.24) that if both M and M are positive definite, then they
are both invertible. The Sherman-Morrison-Woodbury formula shows that the inverse is
given by

(1.26) M
−1

= M−1 +
(s−M−1y)sT + s(s−M−1y)T

yTs
− (s−M−1y)TyssT

(yTs)2
.

Thus the corresponding inverse updating scheme for the BFGS update is

Hk+1 = Hk +
(sk −Hky

k)skT
+ sk(sk −Hky

k)T

ykTsk
− (sk −Hky

k)TykskskT

(ykTsk)2
.

This is the form of the update that is most commonly used as it avoids the need to solve
the equation Mkd

k = −∇f(xk) for the search direction dk. Instead, the search direction
is obtained directly with a matrix multiply, dk = −Hk∇f(xk). However, one still needs to
be careful to avoid numerical instability. This is typically avoided by being careful to the
formation of Hk+1 from Hk. The advised process is as follows.

BFGS Updating

σ :=

√
skT yk

ŝk := sk/σ

ŷk := yk/σ

Hk+1 := Hk + (ŝk −Hkŷ
k)(ŝk)T + ŝk(ŝk −Hkŷ

k)T − (ŝk −Hkŷ
k)T ŷkŝk(ŝk)T

24

Exercises

(1) Let γ ∈ (0, 1).
(a) Show that the sequence {γν} converges linearly to zero, but not superlinearly.

(b) Show that the sequence {γν2} converges superlinearly to 0, but not quadratically.
(c) Finally, show that the sequence {γ2ν} converges quadratically to zero.

(2) Apply Newton’s method to the function f(x) = x2 + sin x with initial point x0 = 2π.
(3) If H ∈ Rn×n is symmetric and positive definite show that there is a diagonal matrix

D having positive entries and a unit lower triangular matrix L such that H = LDLT .
(4) Compute the Cholesky factorization of the matrix 1 1 −1

1 5 1
−1 1 4

 .

(5) Apply the secant method to the function f(x) = x2 + ex with starting points x−1 =
1 − 10−3 and x0 = 1. How many ierations does it take to obtain a point for which
|f ′(xk)| ≤ 10−8? Compare this performance with that of Newton’s method and the
method of steepest descent.

(6) Verify formulae (1.18) and (1.23).
(7) Verify formulae (1.17), (1.24), and (1.26).
(8) Prove the Sherman-Morrison-Woodbury Lemma (Lemma 1.1).
(9) Show that every rank 1 matrix W in Rn×n can be written in the form W = uvT for

some choice of vectors u, v ∈ Rn.
(10) Show that every n × n positive semi-definite matrix M can be written in the form

M = V V T for some n× n matrix V having the same rank as M . Also, show that V
can be chosen to be an n× k matrix where k = rank(M).

(11) ∗ The function f : Rn → R is said to be strongly convex if there is a δ > 0 such that

f(x + λ(y − x)) ≤ f(x) + λ[f(y)− f(x)]− δ

2
λ(1− λ)‖y − x‖2

for every x, y ∈ Rn and λ ⊂ [0, 1]. The parameter δ is called the modulus of strong
convexity.

Prove the following characterization theorem for strongly convex functions.

Theorem 1.6. (Characterizations of strongly convex functions) Let f : Rn → R be
differentiable. Then the following statements are equivalent.
(a) f is strongly convex with modulus δ.
(b) f(y) ≥ f(x) +∇f(x)T (y − x) + δ

2
‖y − x‖2 for all x,∈ Rn.

(c) (∇f(x)−∇f(y))T (x− y) ≥ δ‖y − x‖2 for all x, y ∈ Rn.
If it is further assumed that f is twice continuously differentiable on Rn, then the
above conditions are also equivalent to the following statement:

δ‖u‖2
2 ≤ uT∇2f(x)u ∀ u ∈ Rn.

That is, the spectrum of the Hessian of f is uniformly bounded below by δ on Rn.

