
AMATH/MATH 516

FIRST HOMEWORK SET SOLUTIONS

The purpose of this problem set is to have you brush up and further develop your multi-variable calculus and linear
algebra skills. The problem set will be very difficult for some and straightforward for others. If you are having
any difficulty, please feel free to discuss the problems with me at any time. Don’t delay in starting work on these
problems!

1. Let Q be an n× n symmetric positive definite matrix. The following fact for symmetric matrices can be used
to answer the questions in this problem.

Fact: If M is a real symmetric n×n matrix, then there is a real orthogonal n×n matrix U (UTU = I)
and a real diagonal matrix Λ = diag(λ1, λ2, . . . , λn) such that M = UΛUT .

(a) Show that the eigenvalues of Q2 are the square of the eigenvalues of Q.

Note that λ is an eigenvalue of Q if and only if there is some vector v such that Qv = λv. Then
Q2v = Qλv = λ2v, so λ2 is an eigenvalue of Q2.

(b) If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigen values of Q, show that

λn‖u‖22 ≤ uTQu ≤ λ1‖u‖22 ∀ u ∈ IRn.

We have uTQu = uTUΛUu =
∑n

i=1 λi‖u‖22. The result follows immediately from bounds on the λi.

(c) If 0 < λ < λ̄ are such that
λ‖u‖22 ≤ uTQu ≤ λ̄‖u‖22 ∀ u ∈ IRn,

then all of the eigenvalues of Q must lie in the interval [λ, λ̄].

Take u1 to be the eigenvector for λ1. Then uT
1 Qu1 = λ1‖u1‖22, so λ1 ≤ λ̄. The analogous argument applied

to un, the eigenvector associated to λn, gives λ ≤ λn.

(d) Let λ and λ̄ be as in Part (c) above. Show that

λ‖u‖2 ≤ ‖Qu‖2 ≤ λ̄‖u‖2 ∀ u ∈ IRn .

Hint: ‖Qu‖22 = uTQ2u.

From part (a), we have that the eigenvalues of Q2 are λ2
i , where λi are the eigenvalues of Q. From part b

we have that λ2
n‖u‖21 ≤ ‖Qu‖22 ≤ λ2

1‖u‖22 ∀u ∈ Rn, and the result follows immediately.

2. Consider the quadratic function f : IRn 7→ IR given by

f(x) :=
1
2
xTQx− aTx+ α ,

where Q ∈ IRn×n, a ∈ IRn, and α ∈ IR.

(a) Write expressions for both ∇f(x) and ∇2f(x). Since it is not assumed that f is symmetric, be careful in
how you express ∇2f(x).

∇f(x) = 1
2 (Qx+QTx)− a, and ∇2f(x) = 1

2 (Q+QT ).
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(b) If it is further assumed that Q is symmetric, what is ∇2f?

It is Q.

(c) State first– and second–order necessary conditions for optimality in the problem min{f(x) : x ∈ IRn}.

We want ∇f(x) = 0 and Q to be positive semidefinite.

(d) State a sufficient condition on the matrix Q under which the problem min f has a unique global solution
and then display this solution in terms of the data Q and a.

Q should be positive definite; in which case the solution is given by 1
2 (Q + QT )−1a. We might as well

assume Q is symmetric.

3. Consider the linear equation
Ax = b,

where A ∈ IRm×n and b ∈ IRm. When n < m it is often the case that this equation is over-determined in the
sense that no solution x exists. In such cases one often attempts to locate a ‘best’ solution in a least squares
sense. That is one solves the linear least squares problem

(lls) : minimize
1
2
‖Ax− b‖22

for x. Define f : IRn 7→ IR by

f(x) :=
1
2
‖Ax− b‖22.

(a) Show that f can be written as a quadratic function, that is, it can be written in the same form as the
function of the preceding exercise.

f(x) = 1
2 〈Ax− b, Ax− b〉

= 1
2x

TATAx− bTAx+ 1
2b

T b

(b) What are ∇f(x) and ∇2f(x)?

∇f(x) = ATAx−AT b; , ∇2f(x) = ATA.

(c) Show that ∇2f(x) is positive semi-definite.

uTATAu = ‖Au‖22 ≥ 0.

(d) Show that Nul(ATA) = Nul(A) and Ran(AAT ) = Ran(A).

It is clear that Nul(A) ⊂ Nul(ATA). For the other direction, if w ∈ Nul(ATA), then ATAx = 0 so that
0 = xTATAx = ‖Ax‖2, or equivalently, Ax = 0.

By the Fundamental Theorem of the Alternative for matrices and the fact that Nul(AAT ) = Nul(AT )
(obtained by replacing A with AT in what was just proved), we have

Ran(AAT ) = Nul(AAT )⊥ = Nul(AT )⊥ = Ran(A).
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(e) Show that a solution to (lls) must always exist.

The necessary and sufficient conditions for optimality are that ∇f = 0 and ∇2f is positive semidefinite
(which we showed in part c) since this implies that f is convex. Now note that the equation ATAx = AT b
always has a solution by part (d), since the ranges of the matrices ATA and AT agree.

(f) Provide a necessary and sufficient condition on the matrix A under which (lls) has a unique solution and
then display this solution in terms of the data A and b.

By 2d), we know we need ∇2f to be positive definite. Since we know ∇2f = ATA is already positive
semidefinite by 3c), we just need it to have a trivial nullspace. By 2d), we know ATA will have a trivial
nullspace if A does. From this it immediately follows that Nul(A) = {0}, and so m ≥ n. In this case, the
solution is given by x = (ATA)−1AT b.

4. A mapping 〈·, ·〉 : IRn 7→ IRn is said to be an inner product on IRn is for all x, y, z ∈ IRn

(i) 〈x, x〉 ≥ 0 Non-Negative
(ii) 〈x, x〉 = 0 ⇔ x = 0 Positive
(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 Additive
(iv) 〈αx, y〉 = α 〈x, y〉 ∀α ∈ IR Homogeneous
(v) 〈x, y〉 = 〈y, x〉 Symmetric

Two vectors x, y ∈ IRn are said to be orthogonal in the inner product 〈·, ·〉 if 〈x, y〉 = 0

Unless otherwise specified, we use the notation 〈x, y〉 to designate the usual Euclidean inner product:

〈x, y〉 =
n∑

i=1

xiyi .

(a) Let 〈x, y〉 be the Euclidean inner product on IRn. Given A ∈ IRn×n, show that A = 0 if and only if

〈x,Ay〉 = 0 ∀ x, y ∈ IRn .

If A = 0, then 〈x,Ay〉 = 0. Conversely, note that Aij = 〈ei, Aej〉 = 0, where ei is the vector with all zeros
and a 1 in the ith position, so all the entries of A must be zero.

(b) Let H ∈ IRn×n be symmetric and positive definite (i.e. H = HT and xTHx > 0 ∀ x ∈ IRn \ {0}). Show
that the bi-linear form given by

〈x, y〉H = xTHy ∀ x, y ∈ IRn

defines an inner product on IRn.

Properties (i) and (ii) are immediate from the definition of positive definite matrices. Properties (iii) and
(iv) follow from the linearity of matrix multiplication. Property (v) follows from the symmetry of H.

(c) Every inner product defines a transformation on the space of linear operators called the adjoint. For
the Euclidean inner product on IRn, this is just the usual transpose. Given a linear transformation
M : IRn 7→ IRn, the adjoint is defined by the relation

〈y,Mx〉 = 〈M∗y, x〉 , for all x, y,∈ IRn.

The inner product given above, 〈·, ·〉H , also defines an adjoint mapping which we can denote by MTH .
Show that

MTH = H−1MTH .

〈y,Mx〉H = 〈y,HMx〉 =
〈
MTHy, x

〉
=
〈
MTHy,H−1x

〉
H

=
〈
H−1MTHy, x

〉
H

Comparing the leftmost and rightmost expressions gives the result.
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(d) The matrix P ∈ IRn×n is said to be a projection if P 2 = P . Clearly, if P is a projection, then so is I −P .
The subspace PIRn = Ran (P ) is called the subspace that P projects onto. A projection is said to be
orthogonal with respect to a given inner product 〈·, ·〉 on IRn if and only if

〈(I − P )x, Py〉 = 0 ∀ x, y ∈ IRn ,

that is, the subspaces Ran (P ) and Ran (I − P ) are orthogonal in the inner product 〈·, ·〉. Show that the
projection P is orthogonal with respect to the inner product 〈·, ·〉H (defined above), where H ∈ IRn×n is
symmetric and positive definite, if and only if

P = H−1PTH .

Note that
〈(I − P )x, Py〉H = 〈(I − P )x,HPy〉 =

〈
PTH(I − P )x, y

〉
If P = H−1PTH, then PTH(I − P ) = HPH−1H(I − P ) = HP (I − P ) = H(P − P ) = 0, so the result
follows.

For the converse, we have
〈
PTH(I − P )x, y

〉
= 0, so PTH(I − P ) = 0 by (a). Then PTH = PTHP , so

PT = PTHPH−1. Taking the transpose, we have P = H−1(PTHP ) = H−1PTH since PTH = PTHP .

5. Consider the minimization problem

P : minimize f(x)
subject to Ax = b ,

where f : IRn 7→ IR is assumed to be twice continuously differentiable, A ∈ IRm×n has full rank with m ≤ n,
and b ∈ IRm. Set

P := I −AT (AAT )−1A .

(a) Show that P is well–defined, that is, show that the matrix AAT is non–singular.

From problem 4, we know that the nullspace of AAT is the same as the nullspace of AT . Since we are
given that the matrix has full rank, it must have rank m, and since AT maps from Rm → Rn, it must
have nullspace {0}. Then the square matrix AAT is nonsingular.

(b) Show that P is the orthogonal projector onto the nulspace of A. That is, show that P is an orthogonal
projector and Ran (P ) = Nul (A).

To see that P is an orthogonal projector, simply note that P (I − P ) = 0, because (AT (AAT )−1A)2 =
AT (AAT )−1A. Then the orthogonality definition in 4d is satisfied.
It is obvious that Nul (A) ⊂ Ran (P ), since on Nul (A) the expression for P is simply the identity. To
see the other direction, suppose that w ∈ Ran (P ). Then w = Px for some x ∈ Rn. Then w = x −
AT (AAT )−1Ax. Applying A to w, we get Aw = Ax−Ax = 0, so w ∈ Nul (A).

(c) Set h(z) = f(x0 + Pz) where x0 is any point satisfying Ax0 = b. Let S1 be the set of first–order sta-
tionary points for the problems P and let S2 be the set of first–order stationary points for the problem
min{h(z) : z ∈ IRn}. Show that S1 = x0 + P (S2). Show that the first-order necessary conditions for P
are ∇f(x) ∈ Nul(A)⊥ where Nul(A)⊥ is the subspace orthogonal to the null-space of A. Display both the
gradient and Hessian of h.

Note that the set of solutions to Ax = b is described by the set {x0 + Nul (A)}. Since Ran (P ) = Nul (A)
by 4b), we know that {x0 + Nul (A)} = {x0 + Pz} where z is free to range over Rn. For now, we will
define S1 = x0 + P (S2), where S2 are the first-order stationary points for

P2 : minimize h(z) = f(x0 + Pz)
with respect to z .
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The first order necessary conditions for P2 are simply that P∇f(x0 + Pz) = 0. But this says that
∇f ∈ Null(P ) = Ran(P )⊥, by the fundamental theorem of the alternative (and symmetry of P ). But
Ran(P ) = Nul(A) by 4b, so we are done.

∇h = P∇f
∇2h = P∇2fP

.

(d) Show that if x̄ ∈ IRn is a locally optimal solution to P, then P∇f(x̄) = 0.

This follows immediately because locally optimal solutions satisfy the necessary stationarity condition given
in 4c).

(e) Show that if P∇f(x̄) = 0 and f is convex, the x̄ is a globally optimal solution to P.

Suppose that we have some point x̂ where f(x̂) < f(x̄). Feasibility of x̂ implies Ax̂ = b, so λ(x̂ − x̄) ∈
Nul(A) for any λ ∈ [0, 1]. Note that what we really want is for the line segment x̄ + λ(x̄ − x̂) to remain
feasible, and so convexity of the constrained region is enough; we do not need it to be a subspace.

By convexity of f , we have
f(x̄+ λ(x̄− x̂)) ≤ f(x̄) + λ(f(x̂)− f(x̄)).

But f(x̂)− f(x̄) < 0, and so we get
f(x̄+ λ(x̄− x̂)) < f(x̄)

for any λ. This violates local optimality of x̄. Note that we only used convexity of Ax = b, so this proof
really shows that any local minimum of a convex function over a convex set is a global minimum.

6. Let H ∈ IRn×n
s , u ∈ IRn, and α ∈ IR where IRn×n

s is the linear space of all real symmetric n × n matrices.
Recall that H is said to be positive definite if xTHx > 0 for all x ∈ IRn with x 6= 0. Moreover, H is said to be
positive semi–definite if xTHx ≥ 0 for all x ∈ IRn. We consider the block matrix

Ĥ :=
[
H u
uT α

]
.

(a) Show that Ĥ is positive semi–definite if and only if H is positive semi–definite and there exists a vector
z ∈ IRn such that u = Hz and α ≥ zTHz.

Suppose H is positive semidefinite, and there exists z such that u = Hz, and α ≥ zTHz. Then for any

x̂ =
[
x
xn

]
where xn ∈ R and x ∈ Rn−1, we have

x̂T Ĥx̂ = xTHx+ 2xTHxnz + x2
nα

= (x+ xnz)TH(x+ xnz) + x2
n(α− zTHz) ≥ 0.

We will prove the converse by contrapositive; i.e. we will show that if any of the conditions on H, u, or
α fail, then Ĥ is not positive semidefinite.

First note that if H is not positive semidefinite then there exists some x such that xTHx < 0, and so if

we take x̂ =
[
x
0

]
we must have x̂T Ĥx̂ < 0, and so Ĥ is not positive semidefinite.

Now, if we can find a vector z such that u = Hz but α < zTHz, take x = −z, and xn = 1. Clearly the
positive semidefinite condition fails because x̂T Ĥx̂ = α− zTHz < 0.
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Finally, suppose that we cannot find a vector z such that u = Hz. Then u = u1 +u2 where u1 = Hz1 and
u2 ∈ Ran(H)⊥ = Nul(H), u2 6= 0. Then

x̂T Ĥx̂ = xTHx+ 2xnx
T (Hz1 + u2) + x2

nα
= (x+ xnz1)TH(x+ xnz1)− 2xnx

Tu2 + x2
n(α− zT

1 Hz1).

Take xn = 1 and xt = tu2 − z1. Then

x̂T
t Ĥx̂t = t2uT

2 Hu2 − 2txn(u2 − xnz1)Tu2 + x2
n(α− zT

1 Hz1)
= −2t2‖u2‖2 + 2tuT

2 z1 + α− zT
1 Hz1.

Since we assumed u2 6= 0, necessarily ‖u2‖ > 0, and so the above expression is a concave quadratic in t. It
immediately follows that once t is large enough we will have x̂T

t Ĥx̂t < 0, so Ĥ is not positive semidefinite.
(b) Show that Ĥ is positive definite if and only if H is positive definite and α > uTH−1u.

If H is positive definite and α > uTHu, for any nonzero x̂ =
[
x
xn

]
where xn ∈ R and x ∈ Rn−1, we have

x̂T Ĥx̂ = xTHx+ 2xnx
THH−1u+ x2

nα
= (x+ xnH

−1u)TH(x+ xnH
−1) + x2

n(α− uTH−1u) > 0,

and so Ĥ is positive definite. To see why this is true, note that x̂ 6= 0 means either xn = 0 and x 6= 0, or
xn 6= 0. In the former case, we have (x + xnH

−1u)TH(x + xnH
−1) = (x)TH(x) > 0 while in the latter

case we have x2
n(α− uTH−1u) > 0.

We prove the converse by contrapositive. If H is not positive definite, we can find x 6= 0 such that

xTHx ≤ 0, and then taking x̂ =
[
x
0

]
we get x̂T Ĥx̂ ≤ 0, so Ĥ is not positive definite.

If α ≤ uTH−1u, take xn = 1 and x = −H−1u. Then

x̂T Ĥx̂ = α− uTH−1u ≤ 0,

and so Ĥ cannot be positive definite.
(c) Let A ∈ IRm×n, b ∈ IRm, c ∈ IRn, and δ ∈ IR. Use either Part (a) or Part (b) to show that x ∈ IRn is a

solution to the quadratic inequality

(Ax+ b)T (Ax+ b) ≤ cTx+ δ

if and only if the block matrix [
I (Ax+ b)

(Ax+ b)T (cTx+ δ)

]
is positive semi–definite.

Take H = I, u = Ax+ b, and α = cTx+ δ in 6a). Take z = u. The conclusion of 6a) tells us that

(Ax+ b)T (Ax+ b) ≤ cTx+ δ ⇐⇒
[

I Ax+ b
xTAT + bT cTx+ δ

]
≥ 0 ,

where we use notation ≥ 0 for matrices to mean ’positive semidefinite’.
(d) Suppose H is positive definite. Show that[

H u
0 (α− uTH−1u)

]
=
[

I 0
(−H−1u)T 1

] [
H u
uT α

]
.

Perform the matrix multiplication on RHS - you get the LHS.
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(e) Recall that the kth principal minor of a matrix B ∈ IRn×n is the determinant of the upper left–hand
corner k×k–submatrix of B for 1 ≤ k ≤ n. Use an induction argument and Parts (b) and (d) above to
show that H is positive definite if and only if every principal minor of H is positive.
Note: Your argument must use either Part (a) or Part (b) above.
Hint: det(AB)=det(A)det(B).

We will perform induction on the dimension. For k = 1, the statement is trivially true. Suppose we know
that for H ∈ R(n−1)×(n−1) the statement holds, and consider Ĥ ∈ Rn×n. Consider the decomposition in
6b. By 6b and the inductive hypothesis, Ĥ is positive definite if and only if each principal minor of H is
positive and α > uTH−1u.

By 6d) and the hint, we have (α− uTH−1u) ∗ det(H) = det(Ĥ), so every principal minor of Ĥ is positive
if and only if every principal minor of H is positive and α > uTH−1u. But now we are done.

7. Let A ∈ IRm×n, c ∈ IRn, a ∈ IRm, δ > 0, and H ∈ IRn×n with H symmetric positive definite. Consider the
problem

P minx∈IRn cTx
subject to Ax = a

‖x0 − x‖H ≤ δ
where x0 ∈ IRn satisfies Ax0 = a,

‖z‖H = (zTHz)1/2 = [〈z, z〉H ]1/2 ,

and the inner product 〈·, ·〉H is defined in part (b) of problem 4 above.

(a) Suppose H = LLT for some non–singular matrix L ∈ IRn×n, e.g. L = H1/2. If Q is the orthogonal
projector onto the null–space of AL−T in the usual (or Euclidean) inner product, show that the operator
P given by

P = L−TQLT

is the orthogonal projector onto the null–space of A with respect to the inner product 〈·, ·〉H .

Note that Q an orthogonal projector implies that Q = Q2. Then

P 2 = L−TQLTL−TQLT = L−TQLT = P,

so it is a projector. Note also that

HP = LLTL−TQLT = LQLT = LQL−1LLT = HPT ,

so the criterion from 4d) is satisfied, and we know P is orthogonal with respect to 〈·, ·〉H .

Now we turn to the range of P . Note that Pw = PL−TLTw = L−TQw. Then if w ∈ Nul(AL−T ), then
Pw = L−Tw, so APw = 0. Then Ran(P ) ⊂ Nul(A). The converse is clear, since we can show that the
rank of P (dimension of the the range of P ) is the same as the dimension of Null(A), which contains it:

Rank(P ) = Rank(Q) = dim(Null(AL−T )) = dim(Null(A)).

.

(b) Show that
x̄ = x0 − δ‖PH−1c‖−1

H PH−1c

solves P where P is as given in part (b) above.
Hint: It may be helpful to first reduce the problem to one of the form

min ĉTw
subject to Âw = 0

‖w‖22 ≤ δ2 .

7



It is also helpful to apply results relating least–squares to orthogonal projection.

Take any x0 such that Ax0 = a, and consider the minimization problem

P1 minv∈IRn cT v
subject to Av = 0

‖v‖2H ≤ δ2

where x = x0 + v.
Recall that any positive definite matrix H can be written H = LLT , and that ‖v‖2H = ‖LT v‖2. Also, from
7a) the matrix P is an orthogonal projector onto Nul(A). Then the above problem can be reformulated
again:

P2 minw∈IRn cTPv
subject to ‖LTPv‖2 ≤ δ2,

where Q is any orthogonal projector onto Nul(AL−T ). Since it is a projector, Q2 = Q, and by criterion
4a) we also have QT = Q, so Q = QTQ.

Plugging in for P and using the facts that QLv = QTQLv and LTPv = QLT v, we have

P3 minv∈IRn cTL−TQTQLT v
subject to ‖QLT v‖2 ≤ δ2

The reformulation above has the form

P4 minz∈IRn ĉT z
subject to AL−T z = 0

‖z‖2 ≤ δ2

where ĉ = QL−1c and z = QLT v. Note that since ĉ ∈ Null(AL−T ), we can immediately write down the
answer:

z̄ = −δĉ‖ĉ‖−1

= −δQL−1c‖QL−1c‖−1

= −δLTL−TQLTL−TL−1c‖LTL−TQLTL−TL−1c‖−1

= −δLTPH−1c‖LTPH−1c‖−1

= −δLTPH−1c‖PH−1c‖−1
H

= QLT v̄.

Finally, L−T z̄ = P v̄ = −δPH−1c‖PH−1c‖−1
H , which must be the solution to P2, and so and x = x0 +P v̄

must be a solution to the original problem. Then x = x0 − δPH−1c‖PH−1c‖−1
H , as desired.
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