AMATH/MATH 516
 FIRST HOMEWORK SET

This first problem set is mostly a warm-up exercise intended help you review some basic concepts from linear algebra and multi-variable calculus used in this course. Problems 1-3 are exercises that you should work out for your own benefit, but they will not be graded. Problems 4 and 5 will be graded and are due by class time Monday April 2 . These problems set will be difficult for some and straightforward for others. If you are having any difficulty, please feel free to discuss the problems with me at any time. I am very open with giving hints.
(1) Let Q be an $n \times n$ symmetric positive definite matrix. The following fact for symmetric matrices can be used to answer the questions in this problem.

Fact: If M is a real symmetric $n \times n$ matrix, then there is a real orthogonal $n \times n$ matrix U $\left(U^{T} U=I\right)$ and a real diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ such that $M=U \Lambda U^{T}$.
(a) Show that the eigenvalues of Q^{2} are the square of the eigenvalues of Q.
(b) If $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the eigen values of Q, show that

$$
\lambda_{n}\|u\|_{2}^{2} \leq u^{T} Q u \leq \lambda_{1}\|u\|_{2}^{2} \forall u \in \mathbb{R}^{n} .
$$

(c) If $0<\underline{\lambda}<\bar{\lambda}$ are such that

$$
\underline{\lambda}\|u\|_{2}^{2} \leq u^{T} Q u \leq \bar{\lambda}\|u\|_{2}^{2} \forall u \in \mathbb{R}^{n}
$$

then all of the eigenvalues of Q must lie in the interval $[\underline{\lambda}, \bar{\lambda}]$.
(d) Let $\underline{\lambda}$ and $\bar{\lambda}$ be as in Part (c) above. Show that

$$
\underline{\lambda}\|u\|_{2} \leq\|Q u\|_{2} \leq \bar{\lambda}\|u\|_{2} \forall u \in \mathbb{R}^{n}
$$

Hint: $\|Q u\|_{2}^{2}=u^{T} Q^{2} u$.
(2) Consider the quadratic function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ given by

$$
f(x):=\frac{1}{2} x^{T} Q x-a^{T} x+\alpha
$$

where $Q \in \mathbb{R}^{n \times n}, a \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$.
(a) Write expressions for both $\nabla f(x)$ and $\nabla^{2} f(x)$. Since it is not assumed that f is symmetric, be careful in how you express $\nabla^{2} f(x)$.
(b) If it is further assumed that Q is symmetric, what is $\nabla^{2} f$?
(c) State first- and second-order necessary conditions for optimality in the problem $\min \left\{f(x): x \in \mathbb{R}^{n}\right\}$.
(d) State a sufficient condition on the matrix Q under which the problem $\min f$ has a unique global solution and then display this solution in terms of the data Q and a.
(3) Consider the linear equation

$$
A x=b
$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. When $n<m$ it is often the case that this equation is over-determined in the sense that no solution x exists. In such cases one often attempts to locate a 'best' solution in a least squares sense. That is one solves the linear least squares problem

$$
\text { (lls) : minimize } \frac{1}{2}\|A x-b\|_{2}^{2}
$$

for x. Define $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ by

$$
f(x):=\frac{1}{2}\|A x-b\|_{2}^{2}
$$

(a) Show that f can be written as a quadratic function, that is, it can be written in the same form as the function of the preceding exercise.
(b) What are $\nabla f(x)$ and $\nabla^{2} f(x)$?
(c) Show that $\nabla^{2} f(x)$ is positive semi-definite.
(d) Show that $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$ and $\operatorname{Ran}\left(A^{T} A\right)=\operatorname{Ran}\left(A^{T}\right)$.
(e) Show that a solution to (lls) must always exist.
(f) Provide a necessary and sufficient condition on the matrix A under which (lls) has a unique solution and then display this solution in terms of the data A and b.
(4) Consider the minimization problem

$$
\begin{array}{lll}
\mathcal{P}: & \text { minimize } & f(x) \\
& \text { subject to } & A x=b,
\end{array}
$$

where $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is assumed to be twice continuously differentiable, $A \in \mathbb{R}^{m \times n}$ has full rank with $m \leq n$, and $b \in \mathbb{R}^{m}$. Set

$$
P:=I-A^{T}\left(A A^{T}\right)^{-1} A
$$

(a) Show that P is well-defined, that is, show that the matrix $A A^{T}$ is non-singular.
(b) Show that P is the orthogonal projector onto the nulspace of A. That is, show that P is an orthogonal projector $\left(P^{2}=P\right.$ and $\left.P=P^{T}\right)$ and $\operatorname{Ran}(P)=\operatorname{Nul}(A)$.
(c) Set $h(z)=f\left(x_{0}+P z\right)$ where x_{0} is any point satisfying $A x_{0}=b$. Compute both $\nabla h(z)$ and $\nabla^{2} h(z)$.
(d) Show that if \bar{z} solves $\widehat{\mathcal{P}}: \min \left\{h(z): z \in \mathbb{R}^{n}\right\}$, then $\bar{x}=x_{0}+P \bar{z}$ solves \mathcal{P}. Conversely, show that if \bar{x} solves \mathcal{P}, then there exists \bar{z} solving $\widehat{\mathcal{P}}$ such that $\bar{x}=x_{0}+P \bar{z}$.
(e) The set of first-order stationary points for the problem $\widehat{\mathcal{P}}$ is the set of points $\mathcal{S}_{h}=\{z \mid \nabla h(z)=0\}$. We define the set of first-order stationary points for \mathcal{P} to be $\mathcal{S}_{f}=\left\{x_{0}+P z \mid z \in \mathcal{S}_{h}\right\}$. Show that

$$
\mathcal{S}_{f}=\{x \mid P \nabla f(x)=0, A x=b\}=\{x \mid A x=b, \nabla f(x) \perp \operatorname{Nul}(A)\} .
$$

(5) Let $H \in \mathbb{R}_{s}^{n \times n}, u \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$ where $\mathbb{R}_{s}^{n \times n}$ is the linear space of all real symmetric $n \times n$ matrices. Recall that H is said to be positive definite if $x^{T} H x>0$ for all $x \in \mathbb{R}^{n}$ with $x \neq 0$. Moreover, H is said to be positive semi-definite if $x^{T} H x \geq 0$ for all $x \in \mathbb{R}^{n}$. We consider the block matrix

$$
\hat{H}:=\left[\begin{array}{cc}
H & u \\
u^{T} & \alpha
\end{array}\right]
$$

(a) Show that \hat{H} is positive semi-definite if and only if H is positive semi-definite and there exists a vector $z \in \mathbb{R}^{n}$ such that $u=H z$ and $\alpha \geq z^{T} H z$.
(b) Show that \hat{H} is positive definite if and only if H is positive definite and $\alpha>u^{T} H^{-1} u$.
(c) Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, and $\delta \in \mathbb{R}$. Use either Part (a) or Part (b) to show that $x \in \mathbb{R}^{n}$ is a solution to the quadratic inequality

$$
(A x+b)^{T}(A x+b) \leq c^{T} x+\delta
$$

if and only if the block matrix

$$
\left[\begin{array}{cc}
I & (A x+b) \\
(A x+b)^{T} & \left(c^{T} x+\delta\right)
\end{array}\right]
$$

is positive semi-definite.
(d) Suppose H is positive definite. Show that

$$
\left[\begin{array}{cc}
H & u \\
0 & \left(\alpha-u^{T} H^{-1} u\right)
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\left(-H^{-1} u\right)^{T} & 1
\end{array}\right]\left[\begin{array}{cc}
H & u \\
u^{T} & \alpha
\end{array}\right]
$$

(e) Recall that the k th principal minor of a matrix $B \in \mathbb{R}^{n \times n}$ is the determinant of the upper left-hand corner $\mathrm{k} \times \mathrm{k}$-submatrix of B for $1 \leq k \leq n$. Use an induction argument and Parts (b) and (d) above to show that H is positive definite if and only if every principal minor of H is positive.
Note: Your argument must use either Part (a) or Part (b) above.
Hint: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, and the determinant of an upper or lower block triangular matrix is the product of the determinants of the diagonal blocks.

