
AMATH/MATH 516

FIRST HOMEWORK SET

This first problem set is mostly a warm-up exercise intended help you review some basic concepts from linear algebra
and multi-variable calculus used in this course. Problems 1-3 are exercises that you should work out for your own
benefit, but they will not be graded. Problems 4 and 5 will be graded and are due by class time Monday April 2.
These problems set will be difficult for some and straightforward for others. If you are having any difficulty, please
feel free to discuss the problems with me at any time. I am very open with giving hints.

(1) Let Q be an n×n symmetric positive definite matrix. The following fact for symmetric matrices can be used
to answer the questions in this problem.

Fact: If M is a real symmetric n × n matrix, then there is a real orthogonal n × n matrix U
(UTU = I) and a real diagonal matrix Λ = diag(λ1, λ2, . . . , λn) such that M = UΛUT .

(a) Show that the eigenvalues of Q2 are the square of the eigenvalues of Q.
(b) If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigen values of Q, show that

λn‖u‖22 ≤ uTQu ≤ λ1‖u‖22 ∀ u ∈ IRn.

(c) If 0 < λ < λ̄ are such that

λ‖u‖22 ≤ uTQu ≤ λ̄‖u‖22 ∀ u ∈ IRn,

then all of the eigenvalues of Q must lie in the interval [λ, λ̄].
(d) Let λ and λ̄ be as in Part (c) above. Show that

λ‖u‖2 ≤ ‖Qu‖2 ≤ λ̄‖u‖2 ∀ u ∈ IRn .

Hint: ‖Qu‖22 = uTQ2u.
(2) Consider the quadratic function f : IRn 7→ IR given by

f(x) :=
1

2
xTQx− aTx+ α ,

where Q ∈ IRn×n, a ∈ IRn, and α ∈ IR.
(a) Write expressions for both ∇f(x) and ∇2f(x). Since it is not assumed that f is symmetric, be careful

in how you express ∇2f(x).
(b) If it is further assumed that Q is symmetric, what is ∇2f?
(c) State first– and second–order necessary conditions for optimality in the problem min{f(x) : x ∈ IRn}.
(d) State a sufficient condition on the matrix Q under which the problem min f has a unique global solution

and then display this solution in terms of the data Q and a.
(3) Consider the linear equation

Ax = b,

where A ∈ IRm×n and b ∈ IRm. When n < m it is often the case that this equation is over-determined in the
sense that no solution x exists. In such cases one often attempts to locate a ‘best’ solution in a least squares
sense. That is one solves the linear least squares problem

(lls) : minimize
1

2
‖Ax− b‖22

for x. Define f : IRn 7→ IR by

f(x) :=
1

2
‖Ax− b‖22.

(a) Show that f can be written as a quadratic function, that is, it can be written in the same form as the
function of the preceding exercise.

(b) What are ∇f(x) and ∇2f(x)?
(c) Show that ∇2f(x) is positive semi-definite.
(d) Show that Nul(ATA) = Nul(A) and Ran(ATA) = Ran(AT ).
(e) Show that a solution to (lls) must always exist.
(f) Provide a necessary and sufficient condition on the matrix A under which (lls) has a unique solution

and then display this solution in terms of the data A and b.
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(4) Consider the minimization problem

P : minimize f(x)
subject to Ax = b ,

where f : IRn 7→ IR is assumed to be twice continuously differentiable, A ∈ IRm×n has full rank with m ≤ n,
and b ∈ IRm. Set

P := I −AT (AAT )−1A .

(a) Show that P is well–defined, that is, show that the matrix AAT is non–singular.
(b) Show that P is the orthogonal projector onto the nulspace of A. That is, show that P is an orthogonal

projector (P 2 = P and P = PT ) and Ran (P ) = Nul (A).
(c) Set h(z) = f(x0 + Pz) where x0 is any point satisfying Ax0 = b. Compute both ∇h(z) and ∇2h(z).

(d) Show that if z̄ solves P̂ : min{h(z) : z ∈ IRn}, then x̄ = x0 + P z̄ solves P. Conversely, show that if x̄

solves P, then there exists z̄ solving P̂ such that x̄ = x0 + P z̄.

(e) The set of first-order stationary points for the problem P̂ is the set of points Sh = {z | ∇h(z) = 0}. We
define the set of first-order stationary points for P to be Sf = {x0 + Pz | z ∈ Sh }. Show that

Sf = {x |P∇f(x) = 0, Ax = b} = {x |Ax = b, ∇f(x) ⊥ Nul(A)} .
(5) Let H ∈ IRn×n

s , u ∈ IRn, and α ∈ IR where IRn×n
s is the linear space of all real symmetric n × n matrices.

Recall that H is said to be positive definite if xTHx > 0 for all x ∈ IRn with x 6= 0. Moreover, H is said to
be positive semi–definite if xTHx ≥ 0 for all x ∈ IRn. We consider the block matrix

Ĥ :=

[
H u
uT α

]
.

(a) Show that Ĥ is positive semi–definite if and only if H is positive semi–definite and there exists a vector
z ∈ IRn such that u = Hz and α ≥ zTHz.

(b) Show that Ĥ is positive definite if and only if H is positive definite and α > uTH−1u.
(c) Let A ∈ IRm×n, b ∈ IRm, c ∈ IRn, and δ ∈ IR. Use either Part (a) or Part (b) to show that x ∈ IRn is a

solution to the quadratic inequality

(Ax+ b)T (Ax+ b) ≤ cTx+ δ

if and only if the block matrix [
I (Ax+ b)

(Ax+ b)T (cTx+ δ)

]
is positive semi–definite.

(d) Suppose H is positive definite. Show that[
H u
0 (α− uTH−1u)

]
=

[
I 0

(−H−1u)T 1

] [
H u
uT α

]
.

(e) Recall that the kth principal minor of a matrix B ∈ IRn×n is the determinant of the upper left–hand
corner k×k–submatrix of B for 1 ≤ k ≤ n. Use an induction argument and Parts (b) and (d) above to
show that H is positive definite if and only if every principal minor of H is positive.
Note: Your argument must use either Part (a) or Part (b) above.
Hint: det(AB)=det(A)det(B), and the determinant of an upper or lower block triangular matrix is the
product of the determinants of the diagonal blocks.


