MATH/AMATH 516
SECOND HOMEWORK SET

1. Consider minimizing the continuously differentiable function f : R™ — IR on IR". Let x € IR™ and
d € IR"™ be such that Vf(x)"d < 0. These properties of f, z, and d are assumed and used in Parts
(a) and (b) of this problem.

Recall that in the backtracking line—search, we are given parameters 0 < v < 1 and 0 < ¢; < 1 and
we obtain an update to z, say x4, of the form x; = x + Ad where

A= max~y¥
subject to k€ {1,2,...}, and f(z +~*d) — f(z) < c1n*V f(2)"d .

The key inequality
flz+Ad) = f(z) < AV f(z)"d (1)

is called the Armijo—Goldstein inequality. A shortcoming of this step length is that it is unrelated to
the one dimensional problem min{f(z + Ad) : A > 0} . In this regard, we will study methods that
require the step length A to satisfy both the Armijo—Goldstein inequality and an inequality of the
form

Vi@ -+~ d)"d > e;Vf(x)'d (2)
for a given c¢g € (0,1). The conditions (1) and (2) taken together are called the weak Wolfe conditions.

(a) Show that if 0 < ¢; < ¢2 < 1 and the set {f(z + Ad) : A > 0} is bounded below, then the two
conditions (1) and (2) can be satisfied simultaneously. In particular, show that the set

\ A>0,Vfi(x+ Ad)"d > oV f(x)"d, and
flx+ M) — f(z) <AV f(x)"d

has non—empty interior.

(b) Let 0 < ¢; < ¢2 < 1 and assume that the set {f(z+ Ad) : A > 0} is bounded below. Show that
the following bisection method is finitely terminating at a value for ¢ at which the weak Wolfe
conditions are satisfied.

A Bisection Method for the Weak Wolfe Conditions

INITIALIZATION: Choose 0 < ¢1 < c¢o <1, and set a« =0,¢ >0, and 8 = +oo.

REPEAT
If f(z+td) > f(z)+ citf(x;d),
set 3 =t and reset t = £ (a + f3).
Elseif f'(z + td;d) < caf'(x;d),
set o =t and reset
t:{1 2, ifﬂz—.i—oo
5(a+B), otherwise.

Else, STOP.
END REPEAT



2. Consider the function

fla) = 5o Qu+ T,

where @ € IR™*" is symmetric and ¢ € IR™.

a) Under what condition on the matrix ) € IR™*" is f convex? Justify your answer.
yy

(b) If @ is symmetric and positive definite, show that there is a nonsingular matrix L such that
Q=LL".

(c) With @ and L as defined in the part (b), show that
Lo g2 Lo
f(x):§||L x4+ L CHQ—ic Q e

(d) If f is convex, under what conditions is mingepn f(x) = —o0?

(e) Assume that @ is symmetric and positive definite and let S be a subspace of IR"™. Show that
Z solves the problem

min f(z)

if and only if Vf(z) L S.

3. Let F': IR" — IR™ be continuously differentiable, and let | - | be any norm on IR™. In this problem
we consider the function f(z) = |F(z)| and properties of the the associated Gauss-Newton direction
for minimizing f. Recall that T € IR™ is a first-order stationary point for f if 0 < f/(Z;d) for all
de R".

(a) Given z,d € IR™ and t > 0 show that
NF(z +td)| = |F(z) + tF(2)d] | < |F (2 + td) — (F(z) + tF (x)d)] .

(b) Why is it true that

im |F(z 4+ td) — (F(z) + tF'(x)d)|
t—0 t
Hint: What is the definition of F'(z)?

(c) Use parts 3a and 3b to show that

=07

ooy [F(@) + tF (@)d] — [F(x)]
fiz;d) = ltlﬁ)l . .

(d) Use part 3c and the convexity of the norm to show that
fl(ayd) < |F(z) + F(z)d] — |F(z)] -

Hint: F(x) +tF'(z)d = (1 —t)F(x) + t(F(x) + F'(x)d)

(e) Use parts 3¢ and 3d to show that 0 < f/(z;d) for all d if and only if |F(z)| < |F(z) + F'(z)d|
for all d.

(f) If z is not a first-order stationary point for f and d solves

. /
GN nin |F(z) + F'(x)d] ,

show that d is a descent direction for f at 2 by showning that

fl(wyd) < |F(x) + F'(x)d] — [F(z)] <0



(2)

Show that the problem

in |F(z) + F'(x)d
Inin |F(z) + F(z)d]:

can be written as a linear program.
Suppose at a given point x € IR"™ one solves the problem GN in Part 3f above to obtain a

direction d for which |F(z) + F'(z)d| < |F(x)|. Show that the following backtracking line
search procedure is finitely terminating in the sense that the solution ¢ is not zero.

Line Search: Let 0 < ¢ < 1and 0 <y < 1 and set

t:= max ~°
st s€{0,1,2,3,....} and )
|F(z+yd)| < (1 =) F(2)] + | F(x) + F'(z)d].

Hint; (1= 0l P(a)] + e |F(@) + P')d] = [P@)] + ey 1P (@) + F')d] = @], Then
use Part 3f.



