MATH/AMATH 516 SECOND HOMEWORK SET

1. Consider minimizing the continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ on \mathbb{R}^n . Let $x \in \mathbb{R}^n$ and $d \in \mathbb{R}^n$ be such that $\nabla f(x)^T d < 0$. These properties of f, x, and d are assumed and used in Parts (a) and (b) of this problem.

Recall that in the backtracking line–search, we are given parameters $0 < \gamma < 1$ and $0 < c_1 < 1$ and we obtain an update to x, say x_+ , of the form $x_+ = x + \lambda d$ where

$$\lambda = \max \gamma^k$$

subject to $k \in \{1, 2, \ldots\}$, and $f(x + \gamma^k d) - f(x) \le c_1 \gamma^k \nabla f(x)^T d$.

The key inequality

$$f(x + \lambda d) - f(x) \le c_1 \lambda \nabla f(x)^T d \tag{1}$$

is called the Armijo–Goldstein inequality. A shortcoming of this step length is that it is unrelated to the one dimensional problem min{ $f(x + \lambda d) : \lambda \ge 0$ }. In this regard, we will study methods that require the step length λ to satisfy both the Armijo–Goldstein inequality and an inequality of the form

$$\nabla f(x + \gamma^k d)^T d \ge c_2 \nabla f(x)^T d \tag{2}$$

for a given $c_2 \in (0, 1)$. The conditions (1) and (2) taken together are called the *weak Wolfe conditions*.

(a) Show that if $0 < c_1 < c_2 < 1$ and the set $\{f(x + \lambda d) : \lambda \ge 0\}$ is bounded below, then the two conditions (1) and (2) can be satisfied simultaneously. In particular, show that the set

$$\left\{ \lambda \mid \begin{array}{c} \lambda > 0, \nabla f(x + \lambda d)^T d \ge c_2 \nabla f(x)^T d, \text{ and} \\ f(x + \lambda d) - f(x) \le c \lambda \nabla f(x)^T d \end{array} \right\}$$

has non-empty interior.

(b) Let $0 < c_1 < c_2 < 1$ and assume that the set $\{f(x + \lambda d) : \lambda \ge 0\}$ is bounded below. Show that the following bisection method is finitely terminating at a value for t at which the weak Wolfe conditions are satisfied.

A Bisection Method for the Weak Wolfe Conditions

INITIALIZATION: Choose $0 < c_1 < c_2 < 1$, and set $\alpha = 0, t > 0$, and $\beta = +\infty$.

Repeat

If
$$f(x + td) > f(x) + c_1 t f'(x; d)$$
,
set $\beta = t$ and reset $t = \frac{1}{2}(\alpha + \beta)$.
Elseif $f'(x + td; d) < c_2 f'(x; d)$,
set $\alpha = t$ and reset

$$t = \begin{cases} 2\alpha, & \text{if } \beta = +\infty \\ \frac{1}{2}(\alpha + \beta), & \text{otherwise.} \end{cases}$$

Else, STOP. End Repeat

2. Consider the function

$$f(x) = \frac{1}{2}x^TQx + c^Tx,$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and $c \in \mathbb{R}^m$.

- (a) Under what condition on the matrix $Q \in \mathbb{R}^{n \times n}$ is f convex? Justify your answer.
- (b) If Q is symmetric and positive definite, show that there is a nonsingular matrix L such that $Q = LL^{T}$.
- (c) With Q and L as defined in the part (b), show that

$$f(x) = \frac{1}{2} \|L^T x + L^{-1} c\|_2^2 - \frac{1}{2} c^T Q^{-1} c.$$

- (d) If f is convex, under what conditions is $\min_{x \in \mathbb{R}^n} f(x) = -\infty$?
- (e) Assume that Q is symmetric and positive definite and let S be a subspace of \mathbb{R}^n . Show that \bar{x} solves the problem

$$\min_{x\in S}f(x)$$

if and only if $\nabla f(\bar{x}) \perp S$.

- 3. Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable, and let $\|\cdot\|$ be **any** norm on \mathbb{R}^m . In this problem we consider the function $f(x) = \|F(x)\|$ and properties of the the associated Gauss-Newton direction for minimizing f. Recall that $\bar{x} \in \mathbb{R}^n$ is a first-order stationary point for f if $0 \leq f'(\bar{x}; d)$ for all $d \in \mathbb{R}^n$.
 - (a) Given $x, d \in \mathbb{R}^n$ and t > 0 show that

$$|||F(x+td)|| - ||F(x) + tF'(x)d||| \le ||F(x+td) - (F(x) + tF'(x)d)||.$$

(b) Why is it true that

$$\lim_{t \to 0} \frac{\|F(x+td) - (F(x) + tF'(x)d)\|}{t} = 0 ?$$

Hint: What is the definition of F'(x)?

(c) Use parts 3a and 3b to show that

$$f'(x;d) = \lim_{t \downarrow 0} \frac{\|F(x) + tF'(x)d\| - \|F(x)\|}{t}$$

(d) Use part 3c and the convexity of the norm to show that

$$f'(x;d) \le ||F(x) + F'(x)d|| - ||F(x)||$$
.

Hint: F(x) + tF'(x)d = (1 - t)F(x) + t(F(x) + F'(x)d)

- (e) Use parts 3c and 3d to show that $0 \le f'(x; d)$ for all d if and only if $||F(x)|| \le ||F(x) + F'(x)d||$ for all d.
- (f) If x is not a first-order stationary point for f and \overline{d} solves

$$\mathcal{GN} \quad \min_{d \in \mathbb{R}^n} \|F(x) + F'(x)d\|$$

,

show that \overline{d} is a descent direction for f at x by showning that

$$f'(x;\bar{d}) \le \|F(x) + F'(x)\bar{d}\| - \|F(x)\| < 0.$$

(g) Show that the problem

$$\min_{d\in\mathbb{R}^n} \|F(x) + F'(x)d\|_1$$

can be written as a linear program.

(h) Suppose at a given point $x \in \mathbb{R}^n$ one solves the problem \mathcal{GN} in Part 3f above to obtain a direction \overline{d} for which $||F(x) + F'(x)\overline{d}|| < ||F(x)||$. Show that the following backtracking line search procedure is finitely terminating in the sense that the solution \overline{t} is not zero.

Line Search: Let 0 < c < 1 and $0 < \gamma < 1$ and set

$$\bar{t} := \max_{s.t.} \gamma^{s}$$
s.t. $s \in \{0, 1, 2, 3,\}$ and
$$\|F(x + \gamma^{s}\bar{d})\| \leq (1 - \gamma^{s}c)\|F(x)\| + c\gamma^{s}\|F(x) + F'(x)\bar{d}\|.$$

Hint: $(1 - \gamma^s c) \|F(x)\| + c\gamma^s \|F(x) + F'(x)\bar{d}\| = \|F(x)\| + c\gamma^s [\|F(x) + F'(x)\bar{d}\| - \|F(x)\|]$. Then use Part 3f.