
MATH/AMATH 516

SECOND HOMEWORK SET

1. Consider minimizing the continuously differentiable function f : IRn 7→ IR on IRn. Let x ∈ IRn and
d ∈ IRn be such that ∇f(x)Td < 0. These properties of f , x, and d are assumed and used in Parts
(a) and (b) of this problem.

Recall that in the backtracking line–search, we are given parameters 0 < γ < 1 and 0 < c1 < 1 and
we obtain an update to x, say x+, of the form x+ = x+ λd where

λ = max γk

subject to k ∈ {1, 2, . . .}, and f(x+ γkd)− f(x) ≤ c1γk∇f(x)Td .

The key inequality
f(x+ λd)− f(x) ≤ c1λ∇f(x)Td (1)

is called the Armijo–Goldstein inequality. A shortcoming of this step length is that it is unrelated to
the one dimensional problem min{f(x + λd) : λ ≥ 0} . In this regard, we will study methods that
require the step length λ to satisfy both the Armijo–Goldstein inequality and an inequality of the
form

∇f(x+ γkd)Td ≥ c2∇f(x)Td (2)

for a given c2 ∈ (0, 1). The conditions (1) and (2) taken together are called the weak Wolfe conditions.

(a) Show that if 0 < c1 < c2 < 1 and the set {f(x+ λd) : λ ≥ 0} is bounded below, then the two
conditions (1) and (2) can be satisfied simultaneously. In particular, show that the set{

λ

∣∣∣∣∣ λ > 0,∇f(x+ λd)Td ≥ c2∇f(x)Td, and
f(x+ λd)− f(x) ≤ cλ∇f(x)Td

}

has non–empty interior.

(b) Let 0 < c1 < c2 < 1 and assume that the set {f(x+λd) : λ ≥ 0} is bounded below. Show that
the following bisection method is finitely terminating at a value for t at which the weak Wolfe
conditions are satisfied.

A Bisection Method for the Weak Wolfe Conditions

Initialization: Choose 0 < c1 < c2 < 1, and set α = 0, t > 0, and β = +∞.

Repeat

If f(x+ td) > f(x) + c1tf
′(x; d),

set β = t and reset t = 1
2(α+ β).

Elseif f ′(x+ td; d) < c2f
′(x; d),

set α = t and reset

t =

{
2α, if β = +∞

1
2(α+ β), otherwise.

Else, STOP.

End Repeat
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2. Consider the function

f(x) =
1

2
xTQx+ cTx,

where Q ∈ IRn×n is symmetric and c ∈ IRm.

(a) Under what condition on the matrix Q ∈ IRn×n is f convex? Justify your answer.

(b) If Q is symmetric and positive definite, show that there is a nonsingular matrix L such that
Q = LLT .

(c) With Q and L as defined in the part (b), show that

f(x) =
1

2
||LTx+ L−1c||22 −

1

2
cTQ−1c.

(d) If f is convex, under what conditions is minx∈IRn f(x) = −∞?

(e) Assume that Q is symmetric and positive definite and let S be a subspace of IRn. Show that
x̄ solves the problem

min
x∈S

f(x)

if and only if ∇f(x̄) ⊥ S.

3. Let F : IRn 7→ IRm be continuously differentiable, and let || · || be any norm on IRm. In this problem
we consider the function f(x) = ||F (x)|| and properties of the the associated Gauss-Newton direction
for minimizing f . Recall that x̄ ∈ IRn is a first-order stationary point for f if 0 ≤ f ′(x̄; d) for all
d ∈ IRn.

(a) Given x, d ∈ IRn and t > 0 show that

| ||F (x+ td)|| − ||F (x) + tF ′(x)d|| | ≤ ||F (x+ td)− (F (x) + tF ′(x)d)|| .

(b) Why is it true that

lim
t→0

||F (x+ td)− (F (x) + tF ′(x)d)||
t

= 0 ?

Hint: What is the definition of F ′(x)?

(c) Use parts 3a and 3b to show that

f ′(x; d) = lim
t↓0

||F (x) + tF ′(x)d|| − ||F (x)||
t

.

(d) Use part 3c and the convexity of the norm to show that

f ′(x; d) ≤ ||F (x) + F ′(x)d|| − ||F (x)|| .

Hint: F (x) + tF ′(x)d = (1− t)F (x) + t(F (x) + F ′(x)d)

(e) Use parts 3c and 3d to show that 0 ≤ f ′(x; d) for all d if and only if ||F (x)|| ≤ ||F (x) + F ′(x)d||
for all d.

(f) If x is not a first-order stationary point for f and d̄ solves

GN min
d∈IRn

||F (x) + F ′(x)d|| ,

show that d̄ is a descent direction for f at x by showning that

f ′(x; d̄) ≤ ||F (x) + F ′(x)d̄|| − ||F (x)|| < 0 .
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(g) Show that the problem
min
d∈IRn

||F (x) + F ′(x)d||1

can be written as a linear program.

(h) Suppose at a given point x ∈ IRn one solves the problem GN in Part 3f above to obtain a
direction d̄ for which ||F (x) + F ′(x)d̄|| < ||F (x)||. Show that the following backtracking line
search procedure is finitely terminating in the sense that the solution t̄ is not zero.

Line Search: Let 0 < c < 1 and 0 < γ < 1 and set

t̄ := max γs

s.t. s ∈ {0, 1, 2, 3, ....} and
||F (x+ γsd̄)|| ≤ (1− γsc)||F (x)||+ cγs||F (x) + F ′(x)d̄||.

Hint: (1 − γsc)||F (x)|| + cγs||F (x) + F ′(x)d̄|| = ||F (x)|| + cγs[||F (x) + F ′(x)d̄|| − ||F (x)||]. Then
use Part 3f.
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