MATH/AMATH 516 THIRD HOMEWORK SET

(1) Let $\Omega \subset \mathbb{R}^n$ and $x \in \Omega$. The tangent cone to Ω at x is given by

$$T_{\Omega}(x) := \left\{ u \mid \exists \left\{ x^k \right\} \subset \Omega, \ x^k \to x, \ t_k \downarrow 0 \text{ with } t_k^{-1}(x^k - x) \to u \right\}.$$

(a) Show that

$$T_{\Omega}(x) := \left\{ tu \ \left| \ t \ge 0 \ \text{and} \ \exists \left\{ x^k \right\} \subset \Omega, \ x^k \to x, \ \text{with} \ \frac{(x^k - x)}{\|x^k - x\|} \to u \right\}.\right.$$

(b) Show that $T_{\Omega}(x)$ is a cone, i.e. $\lambda T_{\Omega}(x) \subset T_{\Omega}(x)$ for all $\lambda \geq 0$.

- (2) Let $A \in \mathbb{R}^{s \times n}$, $a \in \mathbb{R}^{s}$, $B \in \mathbb{R}^{r \times n}$, and $b \in \mathbb{R}^{r}$. Consider the set $\Omega := \{x \mid Ax \leq a, Bx = b\}$, where we write $u \leq v$ for $u, v \in \mathbb{R}^{m}$ if and only if $v u \in \mathbb{R}^{m}_{+} := \{y \in \mathbb{R}^{m} \mid y_{i} \geq 0, i = 1, ..., m\}$, or equivalently, $u_{i} \leq v_{i}, i = 1, ..., m$. The set Ω is a convex polyhedron.
 - (a) Show that Ω is a closed convex set.
 - (b) Let $\bar{x} \in \Omega$, show that

$$T_{\Omega}(\bar{x}) = \{ v \mid \langle A_{i}, v \rangle \leq 0 \ \forall \ i \in \mathcal{A}(\bar{x}), \ Bv = 0 \}$$

where $\mathcal{A}(\bar{x}) := \{i \in \{1, \ldots, s\} \mid \langle A_i, \bar{x} \rangle = a_i\}$ and A_i is the i^{th} row of the matrix $A, i = 1, \ldots, s$.

- (c) If a = 0 and b = 0, show that Ω is a closed convex cone.
- (d) Show that the closed set $K \subset \mathbb{E}$ is a convex cone if and only if $K + K \subset K$ and $tK \subset K$ for all $t \ge 0$.
- (3) Let $f_i : \mathbb{R}^n \to \mathbb{R}$ be C^1 -smooth for i = 1, ..., m, and let s be an integer such that 1 < s < m. consider the set

$$\Omega := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ i = 1, \dots, s, \ f_i(x) = 0, \ i = s + 1, \dots, m \}$$

(a) Show that, for $x \in \Omega$,

(*)

$$T_{\Omega}(x) \subset \{v \in \mathbb{R}^n \mid \langle \nabla f_i(x), v \rangle \le 0, \ i \in \mathcal{A}(x), \ \langle \nabla f_i(x), v \rangle = 0, \ i = s + 1, \dots, m \} \}$$

- where $\mathcal{A}(x) := \{i \in \{1, \dots, s\} \mid f_i(x) = 0\}.$
- (b) Suppose n = 2 and s = 2 = m so that there are no equalities, and let $f_1(x_1, x_2) := x_2 x_1^3$ and $f_2(x_2, x_2) := -(x_2 + x_1^3)$. First graph the region Ω and then show that the inclusion in (\star) is strict.
- (4) Let $f : \mathbb{R}^n \to \mathbb{R}$ be smooth. We say that f is p-coercive for $p \ge 0$ if

$$\lim_{\|x\| \to \infty} \frac{f(x)}{\|x\|^p} = +\infty.$$

Note that if f is p₀-coercive, then f is p-coercive for all $0 \le p \le p_0$. Define the α -lower level set of f to be the set

$$\operatorname{lev}_f(\alpha) := \{ x \in \mathbb{R}^n \mid f(x) \le \alpha \}$$

Given $Q \in \mathbb{S}^n$ and $b \in \mathbb{R}^n$, set $h(x) := \frac{1}{2}x^T Q x - \langle b, x \rangle$.

- (a) If $f : \mathbb{R}^n \to \mathbb{R}$ is p-coercive for any $p \ge 0$, show that $\operatorname{lev}_f(\alpha)$ is a compact for all $\alpha \in \mathbb{R}$.
 - (b) If f is p-coercive and continuous on a nonempty closed set $\Omega \subset \mathbb{R}^n$, show that there must exist a solution to the problem $\min_{\Omega} f$.
 - (c) Show that

$$((1-\lambda)x + \lambda y)^T Q((1-\lambda)x + \lambda y) + \lambda(1-\lambda)(x-y)^T Q(x-y) = (1-\lambda)x^T Q x + \lambda y^T Q y$$

of rall $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.

- (d) For what values of p and under what conditions, if any, is the quadratic function h a p-coercive function?
- (e) Under what conditions does there exist a solution to $\min_{x \in \mathbb{R}^n} h(x)$?
- (f) If there does not exist a solution to $\min_{x \in \mathbb{R}^n} h(x)$, show that the optimal value must be $-\infty$.
- (5) Let Ω be a nonempty closed convex subset of \mathbb{R}^n , and let $K \subset \mathbb{R}^n$ be a non-empty, closed, convex, cone.
 - (a) Show that the projection onto Ω , P_{Ω} , is 1-Lipschitz.
 - (b) Show that $\phi(x) := \text{dist}(x \mid K)$ is positively homogeneous and subadditive, i.e.,

$$\alpha \operatorname{dist} (x \mid K) = \operatorname{dist} (\alpha x \mid K) \quad \text{and} \quad \operatorname{dist} (x + y \mid K) \le \operatorname{dist} (x \mid K) + \operatorname{dist} (y \mid K)$$

for all $\alpha \geq 0$ and $x, y \in \mathbb{R}^n$.

(c) Show that P_K is positively homogeneous.