MATH/AMATH 516
 THIRD HOMEWORK SET

(1) Let $\Omega \subset \mathbb{R}^{n}$ and $x \in \Omega$. The tangent cone to Ω at x is given by

$$
T_{\Omega}(x):=\left\{u \mid \exists\left\{x^{k}\right\} \subset \Omega, x^{k} \rightarrow x, t_{k} \downarrow 0 \text { with } t_{k}^{-1}\left(x^{k}-x\right) \rightarrow u\right\}
$$

(a) Show that

$$
T_{\Omega}(x):=\left\{t u \mid t \geq 0 \text { and } \exists\left\{x^{k}\right\} \subset \Omega, x^{k} \rightarrow x, \text { with } \frac{\left(x^{k}-x\right)}{\left\|x^{k}-x\right\|} \rightarrow u\right\} .
$$

(b) Show that $T_{\Omega}(x)$ is a cone, i.e. $\lambda T_{\Omega}(x) \subset T_{\Omega}(x)$ for all $\lambda \geq 0$.
(2) Let $A \in \mathbb{R}^{s \times n}, a \in \mathbb{R}^{s}, B \in \mathbb{R}^{r \times n}$, and $b \in \mathbb{R}^{r}$. Consider the set $\Omega:=\{x \mid A x \leq a, B x=b\}$, where we write $u \leq v$ for $u, v \in \mathbb{R}^{m}$ if and only if $v-u \in \mathbb{R}_{+}^{m}:=\left\{y \in \mathbb{R}^{m} \mid y_{i} \geq 0, i=1, \ldots, m\right\}$, or equivalently, $u_{i} \leq v_{i}, i=1, \ldots, m$. The set Ω is a convex polyhedron.
(a) Show that Ω is a closed convex set.
(b) Let $\bar{x} \in \Omega$, show that

$$
T_{\Omega}(\bar{x})=\left\{v \mid\left\langle A_{i \cdot}, v\right\rangle \leq 0 \forall i \in \mathcal{A}(\bar{x}), B v=0\right\},
$$

where $\mathcal{A}(\bar{x}):=\left\{i \in\{1, \ldots, s\} \mid\left\langle A_{i}, \bar{x}\right\rangle=a_{i}\right\}$ and A_{i}. is the $i^{\text {th }}$ row of the matrix $A, i=1, \ldots, s$.
(c) If $a=0$ and $b=0$, show that Ω is a closed convex cone.
(d) Show that the closed set $K \subset \mathbb{E}$ is a convex cone if and only if $K+K \subset K$ and $t K \subset K$ for all $t \geq 0$.
(3) Let $f_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}$ be C^{1}-smooth for $i=1, \ldots, m$, and let s be an integer such that $1<s<m$. consider the set

$$
\Omega:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0, i=1, \ldots, s, f_{i}(x)=0, i=s+1, \ldots, m\right\}
$$

(a) Show that, for $x \in \Omega$,

$$
T_{\Omega}(x) \subset\left\{v \in \mathbb{R}^{n} \mid\left\langle\nabla f_{i}(x), v\right\rangle \leq 0, i \in \mathcal{A}(x),\left\langle\nabla f_{i}(x), v\right\rangle=0, i=s+1, \ldots, m\right\}
$$

where $\mathcal{A}(x):=\left\{i \in\{1, \ldots, s\} \mid f_{i}(x)=0\right\}$.
(b) Suppose $n=2$ and $s=2=m$ so that there are no equalities, and let $f_{1}\left(x_{1}, x_{2}\right):=x_{2}-x_{1}^{3}$ and $f_{2}\left(x_{2}, x_{2}\right):=$ $-\left(x_{2}+x_{1}^{3}\right)$. First graph the region Ω and then show that the inclusion in (\star) is strict.
(4) Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ be smooth. We say that f is p-coercive for $p \geq 0$ if

$$
\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|^{p}}=+\infty
$$

Note that if f is p_{0}-coercive, then f is p-coercive for all $0 \leq p \leq p_{0}$. Define the α-lower level set of f to be the set

$$
\operatorname{lev}_{f}(\alpha):=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq \alpha\right\}
$$

Given $Q \in \mathbb{S}^{n}$ and $b \in \mathbb{R}^{n}$, set $h(x):=\frac{1}{2} x^{T} Q x-\langle b, x\rangle$.
(a) If $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is p-coercive for any $p \geq 0$, show that $\operatorname{lev}_{f}(\alpha)$ is a compact for all $\alpha \in \mathbb{R}$.
(b) If f is p-coercive and continuous on a nonempty closed set $\Omega \subset \mathbb{R}^{n}$, show that there must exist a solution to the problem $\min _{\Omega} f$.
(c) Show that

$$
((1-\lambda) x+\lambda y)^{T} Q((1-\lambda) x+\lambda y)+\lambda(1-\lambda)(x-y)^{T} Q(x-y)=(1-\lambda) x^{T} Q x+\lambda y^{T} Q y
$$

ofr all $x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.
(d) For what values of p and under what conditions, if any, is the quadratic function h a p-coercive function?
(e) Under what conditions does there exist a solution to $\min _{x \in \mathbb{R}^{n}} h(x)$?
(f) If there does not exist a solution to $\min _{x \in \mathbb{R}^{n}} h(x)$, show that the optimal value must be $-\infty$.
(5) Let Ω be a nonempty closed convex subset of \mathbb{R}^{n}, and let $K \subset \mathbb{R}^{n}$ be a non-empty, closed, convex, cone.
(a) Show that the projection onto Ω, P_{Ω}, is 1-Lipschitz.
(b) Show that $\phi(x):=\operatorname{dist}(x \mid K)$ is positively homogeneous and subadditive, i.e.,

$$
\alpha \operatorname{dist}(x \mid K)=\operatorname{dist}(\alpha x \mid K) \quad \text { and } \quad \operatorname{dist}(x+y \mid K) \leq \operatorname{dist}(x \mid K)+\operatorname{dist}(y \mid K)
$$

for all $\alpha \geq 0$ and $x, y \in \mathbb{R}^{n}$.
(c) Show that P_{K} is positively homogeneous.

