MATH 516 SEVENTH HOMEWORK SET

(1) Program the *practical* infeasible interior point algorithm described in the notes and test it on the following test problems.

Test Problems:

The matrix M is computed as follows: Let $A, B \in \mathbb{R}^{n \times n}$ and $q, d \in \mathbb{R}^n$ be randomly generated such that $a_{ij}, b_{ij} \in (-5, 5), q_i \in (-500, 500), d_i \in (0.0, 0.3)$. Define $M = A^T A + \frac{1}{2}(B - B^T) +$ diag (d). Generate ten problems in this way for each of the dimensions n = 50, 100, 150, 200. Report the maximum, average, and minimum number of iterations needed by the algorithm to solve these problems. Also report back graphs of per-iteration data on a random problem that allow you to discuss the performance of the algorithm. Can you improve the performance of the algorithm by changing some of the parameters appearing in the algorithm?

- (2) In this problem we study the theory and algorithmic implications for an interior point approach to the horizontal linear complementarity problem. In what follows we assume that the matrix $Q \in \mathbb{R}^{p \times p}$ is symmetric and positive semi-definite and that $c \in \mathbb{R}^p$, $A \in \mathbb{R}^{m \times p}$, $E \in \mathbb{R}^{k \times p}$, $d \in \mathbb{R}^k$, and $b \in \mathbb{R}^m$.
 - (a) Assume that $\operatorname{Nul}(E^T) = \{0\}$ and consider the QP

$$\mathcal{Q}_2$$
 minimize $\frac{1}{2}u^T Qu - c^t u$
subject to $Au \leq b, Eu = d, 0 \leq u$

Related to Q_2 is the so-called *horizontal LCP*

The Horizontal LCP (HLCP)

Given $M \in \mathbb{R}^{n \times n}$, $G \in \mathbb{R}^{k \times n}$, $h \in \mathbb{R}^k$, and $q \in \mathbb{R}^n$, find $x \in \mathbb{R}^n$, $z \in \mathbb{R}^k$, and $y \in \mathbb{R}^n$ such that $Mx + G^T z + q = y$, Gx = h, $0 \le x$, $0 \le y$, and $x^T y = 0$.

- (i) Write the KKT conditions for Q_2 .
- (ii) Show that the KKT conditions for Q_2 are an instance of the HLCP by specifying M, G, h, and q in terms of Q, A, E, c, b, and d.
- (iii) Show that under this specification $\operatorname{Nul}(E^T) = \{0\}$ if and only if $\operatorname{Nul}(G^T) = \{0\}$.
- (iv) Again, show that under this specification the positive semi-definiteness of Q implies that M is positive semi-definite.
- (b) Define

$$F(x, z, y) = \begin{bmatrix} Mx + G^T z - y + q \\ Gx - h \\ XYe \end{bmatrix}$$

- (i) Show that (x, z, y) solves the HLCP if and only if F(x, z, y) = 0 and $0 \le x, y$.
- (ii) Assume that M is positive semi-definite and Nul $(G^T) = \{0\}$. Show that F'(x, z, y) is nonsingular whenever 0 < x and 0 < y.
- (iii) Define

 $\mathcal{F}_{+} = \{ (x, z, y) : Mx + G^{T}z + q = y, \ Gx = h, \ 0 < x, \ 0 < y \}.$

Under the assumption that M is positive semi-definite, $\operatorname{Nul}(G^T) = \{0\}$, and $\mathcal{F}_+ \neq \emptyset$, show that the set

$$\mathcal{F}(t) = \{ (x, z, y) : Mx + G^T z + q = y, \ Gx = h, \ 0 \le x, \ 0 \le y, \ x^T y \le t \}$$

is compact for all $t \ge 0$.

(*Hint*: There are a number of ways to show this. The best way to start is to first show that for all $(x, z, y) \in \mathcal{F}(t)$ (x, y) is bounded in 1-norm. This is done using exactly the same kind of argument as is used in the LCP case. To show that the z component is also bounded there are again a number of possible arguments. The most direct argument uses the fact that the matrix GG^T is invertible (Why?).)

(c) Define

$$\hat{\mathcal{F}}_+ = \{ (x, y) : \exists z \in \mathbb{R}^k \text{ such that } (x, z, y) \in \mathcal{F}_+ \}.$$

Assume that M is positive semi-definite and $\operatorname{Nul}(G^T) = \{0\}$, and $\hat{\mathcal{F}}_+ \neq \emptyset$. Consider the mapping $u: \hat{\mathcal{F}}_+ \to \operatorname{int}(\mathbb{R}^n_+)$ given by

$$u(x,y) = XYe$$

- (i) Show that to each $(x, y) \in \hat{\mathcal{F}}_+$ there exists a unique $z \in \mathbb{R}^k$ such that $(x, z, y) \in \mathcal{F}_+$.
- (ii) Show that for every $a \in int(\mathbb{R}^n_+)$ there exists a unique $(x, y) \in \hat{\mathcal{F}}_+$ such that u(x, y) = a. Using this fact one can show that u defines a diffeomorphism between $\hat{\mathcal{F}}_+$ and $int(\mathbb{R}^n_+)$.
- (iii) Define a notion of *central path* for the HLCP and use the previous result to show that it exists under the given hypotheses.
- (iv) Show that a solution the the HLCP exists.