
BACKTRACKING LINE SEARCH

1. Line Search Methods

Let f : Rn → R be given and suppose that xc is our current best estimate of a solution to

P min
x∈Rn

f(x) .

A standard method for improving the estimate xc is to choose a direction of search d ∈ Rn and the compute a step
length t∗ ∈ R so that xc + t∗d approximately optimizes f along the line {x+ td | t ∈ R}. The new estimate for the
solution to P is then xn = xc + t∗d. The procedure for choosing t∗ is called a line search method. If t∗ is taken to
be the global solution to the problem

min
t∈R

f(xc + td) ,

then t∗ is called the Curry step length. However, except in certain very special cases, the Curry step length is far
too costly to compute. For this reason we focus on a few easily computed step lengths. We begin the simplest and
the most commonly used line search method called backtracking.

2. The Basic Backtracking Algorithm

In the backtracking line search we assume that f : Rn → R is differentiable and that we are given a direction d
of strict descent at the current point xc, that is f ′(xc; d) < 0.

Initialization: Choose γ ∈ (0, 1) and c ∈ (0, 1).

Having xc obtain xn as follows:

Step 1: Compute the backtracking stepsize

t∗ := max γν

s.t.ν ∈ {0, 1, 2, . . .} and
f(xc + γνd) ≤ f(xc) + cγνf ′(xc; d).

Step 2: Set xn = xc + t∗d.

The backtracking line search method forms the basic structure upon which most line search methods are built. Due
to the importance of this method, we take a moment to emphasize its key features.

(1) The update to xc has the form

(1) xn = xc + t∗d .

Here d is called the search direction while t∗ is called the step length or stepsize.
(2) The search direction d must satisfy

f ′(xc; d) < 0.

Any direction satisfying this strict inequality is called a direction of strict descent for f at xc. If ∇f(xc) 6= 0,
then a direction of strict descent always exists. Just take d = −∇f ′(xc). As we have already seen

f ′(xc;−∇f ′(xc)) = −‖∇f ′(xc)‖
2
.

It is important to note that if d is a direction of strict descent for f at xc, then there is a t > 0 such that

f(xc + td) < f(xc) ∀ t ∈ (0, t).

In order to see this recall that

f ′(xc; d) = lim
t↓0

f(xc + td)− f(xc)

t
.

1

2 BACKTRACKING LINE SEARCH

Hence, if f ′(xc; d) < 0, there is a t > 0 such that

f(xc + td)− f(xc)

t
< 0 ∀ t ∈ (0, t),

that is

f(xc + td) < f(xc) ∀ t ∈ (0, t).

(3) In Step 1 of the algorithm, we require that the step length t∗ be chosen so that

(2) f(xc + t∗d) ≤ f(xc) + cγνf ′(xc; d).

This inequality is called the Armijo-Goldstein inequality. It is named after the two researchers to first use
it in the design of line search routines (Allen Goldstein is a Professor Emeritus here at the University of
Washington). Observe that this inequality guarantees that

f(xc + t∗d) < f(xc).

For this reason, the algorithm described above is called a descent algorithm. It was observed in point (2)
above that it is always possible to choose t∗ so that f(xc+t

∗d) < f(xc). But the Armijo-Goldstein inequality
is a somewhat stronger statement. To see that it too can be satisfied observe that since f ′(xc; d) < 0,

lim
t↓0

f(xc + td)− f(xc)

t
= f ′(xc; d) < cf ′(xc; d) < 0.

Hence, there is a t > 0 such that

f(xc + td)− f(xc)

t
≤ cf ′(xc; d) ∀ t ∈ (0, t),

that is

f(xc + td) ≤ f(xc) + tcf ′(xc; d) ∀ t ∈ (0, t).

(4) The Armijo-Goldstein inequality is known as a condition of sufficient decrease. It is essential that we do
not choose t∗ too small. This is the reason for setting t∗ equal to the first (largest) member of the geometric
sequence {γν} for which the Armijo-Goldstein inequality is satisfied. In general, we always wish to choose
t∗ as large as possible since it is often the case that some effort was put into the selection of the search
direction d. Indeed, as we will see, for Newton’s method we must take t∗ = 1 in order to achieve rapid local
convergence.

(5) There is a balance that must be struck between taking t∗ as large as possible and not having to evaluating
the function at many points. Such a balance is obtained with an appropriate selection of the parameters γ
and c. Typically one takes γ ∈ [.5, .8] while c ∈ [.001, .1] with adjustments depending on the cost of function
evaluation and degree of nonlinearity.

(6) The backtracking procedure of Step 1 is easy to program. A pseudo-Matlab code follows:

fc = f(xc)
∆f = cf ′(xc; d)

newf = f(xc + d)
t = 1

while newf > fc + t∆f
t = γt

newf = f(xc + td)
endwhile

Point (3) above guarantees that this procedure is finitely terminating.
(7) The backtracking procedure has a nice graphical illustration. Set ϕ(t) = f(xc+td) so that ϕ′(0) = f ′(xc; d).

BACKTRACKING LINE SEARCH 3

0 γ3 γ2 γ 1

t

ϕ(t)

ϕ(0)+tcϕ′(0)

ϕ(0)+tϕ′(0)

. t∗ = γ3, xn = xc + γ3d.

Before proceeding to a convergence result for the backtracking algorithm, we consider some possible choices for
the search directions d. There are essentially three directions of interest:

(1) Steepest Descent (or Cauchy Direction):

d = −∇f(xc)/ ‖∇f(xc)‖ .
(2) Newton Direction:

d = −∇2f(xc)
−1∇f(xc) .

(3) Newton-Like Direction:
d = −H∇f(xc),

where H ∈ Rn×n is symmetric and constructed to approximate the inverse of ∇2f(xc).

In order to base a descent method on these directions we must have

f ′(xc; d) < 0.

For the Cauchy direction −∇f(xc)/ ‖∇f(xc)‖, this inequality always holds when ∇f(xc) 6= 0;

f ′(xc;−∇f(xc)/ ‖∇f(xc)‖) = −‖∇f(xc)‖ < 0.

On the other hand the Newton and Newton-like directions do not always satisfy this property:

f ′(xc;−H∇f(xc)) = −∇f(xc)
TH∇f(xc).

These directions are directions of strict descent if and only if

0 < ∇f(xc)
TH∇f(xc) .

This condition is related to second-order sufficiency conditions for optimality when H is an approximation to the
inverse of the Hessian.

4 BACKTRACKING LINE SEARCH

The advantage of the Cauchy direction is that it always provides a direction of strict descent. However, once
the iterates get “close” to a stationary point, the procedure takes a very long time to obtain a moderately accurate
estimate of the stationary point. Most often numerical error takes over due to very small stepsizes and the iterates
behave chaotically.

On the other hand, Newton’s method (and its approximation, the secant method), may not define directions of
strict descent until one is very close to a stationary point satisfying the second-order sufficiency condition. However,
once one is near such a stationary point, then Newton’s method (and some Newton-Like methods) zoom in on the
stationary point very rapidly. This behavior will be made precise when we establish our convergence result from
Newton’s method.

Let us now consider the basic convergence result for the backtracking algorithm.

Theorem 2.1. (Convergence for Backtracking) Let f : Rn → R and x0 ∈ R be such that f is differentiable
on Rn with ∇f Lipschitz continuous on an open convex set containing the set {x : f(x) ≤ f(x0)}. Let {xk} be the
sequence satisfying xk+1 = xk if ∇f(xk) = 0; otherwise,

xk+1 = xk + tkd
k, where dk satisfies f ′(xk; dk) < 0,

and tk is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a k0 such that ∇f ′(xk0) = 0.
(ii) f(xk)↘ −∞

(iii) The sequence {
∥∥dk∥∥} diverges (

∥∥dk∥∥→∞).

(iv) For every subsequence J ⊂ N for which {dk : k ∈ J} is bounded, we have

lim
k∈J

f ′(xk; dk) = 0.

Remark 2.1. It is important to note that this theorem says nothing about the convergence of the sequence {xk}.
Indeed, this sequence may diverge. The theorem only concerns the function values and the first-order necessary
condition for optimality.

Before proving this Theorem, we first consider some important corollaries concerning the Cauchy and Newton
search directions. Each corollary assumes that the hypotheses of Theorem 2.1 hold.

Corollary 2.1.1. If the sequences {dk} and {f(xk)} are bounded, then

lim
k→∞

f ′(xk; dk) = 0.

Proof. The hypotheses imply that either (i) or (iv) with J = N occurs in Theorem 2.1. Hence, lim
k→∞

f ′(xk; dk) =

0. �

Corollary 2.1.2. If dk = −∇f ′(xk)/
∥∥∇f(xk)

∥∥ is the Cauchy direction for all k, then every accumulation point,

x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. The sequence {f(xk)} is decreasing. If x is any accumulation point of the sequence {xk}, then we claim that
f(x) is a lower bound for the sequence {f(xk)}. Indeed, if this were not the case, then for some k0 and ε > 0

f(xk) + ε < f(x)

for all k > k0 since {f(xk)} is decreasing. But x is a cluster point of {xk} and f is continuous. Hence, there is a

k̂ > k0 such that

|f(x)− f(xk̂)| < ε/2.

But then
f(x) <

ε

2
+ f(xk̂) and f(xk̂) + ε < f(x).

Hence,

f(xk̂) + ε <
ε

2
+ f(xk̂), or

ε

2
< 0.

This contradiction implies that {f(xk)} is bounded below by f(x). But then the sequence {f(xk)} is bounded so
that Corollary 2.1.1 applies. That is,

0 = lim
k→∞

f ′
(
xk;
−∇f(xk)

‖∇f(xk)‖

)
= lim
k→∞

−
∥∥∇f(xk)

∥∥ .

BACKTRACKING LINE SEARCH 5

Since ∇f is continuous, ∇f(x) = 0. �

Corollary 2.1.3. Let us further assume that f is twice continuously differentiable and that there is a β > 0
such that, for all u ∈ Rn, β ‖u‖2 < uT∇2f(x)u on {x : f(x) ≤ f(x0)}. If the Basic Backtracking algorithm is
implemented using the Newton search directions,

dk = −∇2f(xk)−1∇f(xk),

then every accumulation point, x, of the sequence {xk} satisfies ∇f(x) = 0.

Proof. Let x be an accumulation point of the sequence {xk} and let J ⊂ N be such that xk
J−→x. Clearly,

{xk : k ∈ J} is bounded. Hence, the continuity of ∇f and ∇2f , along with the Weierstrass Compactness Theorem,
imply that the sets {∇f(xk) : k ∈ J} and {∇2f(xk) : k ∈ J} are also bounded. Let M1 be a bound on the values
{
∥∥∇f(xk)

∥∥ : k ∈ J} and let M2 be an upper bound on the values {
∥∥∇2f(xk)

∥∥ : k ∈ J}. Recall that by hypotheses

β ‖u‖2 is a uniform lower bound on the values {uT∇2f(xk)u} for every u ∈ Rn. Take u = dk to obtain the bound

β
∥∥dk∥∥2 ≤ ∇f(xk)T∇2f(xk)−1∇f(xk) ≤

∥∥dk∥∥∥∥∇f(xk)
∥∥ ,

and so ∥∥dk∥∥ ≤ β−1M1 ∀ k ∈ J.
Therefore, the sequence {dk : k ∈ J} is bounded. Moreover, as in the proof of Corollary 2.1.2, the sequence {f(tk)}
is also bounded. On the other hand,∥∥∇f(xk)

∥∥ =
∥∥∇2f(xk)dk

∥∥ ≤M2

∥∥dk∥∥ ∀ k ∈ J.
Therefore,

M−12

∥∥∇f(xk)
∥∥ ≤ ∥∥dk∥∥ ∀ k ∈ J.

Consequently, Theorem 2.1 Part (iv) implies that

0 = lim
k∈J
|f ′(xk; dk)|

= lim
k∈J
|∇f(xk)T∇2f(xk)−1∇f(xk)|

≥ lim
k∈J

β
∥∥dk∥∥2

≥ lim
k∈J

βM−22

∥∥∇f(xk)
∥∥2

= βM−22 ‖∇f(x)‖2.

Therefore, ∇f(x) = 0. �

Proof of Theorem 2.1: We assume that none of (i), (ii), (iii), and (iv) hold and establish a contradiction.
Since (i) does not occur, ∇f(xk) 6= 0 for all k = 1, 2, Since (ii) does not occur, the sequence {f(xk)} is

bounded below. Since {f(xk)} is a bounded decreasing sequence in R, we have f(xk)↘ f for some f . In particular,
(f(xk+1) − f(xk)) → 0. Next, since (iii) and (iv) do not occur, there is a subsequence J ⊂ N and a vector d such

that dk
J−→ d and

sup
k∈J

f ′(xk; dk) =: β < 0.

The Armijo-Goldstein inequality combined with the fact that (f(xk+1)− f(xk))→ 0, imply that

tkf
′(xk; dk)→ 0.

Since f ′(xk; dk) ≤ β < 0 for k ∈ J , we must have tk
J−→ 0. With no loss in generality, we assume that tk < 1 for all

k ∈ J . Hence,

(3) cγ−1tkf
′(xk; dk) < f(xk + tkγ

−1dk)− f(xk)

for all k ∈ J due to Step 1 of the line search and the fact that τk < 1. By the Mean Value Theorem, there exists
for each k ∈ J a θk ∈ (0, 1) such that

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

6 BACKTRACKING LINE SEARCH

where
x̂n := (1− θk)xk + θk(xk + tkγ

−1dk)
= xk + θktkγ

−1dk.

Now, since ∇f is Lipschitz continuous, we have

f(xk + tkγ
−1dk)− f(xk) = tkγ

−1f ′(x̂k; dk)

= tkγ
−1f ′(xk; dk) + tkγ

−1[f ′(x̂k; dk)− f ′(xk; dk)]

= tkγ
−1f ′(xk; dk) + tkγ

−1[∇f(x̂k)−∇f(xk)]T dk

≤ tkγ
−1f ′(xk; dk) + tkγ

−1L
∥∥x̂k − xk∥∥∥∥dk∥∥

= tkγ
−1f ′(xk; dk) + L(tkγ

−1)2θk
∥∥dk∥∥2 .

Combining this inequality with inequality (3) yields the inequality

ctkγ
−1f ′(xk; dk) < tkγ

−1f ′(xk; dk) + L(tkγ
−1)2θk

∥∥dk∥∥2 .
By rearranging and then substituting β for f ′(xk; dk) we obtain

0 < (1− c)β + (tkγ
−1)L ‖δk‖2 ∀ k ∈ J.

Now taking the limit over k ∈ J , we obtain the contradiction

0 ≤ (1− c)β < 0.

�

	1. Line Search Methods
	2. The Basic Backtracking Algorithm

