
Chapter 1

Optimality Conditions:
Unconstrained Optimization

1.1 Differentiable Problems

Consider the problem of minimizing the function f : Rn → R where f is twice continuously
differentiable on Rn:

P minimize f(x)
x ∈ Rn

We wish to obtain constructible first– and second–order necessary and sufficient conditions
for optimality. Recall the following elementary results.

Theorem 1.1.1 [First– Order Necessary Conditions for Optimality]
Let f : Rn → R be differentiable at a point x ∈ Rn. If x is a local solution to the problem P,
then ∇f(x) = 0.

Proof: From the definition of the derivative we have that

f(x) = f(x) +∇f(x)T (x− x) + o(‖x− x‖)

where lim
x→x

o(‖x− x‖)
‖x− x‖

= 0. Let x := x− t∇f(x). Then

0 ≤ f(x− t∇f(x))− f(x)

t
= −‖∇f(x)‖2 +

o(t‖∇f(x)‖)
t

.

Taking the limit as t ↓ 0 we obtain

0 ≤ −‖∇f(x)‖2 ≤ 0.

Hence ∇f(x) = 0. �
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Theorem 1.1.2 [Second–Order Optimality Conditions]
Let f : Rn → R be twice differentiable at the point x ∈ Rn.

1. (necessity) If x is a local solution to the problem P, then ∇f(x) = 0 and ∇2f(x) is
positive semi-definite.

2. (sufficiency) If ∇f(x) = 0 and ∇2f(x) is positive definite, then there is an α > 0 such
that f(x) ≥ f(x) + α‖x− x‖2 for all x near x.

Proof:

1. We make use of the second–order Taylor series expansion

f(x) = f(x) +∇f(x)T (x− x) +
1

2
(x− x)T∇2f(x)(x− x) + o(‖x− x‖2) .(1.1.1)

Given d ∈ Rn and t > 0 set x := x + td, plugging this into (1.1.1) we find that

0 ≤ f(x + td)− f(x)

t2
=

1

2
dT∇2f(x)d +

o(t2)

t2

since ∇f(x) = 0 by Theorem 1.1.1. Taking the limit as t → 0 we get that

0 ≤ dT∇2f(x)d.

Now since d was chosen arbitrarily we have that ∇2f(x) is positive semi-definite.

2. From (1.1.1) we have that

f(x)− f(x)

‖x− x‖2
=

1

2

(x− x)T

‖x− x‖
∇2f(x)

(x− x)

‖x− x‖
+

o(‖x− x‖2)

‖x− x‖2
.(1.1.2)

If λ > 0 is the smallest eigenvalue of ∇2f(x), choose ε > 0 so that∣∣∣∣∣o(‖x− x‖2)

‖x− x‖2

∣∣∣∣∣ ≤ λ

4
(1.1.3)

whenever ‖x− x‖ < ε. Then for all ‖x− x‖ < ε we have from (1.1.2) and (1.1.3) that

f(x)−f(x)
‖x−x‖2 ≥ 1

2
λ + 0(‖x−x‖2)

‖x−x‖2

≥ 1
4
λ.

Consequently, if we set α = 1
4
λ, then

f(x) ≥ f(x) + α‖x− x‖2

whenever ‖x− x‖ < ε.

�



1.2. CONVEX PROBLEMS 15

1.2 Convex Problems

Observe that Theorem 1.1.1 establishes first–order necessary conditions while Theorem 1.1.2
establishes both second–order necessary and sufficient conditions. What about first–order
sufficiency conditions? For this we introduce the following definitions.

Definition 1.2.1 [Convex Sets and Functions]

1. A subset C ⊂ Rn is said to be convex is for every pair of points x and y taken from C,
the entire line segment connecting x and y is also contained in C, i.e.,

[x, y] ⊂ C where [x, y] = {(1− λ)x + λy : 0 ≤ λ ≤ 1} .

2. A function f : Rn → R ∪ {±∞} is said to be convex if the set

epi (f) = {(µ, x) : f(x) ≤ µ}

is a convex subset of R1+n. In this context, we also define the set

dom (f) = {x ∈ Rn : f(x) < +∞}

to be the essential domain of f .

Lemma 1.2.1 The function f : Rn → R is convex if and only if for every two points
x1, x2 ∈ dom (f) and λ ∈ [0, 1] we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

That is, the secant line connecting (x1, f(x1)) and (x2, f(x2)) lies above the graph of f .

Example: The following functions are examples of convex functions: cT x, ‖x‖, ex, x2

The significance of convexity in optimization theory is illustrated in the following result.
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Theorem 1.2.1 Let f : Rn → R ∪ {±∞} be convex. If x ∈ dom (f) is a local solution to
the problem P, then x is a global solution to the problem P.

Proof: If f(x̄) = −∞ we are done, so let us assume that −∞ < f(x̄). Suppose there is
a x̂ ∈ Rn with f(x̂) < f(x). Let ε > 0 be such that f(x) ≤ f(x) whenever ‖x − x‖ ≤ ε.
Set λ := ε(2‖x − x̂‖)−1 and xλ := x + λ(x̂ − x). Then ‖xλ − x‖ ≤ ε/2 and f(xλ) ≤
(1− λ)f(x) + λf(x̂) < f(x). This contradicts the choice of ε, hence no such x̂ exists. �

If f is a differentiable convex function, then a better result can be established. In order
to obtain this result we need the following lemma.

Lemma 1.2.2 Let f : Rn → R ∪ {+∞} be convex.

1. Given x ∈ dom (f) and d ∈ Rn the difference quotient

f(x + td)− f(x)

t
(1.2.4)

is a non-decreasing function of t on (0, +∞).

2. For every x ∈ dom (f) and d ∈ Rn the directional derivative f ′(x; d) always exists and
is given by

f ′(x; d) := inf
t>0

f(x + td)− f(x)

t
.(1.2.5)

3. For every x ∈ dom (f), the function f ′(x; ·) is sublinear, i.e. f ′(x; ·) is positively
homogeneous,

f ′(x; αd) = αf ′(x; d) ∀ d ∈ Rn, 0 ≤ α,

and subadditive,
f ′(x; u + v) ≤ f ′(x; u) + f ′(x; v).

Proof: We assume (1.2.4) is true and show (1.2.5). If x + td /∈ dom (f) for all t > 0, then
the result obviously true. Therefore, we may as well assume that there is a t̄ > 0 such that
x + td ∈ dom (f) for all t ∈ (0, t̄]. Recall that

f ′(x; d) := lim
t↓0

f(x + td)− f(x)

t
.(1.2.6)

Now if the difference quotient (1.2.4) is non-decreasing in t on (0, +∞), then the limit in
(1.2.6) is necessarily given by the infimum in (1.2.5). This infimum always exists and so
f ′(x; d) always exists and is given by (1.2.5).

We now prove (1.2.4). Let x ∈ dom (f) and d ∈ Rn. If x + td /∈ dom (f) for all t > 0,
then the result is obviously true. Thus, we may assume that

0 < t̄ = sup{t : x + td ∈ dom (f)}.
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Let 0 < t1 < t2 < t̄ (we allow the possibility that t2 = t̄ if t̄ < +∞). Then

f(x + t1d) = f
(
x +

(
t1
t2

)
t2d
)

= f
[(

1−
(

t1
t2

))
x +

(
t1
t2

)
(x + t2d)

]
≤

(
1− t1

t2

)
f(x) +

(
t1
t2

)
f(x + t2d).

Hence
f(x + t1d)− f(x)

t1
≤ f(x + t2d)− f(x)

t2
.

We now show Part 3 of this result. To see that f ′(x; ·) is positively homogeneous let
d ∈ Rn and α > 0 and note that

f ′(x; αd) = α lim
t↓0

f(x + (tα)d)− f(x)

(tα)
= αf ′(x; d).

To see that f ′(x; ·) is subadditive let u, v ∈ Rn, then

f ′(x; u + v) = lim
t↓0

f(x + t(u + v))− f(x)

t

= lim
t↓0

f(x + t
2
(u + v))− f(x)

t/2

= lim
t↓0

2
f(1

2
(x + tu) + 1

2
(x + tv))− f(x)

t

≤ lim
t↓0

2
1
2
f(x + tu) + 1

2
f(x + tv)− f(x)

t

= lim
t↓0

f(x + tu)− f(x)

t
+

f(x + tv)− f(x)

t
= f ′(x; u) + f(x; v) .

�

From Lemma 1.2.2 we immediately obtain the following result.

Theorem 1.2.2 Let f : Rn → R ∪ {+∞} be convex and suppose that x ∈ Rn is a point
at which f is differentiable. Then x is a global solution to the problem P if and only if
∇f(x) = 0.

Proof: If x is a global solution to the problem P , then, in particular, x is a local solution
to the problem P and so ∇f(x) = 0 by Theorem 1.1.1. Conversely, if ∇f(x) = 0, then, by
setting t := 1, x := x, and d := y − x in (1.2.5), we get that

0 ≤ f(y)− f(x),

or f(x) ≤ f(y). Since y was chosen arbitrarily, the result follows. �
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As Theorems 1.2.1 and 1.2.2 demonstrate, convex functions are very nice functions indeed.
This is especially so with regard to optimization theory. Thus, it is important that we be
able to recognize when a function is convex. For this reason we give the following result.

Theorem 1.2.3 Let f : Rn → R.

1. If f is differentiable on Rn, then the following statements are equivalent:

(a) f is convex,

(b) f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn

(c) (∇f(x)−∇f(y))T (x− y) ≥ 0 for all x, y ∈ Rn.

2. If f is twice differentiable then f is convex if and only if f is positive semi-definite for
all x ∈ Rn.

Proof: (a) ⇒ (b) If f is convex, then 1.2.3 holds. By setting t := 1 and d := y − x we
obtain (b).

(b) ⇒ (c) Let x, y ∈ Rn. From (b) we have

f(y) ≥ f(x) +∇f(x)T (y − x)

and
f(x) ≥ f(y) +∇f(y)T (x− y).

By adding these two inequalities we obtain (c).

(c) ⇒ (b) Let x, y ∈ Rn. By the mean value theorem there exists 0 < λ < 1 such
that

f(y)− f(x) = ∇f(xλ)
T (y − x)

where xλ := λy + (1− λ)x. By hypothesis,

0 ≤ [∇f(xλ)−∇f(x)]T (xλ − x)
= λ[∇f(xλ)−∇f(x)]T (y − x)
= λ[f(y)− f(x)−∇f(x)T (y − x)].

Hence f(y) ≥ f(x) +∇f(x)T (y − x).

(b) ⇒ (a) Let x, y ∈ Rn and set

α := max
λ∈[0,1]

ϕ(λ) := [f(λy + (1− λ)x)− (λf(y) + (1− λ)f(x))].

We need to show that α ≤ 0. Since [0, 1] is compact and ϕ is continuous, there is a
λ ∈ [0, 1] such that ϕ(λ) = α. If λ equals zero or one, we are done. Hence we may as
well assume that 0 < λ < 1 in which case

0 = ϕ′(λ) = ∇f(xλ)
T (y − x) + f(x)− f(y)
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where xλ = x + λ(y − x), or equivalently

λf(y) = λf(x)−∇f(xλ)
T (x− xλ).

But then
α = f(xλ)− (f(x) + λ(f(y)− f(x)))

= f(xλ) +∇f(xλ)
T (x− xλ)− f(x)

≤ 0

by (b).

2) Suppose f is convex and let x, d ∈ Rn, then by (b) of Part (1),

f(x + td) ≥ f(x) + t∇f(x)T d

for all t ∈ R. Replacing the left hand side of this inequality with its second–order
Taylor expansion yields the inequality

f(x) + t∇f(x)T d +
t2

2
dT∇2f(x)d + o(t2) ≥ f(x) + t∇f(x)T d

or equivalently
1

2
dt∇2f(x)d +

o(t2)

t2
≥ 0.

Letting t → 0 yields the inequality

dT∇2f(x)d ≥ 0.

Since d was arbitrary, ∇2f(x) is positive semi-definite.

Conversely, if x, y ∈ Rn, then by the mean value theorem there is a λ ∈ (0, 1) such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(xλ)(y − x)

where xλ = λy + (1− λ)x. Hence

f(y) ≥ f(x) +∇f(x)T (y − x)

since ∇2f(xλ) is positive semi-definite. Therefore, f is convex by (b) of Part (1).

�

We have established that f ′(x; d) exists for all x ∈ dom (f) and d ∈ Rn, but we have not
yet discussed to continuity properties of f . We give a partial result in this direction in the
next lemma.

Lemma 1.2.3 Let f : Rn → R ∪ {+∞} be convex. Then f if bounded in a neighborhood of
a point x̄ if and only if f is Lipschitz in a neighborhood of x̄.
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Proof: If f is Lipschitz in a neighborhood of x̄, then f is clearly bounded above in a neigh-
borhood of x̄. Therefore, we assume local boundedness and establish Lipschitz continuity.

Let ε > 0 and M > 0 be such that |f(x)| ≤ M for all x ∈ x̄ + 2εB. Set g(x) =
f(x + x̄) − f(x̄). It is sufficient to show that g is Lipschitz on εB. First note that for all
x ∈ 2εB

0 = g(0) = g(
1

2
x +

1

2
(−x)) ≤ 1

2
g(x) +

1

2
g(−x),

and so −g(x) ≤ g(−x) for all x ∈ 2εB. Next, let x, y ∈ εB with x 6= y and set α = ‖x− y‖.
Then w = y + εα−1(y − x) ∈ 2εB, and so

g(y) = g

(
1

1 + ε−1α
x +

ε−1α

1 + ε−1α
w

)
≤ 1

1 + ε−1α
g(x) +

ε−1α

1 + ε−1α
g(w).

Consequently,

g(y)− g(x) ≤ ε−1α

1 + ε−1α
(g(w)− g(x)) ≤ 2Mε−1α = 2Mε−1‖x− y‖.

Since this inequality is symmetric in x and y, we obtain the result. �

1.3 Convex Composite Problems

Convex composite optimization is concerned with the minimization of functions of the form
f(x) := h(F (x)) where h : Rm → R∪{+∞} is a proper convex function and F : Rn → Rn is
continuously differentiable. Most problems from nonlinear programming can be cast in this
framework.

Examples:

(1) Let F : Rn → Rm where m > n, and consider the equation F (x) = 0. Since m > n
it is highly unlikely that a solution to this equation exists. However, one might try
to obtain a best approximate solution by solving the problem min{‖F (x)‖ : x ∈ Rn}.
This is a convex composite optimization problem since the norm is a convex function.

(2) Again let F : Rn → Rm where m > n, and consider the inclusion F (x) ∈ C, where
C ⊂ Rn is a non-empty closed convex set. One can pose this inclusion as the optimiza-
tion problem min{dist(F (x)|C) : x ∈ Rn}. This is a convex composite optimization
problem since the distance function

dist(y | C) := inf
z∈C

‖y − z‖

is a convex function.
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(3) Let F : Rn → Rm, C ⊂ Rn a non-empty closed convex set, and f0 : Rn → R,
and consider the constrained optimization problem min{f0(x) : F (x) ∈ C}. One can
approximate this problem by the unconstrained optimization problem

min{f0(x) + αdist(f(x)|C) : x ∈ Rn}.

This is a convex composite optimization problem where h(η, y) = η + αdist(y|C) is a
convex function. The function f0(x)+αdist(f(x)|C) is called an exact penalty function
for the problem min{f0(x) : F (x) ∈ C}. We will review the theory of such functions
in a later section.

Most of the first-order theory for convex composite functions is easily derived from the
observation that

f(y) = h(F (y)) = h(F (x) + F ′(x)(y − x)) + o(‖y − x‖).(1.3.7)

This local representation for f is a direct consequence of h being locally Lipschitz:

|h(F (y)) − h(F (x) + F ′(x)(y − x))|
≤ K‖y − x‖

∫ 1
0 ‖F ′(x + t(y − x))− F ′(x)‖dt

for some K ≥ 0. Equation (1) can be written equivalently as

h(F (x + d)) = h(F (x)) + ∆f(x; d) + o(‖d‖)(1.3.8)

where
∆f(x; d) := h(F (x) + F ′(x)d)− h(F (x)).

From 1.3.8, one immediately obtains the following result.

Lemma 1.3.1 Let h : Rn → R be convex and let F : Rn → Rm be continuously differentiable.
Then the function f = h ◦ F is everywhere directional differentiable and one has

f ′(x; d) = h′(F (x); F ′(x)d)

= infλ>0
∆f(x;λd)

λ
.

(1.3.9)

This result yields the following optimality condition for convex composite optimization
problems.

Theorem 1.3.1 Let h : Rm → R be convex and F : Rn → Rm be continuously differentiable.
If x̄ is a local solution to the problem min{h(F (x))}, then d = 0 is a global solution to the
problem

min
d∈Rn

h(F (x̄) + F ′(x̄)d).(1.3.10)

There are various ways to test condition 1.3.8. A few of these are given below.
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Lemma 1.3.2 Let h and F be as in Theorem 1.3.1. The following conditions are equivalent

(a) d = 0 is a global solution to 1.3.10.

(b) 0 ≤ h′(F (x); F ′(x)d) for all d ∈ Rn.

(c) 0 ≤ ∆f(x; d) for all d ∈ Rn.

Proof:The equivalence of (a) and (b) follows immediately from convexity. Indeed, this
equivalence is the heart of the proof of Theorem 1.3.1. The equivalence of (b) and (c) is an
immediate consequence of 1.3.2. �

In the sequel, we say that x ∈ Rn satisfies the first-order condition for optimality for the
convex composite optimization problem if it satisfies any of the three conditions (a)–(c) of
Lemma 1.3.2.

1.3.1 A Note on Directional Derivatives

Recall that if f : Rn → R is differentiable, then the function f ′(x; d) is linear in d:

f ′(x; αd1 + βd2) = αf ′(x; d1) + βf ′(x; d2) .

If f is only assumed to be convex and not necessarily differentiable, then f ′(x; ·) is sublinear
and hence convex. Finally, if f = h ◦ F is convex composite with h : Rm → R convex and
F : Rn → Rm continuously differentiable, then, by Lemma (1.3.1), f ′(x; ·) is also sublinear
and hence convex. Moreover, the approximate directional derivative ∆f(x; d) satisfies

λ−1
1 ∆f(x; λ1d) ≤ λ−1

2 ∆f(x; λ2d) for 0 < λ1 ≤ λ2,

by the non–decreasing nature of the difference quotients. Thus, in particular,

∆f(x; λd) ≤ λ∆f(x; d) for all λ ∈ [0, 1].


