1.6. TANGENT CONES: FIRST-ORDER APPROXIMATION OF SETS13

1.6 Tangent Cones: First-Order Approximation of Sets

Just as a first-order approximation to function is extremely useful in applications, so are "first-order" approximations of sets. This approximation to a set $S \subset \mathbf{E}$ at a point $x \in S$ is called the tangent cone to S at x. Our notion of tangency is based on the distance to a set given by

$$
\operatorname{dist}_{S}(y):=\inf _{x \in S}\|y-x\| .
$$

Definition 1.17 (Tangent Cone). Let $S \subset \mathbf{E}$. We say that the vector v is tangent to S at a point $\bar{x} \in S$ if for $t>0$

$$
\operatorname{dist}_{S}(\bar{x}+t v) \leq o(t)
$$

We call the set of all such tangent vectors the tangent cone to S at \bar{x} and denote it by $T(\bar{x} \mid S)$.

Exercise 1.18. Show that $T(\bar{x} \mid S)$ is a closed cone, where a set $K \subset \mathbf{E}$ is said to be a cone if $\lambda K \subset K$ for all $\lambda>0$.

Exercise 1.19. Show that

$$
\begin{aligned}
T(\bar{x} \mid S) & =\left\{v \mid \exists\left\{x^{k}\right\} \subset S, t_{k} \downarrow 0, \text { s.t. } t_{k}^{-1}\left(x^{k}-\bar{x}\right) \rightarrow v\right\} \\
& =\left\{t u \mid t>0, \exists\left\{x^{k}\right\} \subset S \backslash\{\bar{x}\}, x^{k} \rightarrow \bar{x}, \text { s.t. } \frac{x^{k}-\bar{x}}{\left\|x^{k}-\bar{x}\right\|} \rightarrow u\right\} \cup\{0\} .
\end{aligned}
$$

Exercise 1.20. If C is a nonempty convex subset of \mathbf{E}, show that

$$
T(\bar{x} \mid C)=\operatorname{cl}\{t(x-\bar{x}) \mid x \in C, t \geq 0\}
$$

Exercise 1.21. If C is a convex polyhedron, show that

$$
T(\bar{x} \mid C)=\{t(x-\bar{x}) \mid x \in C, t \geq 0\}
$$

Recall that C is a convex polyhedon if there exist $a^{i} \in E$ and $\beta_{i} \in \mathbf{R} i=$ $1, \ldots, k$ such that $C=\left\{x \mid\left\langle a^{i}, x\right\rangle \leq \beta_{i}, i=1, \ldots, k\right\}$.
Exercise 1.22. Let $f: \mathbf{E} \rightarrow \mathbf{R}$ be C^{1}-smooth and set

$$
\operatorname{gph} f:=\{(x, f(x)) \mid x \in \mathbf{E}\}
$$

be the graph of f. Show that

$$
T((\bar{x}, f(\bar{x})) \mid \operatorname{gph} f)=\left\{\left(v, \nabla f(\bar{x})^{T} v\right) \mid v \in \mathbb{E}\right\}
$$

That is, $T((\bar{x}, f(\bar{x})) \mid \operatorname{gph} f)$ is the subspace parallel to the graph of the linearization of f at \bar{x}.

The great challenge in using tangent cones is the development of a calculus that is as rich as the one available for differentiable functions.

