
SIMPLE OPTIMALITY CONDITIONS FOR CONSTRAINED

OPTIMIZATION

1. Optimality Conditions: Smooth Constrained

By using the tangent cones in Definition ??, as well as Exercises ?? and ??,
simple optimality conditions for C1-smooth convexly constrained problems
are easily obtained.

Theorem 1.1. (First-order necessary conditions) Suppose U is an open set
in E and that x̄ is a local minimizer of a function f : U → R over the
nonempty closed set Ω ⊂ U . If f is differentiable at x̄, then 〈∇f(x̄), v〉 ≥ 0
for all v ∈ T (x̄ |Ω).

Proof. Let v ∈ T (x̄ |S). With no loss in generality, we may assume that
v 6= 0. Then, by Exercise ??, there is a t > 0 and a sequence {xk} ⊂ Ω\{x̄}
such that xk → x̄,

∥∥xk − x̄∥∥−1 (xk − x̄)→ u, and v = tu. Since x̄ is a local

minimizer of f on Ω, we may assume that f(x̄) ≤ f(xk) for all k. Then, for
all k,

f(x̄) ≤ f(x̄) +
〈
∇f(x̄), xk − x̄

〉
+ o

(∥∥∥xk − x̄∥∥∥) ,
and so

0 ≤
〈
∇f(x̄), xk − x̄

〉
+ o

(∥∥∥xk − x̄∥∥∥) ∀ k.

Dividing through by
∥∥xk − x̄∥∥ and taking the limit in k yields the result. �

Notice that the first-order necessary condition above works for arbitrary
nonempty closed sets Ω. However, to obtain a second-order conditions, we
assume that Ω is convex, and make use of the tangent cone characterizations
in Exercises ?? and ??.

Theorem 1.2. (Second-order conditions)
Consider a C2-smooth function f : U → R, where U ⊂ E is open. Fix
a point x̄ ∈ Ω ⊂ U , where Ω is a nonempty close convex set. Then the
following are true.

(1) (Necessary conditions) Assume that Ω is a convex polyhedron. If x̄
is a local minimizer of f on Ω, then

〈∇f(x̄), v〉 ≥ 0 ∀ v ∈ T (x̄ |Ω)

and

vT∇2f(x)v ≥ 0 ∀ v ∈ T (x̄ |Ω) ∩ span (∇f(x̄))⊥ .
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(2) (Sufficient conditions) If the relations

〈∇f(x̄), v〉 ≥ 0 ∀ v ∈ T (x̄ |Ω)

and

vT∇2f(x̄)v > 0 ∀ v ∈
(
T (x̄ |Ω) ∩ span (∇f(x̄))⊥

)
\ {0}.

hold, then there is an ε > 0 and β > 0 such that

(1.1) f(x) ≥ f(x̄) +
β

2
‖x− x̄‖2 ∀ x ∈ Bε(x̄) ∩ Ω.

Proof. Theorem 1.1 tells us that 〈∇f(x̄), v〉 ≥ 0 for all v ∈ T (x̄ |Ω). Next

let v ∈ T (x̄ |Ω)∩span (∇f(x̄))⊥. With no loss in generality, we may assume
that ‖v‖ = 1. By Exercise ?? there exists t̄ > 0 such that x̄ + tv ∈ Ω for
all t ∈ (0, t̄). Since x̄ is a local solution, we may take t̄ so small that that
f(x̄) ≤ f(x̄+ tv) for all t ∈ (0, t̄). Then, for all t ∈ (0, t̄),

f(x̄) ≤ f(x̄) + t〈∇f(x̄), v〉+
t2

2
〈∇f(x̄)v, v〉+ o

(
t2
)

and so

0 ≤ 1

2
〈∇f(x̄)v, v〉+

o(t2)

t2
∀ t ∈ (0, t̄).

Letting t→ 0 yields the second-order necessary condition.
To see the second-order sufficient condition, we suppose that the result is

false so that there exists a sequences βk ↓ 0 and xk → x̄ such that

f(xk) < f(x̄) +
βk
2

∥∥∥xk − x̄∥∥∥2 ∀ k,

or equivalently,
(1.2)

f(x̄) +
〈
∇f(x̄), xk − x̄

〉
+

1

2

〈
∇2f(x̄)(xk − x̄), (xk − x̄)

〉
+ o(

∥∥∥xk − x̄∥∥∥2)
≤ f(x̄) +

βk
2

∥∥∥xk − x̄∥∥∥2 ∀ k.

With no loss in generality, we may assume that there is a unit vector u such

that
∥∥xk − x̄∥∥−1 (xk − x̄)→ u ∈ T (x̄ |Ω). Dividing by

∥∥xk − x̄∥∥ and letting

k ↑ ∞ yields 0 ≤ 〈∇f(x̄), u〉 ≤ 0 so that u ∈ (T (x̄ |Ω)∩span (∇f(x̄))⊥)\{0}.
Further note that by Exercise ??, (xk − x̄) ∈ T (x̄ |Ω) for all k so that〈
∇f(x̄), xk − x̄

〉
≥ 0 for all k. Hence, (1.2) tells us that

1

2

〈
∇2f(x̄)(xk − x̄), (xk − x̄)

〉
+ o(

∥∥∥xk − x̄∥∥∥2) ≤ βk
2

∥∥∥xk − x̄∥∥∥2 ∀ k.

Dividing by
∥∥xk − x̄∥∥2 and taking the limit as k ↑ ∞ gives the contradiction〈

∇2f(x̄)u, u
〉
≤ 0 which proves the result. �
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In later sections we will improve on the second-order conditions in this
theorem by delving deeper into the curvature properties of the set Ω. These
later results will not only allow us to remove the convexity hypotheses, but
will also be stronger even in the convex case. As a first illustration of the lim-
itations of Theorem 1.2, the following example shows that the polyhedrality
hypothesis used in the necessary condition cannot be weakened.

Example 1.3. Consider the problem

min 1
2(x2 − x21)

subject to 0 ≤ x2, x31 ≤ x22.
Observe that the constraint region in this problem can be written as Ω :=

{(x1, x2) : |x1|
3
2 ≤ x2}, therefore

f(x) =
1

2
(x2 − x21)

≥ 1

2
(|x1|

3
2 − |x1|2)

=
1

2
|x1|

3
2 (1− |x1|

1
2 ) > 0

whenever 0 < |x1| ≤ 1. Consequently, the origin is a strict local solution for
this problem. Nonetheless,

T (0 |Ω) ∩ [∇f(0)]⊥ = {(δ, 0) : δ ∈ R},
while

∇2f(0) =

[
−1 0
0 0

]
.

That is, even though the origin is a strict local solution, the Hessian of f is
negative definite on T (0 |Ω) ∩ [∇f(0)]⊥.

The second-order sufficiency condition in Theorem 1.2 is also lacking
since, as is shown in the next example, the quadratic growth condition
(1.1) can be satisfied even if the hessian is not positive definite on the set

(T (x̄ |Ω) ∩ span (∇f(x̄))⊥) \ {0}.

Example 1.4. Consider the problem

min x2
subject to x21 ≤ x2.

Clearly, x̄ = 0 is the unique global solution to this convex program. More-
over,

f(x̄) +
1

2
‖x− x̄‖2 =

1

2
(x21 + x22)

≤ 1

2
(x2 + x22)

≤ x2 = f0(x)

for all x in the constraint region Ω with ‖x− x̄‖ ≤ 1. However, ∇2f(x̄) = 0.
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