Lebesgue Integration on \mathbb{R}^n

The treatment here is based loosely on that of Jones, *Lebesgue Integration on Euclidean Space*. We give an overview from the perspective of a user of the theory.

Riemann integration is based on subdividing the *domain* of f. This leads to the requirement of some "smoothness" of f for the Riemann integal to be defined: for x, y close, f(x) and f(y) need to have something to do with each other. Lebesgue integration is based on subdividing the *range space* of f: it is built on inverse images.

Typical Example. For a set $E \subset \mathbb{R}^n$, define the characteristic function of the set E to be

$$\chi_E(x) = \begin{cases} 1 \text{ if } x \in E\\ 0 \text{ if } x \notin E \end{cases}$$

Consider $\int_0^1 \chi_{\mathbb{Q}}(x) dx$, where $\mathbb{Q} \subset \mathbb{R}$ is the set of rational numbers:

$$1 - \cdots - 1 \text{ at rationals}$$

$$0 + 0 \text{ at irrationals}$$

Riemann: The upper Riemann integral is the inf of the "upper sums": $\overline{\int_0^1} \chi_{\mathbb{Q}}(x) dx = 1$. The lower Riemann integral is the sup of the "lower sums": $\underline{\int_0^1} \chi_{\mathbb{Q}}(x) dx = 0$. Since $\overline{\int_0^1} \chi_{\mathbb{Q}}(x) dx \neq \underline{\int_0^1} \chi_{\mathbb{Q}}(x) dx$, $\chi_{\mathbb{Q}}$ is not Riemann integrable. **Lebesgue:** Let $\lambda(E)$ denote the Lebesgue measure ("size") of E (to be defined). Then

$$\int_0^1 \chi_{\mathbb{Q}}(x) dx = 1 \cdot \lambda(\mathbb{Q} \cap [0,1]) + 0 \cdot \lambda(\mathbb{Q}^c \cap [0,1])$$
$$= 1 \cdot 0 + 0 \cdot 1 = 0.$$

First, we must develop the theory of Lebesgue measure to measure the "size" of sets.

Advantages of Lebesgue theory over Riemann theory:

- 1. Can integrate more functions (on finite intervals).
- 2. Good convergence theorems: $\lim_{n\to\infty} \int f_n(x) dx = \int \lim_{n\to\infty} f_n(x) dx$ under mild assumptions.
- 3. Completeness of L^p spaces.

Our first task is to construct Lebesgue measure on \mathbb{R}^n . For $A \subset \mathbb{R}^n$, we want to define $\lambda(A)$, the Lebesgue measure of A, with $0 \leq \lambda(A) \leq \infty$. This should be a version of n-dimensional volume for general sets. However, it turns out that one can't define $\lambda(A)$ for all subsets $A \subset \mathbb{R}^n$ and maintain all the desired properties. We will define $\lambda(A)$ for "[Lebesgue] measurable" subsets of \mathbb{R}^n (very many subsets).

We define $\lambda(A)$ for increasingly complicated sets $A \subset \mathbb{R}^n$. See Jones for proofs of the unproved assertions made below.

Step 0. Define $\lambda(\emptyset) = 0$.

Step 1. We call a set $I \subset \mathbb{R}^n$ a special rectangle if $I = [a_1, b_1) \times [a_2, b_2) \times \cdots \times [a_n, b_n)$, where $-\infty < a_j < b_j < \infty$. (Note: Jones leaves the right ends closed). Define $\lambda(I) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$.

Step 2. We call a set $P \subset \mathbb{R}^n$ a special polygon if P is a finite union of special rectangles.

Fact: Every special polygon is a disjoint union of finitely many special rectangles.

- For $P = \bigcup_{k=1}^{N} I_k$, where the I_k 's are disjoint (i.e., for $j \neq k$, $I_j \cap I_k = \emptyset$), define $\lambda(P) = \sum_{k=1}^{N} \lambda(I_k)$. Note that a special polygon may be written as a disjoint union of special rectangles in different ways.
- **Fact:** $\lambda(P)$ is independent of the way that P is written as a disjoint union of special rectangles.

Step 3. Let $G \subset \mathbb{R}^n$ be a nonempty open set. Define

 $\lambda(G) = \sup\{\lambda(P) : P \text{ is a special polygon, } P \subset G\}.$

(Approximation by special polygons from the inside.)

Remark: Every nonempty open set in \mathbb{R}^n can be written as a *countable* disjoint union of special rectangles.

Step 4. Let $K \subset \mathbb{R}^n$ be compact. Define

 $\lambda(K) = \inf\{\lambda(G) : G \text{ open, } K \subset G\}.$

(Approximation by open sets from the outside.)

Fact: If $K = \overline{P}$ for a special polygon P, then $\lambda(K) = \lambda(P)$.

Now for $A \subset \mathbb{R}^n$, A arbitrary, define

$$\lambda^*(A) = \inf\{\lambda(G) : G \text{ open, } A \subset G\} \quad (outer \text{ measure of } A)$$

$$\lambda_*(A) = \sup\{\lambda(K) : K \text{ compact, } K \subset A\} \quad (inner \text{ measure of } A)$$

- **Facts:** If A is open or compact, then $\lambda_*(A) = \lambda(A) = \lambda^*(A)$. Hence for any $A, \lambda_*(A) \leq \lambda^*(A)$.
- **Step 5.** A bounded set $A \subset \mathbb{R}^n$ is said to be [Lebesgue] measurable if $\lambda_*(A) = \lambda^*(A)$. In this case we define $\lambda(A) = \lambda_*(A) = \lambda^*(A)$.
- **Step 6.** An arbitrary set $A \subset \mathbb{R}^n$ is said to be [Lebesgue] measurable if for each R > 0, $A \cap B(0, R)$ is measurable, where B(0, R) is the open ball of radius R with center at the origin. If A is measurable, define $\lambda(A) = \sup_{R>0} \lambda(A \cap B(0, R))$.

Let \mathcal{L} denote the collection of all Lebesgue measurable subsets of \mathbb{R}^n .

Fact. \mathcal{L} is a σ -algebra of subsets of \mathbb{R}^n . That is, \mathcal{L} has the properties:

- (i) \emptyset , $\mathbb{R}^n \in \mathcal{L}$.
- (ii) $A \in \mathcal{L} \Rightarrow A^c \in \mathcal{L}$.

(iii) If $A_1, A_2, \ldots \in \mathcal{L}$ is a *countable* collection of subsets of \mathbb{R}^n in \mathcal{L} , then $\bigcup_{k=1}^{\infty} A_k \in \mathcal{L}$.

Fact. If S is any collection of subsets of a set X, then there is a smallest σ -algebra A of subsets of X containing S (i.e., with $S \subset A$), namely, the intersection of all σ -algebras of subsets of X containing S. This smallest σ -algebra A is called the σ -algebra generated by S.

Definition. The smallest σ -algebra of subsets of \mathbb{R}^n containing the open sets is called the collection \mathcal{B} of *Borel sets*. Closed sets are Borel sets.

Fact. Every open set is [Lebesgue] measurable. Thus $\mathcal{B} \subset \mathcal{L}$.

Fact. If $A \in \mathcal{L}$, then $\lambda_*(A) = \lambda(A) = \lambda^*(A)$.

Caution: However, $\lambda_*(A) = \lambda^*(A) = \infty$ does not imply $A \in \mathcal{L}$.

Properties of Lebesgue measure

 λ is a *measure*. This means:

1.
$$\lambda(\emptyset) = 0$$
.

2. $(\forall A \in \mathcal{L}) \ \lambda(A) \ge 0.$

3. If $A_1, A_2, \ldots \in \mathcal{L}$ are disjoint then $\lambda\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \lambda(A_k)$. (countable additivity)

Consequences:

(i) If $A, B \in \mathcal{L}$ and $A \subset B$, then $\lambda(A) \leq \lambda(B)$.

(ii) If
$$A_1, A_2, \dots \in \mathcal{L}$$
, then $\lambda\left(\bigcup_{k=1}^{\infty} A_k\right) \leq \sum_{k=1}^{\infty} \lambda(A_k)$. (countable subadditivity)

Remark: Both (i) and (ii) are true of outer measure λ^* on all subsets of \mathbb{R}^n .

Sets of Measure Zero

Fact. If $\lambda^*(A) = 0$, then $0 \le \lambda_*(A) \le \lambda^*(A) = 0$, so $0 = \lambda_*(A) = \lambda^*(A)$, so $A \in \mathcal{L}$. Thus every subset of a set of measure zero is also measurable (we say λ is a *complete measure*).

Characterization of Lebesgue measurable sets

Definition. A set is called a G_{δ} if it is the intersection of a countable collection of open sets. A set is called an F_{σ} if it is the union of a countable collection of closed sets. G_{δ} sets and F_{σ} sets are Borel sets.

Fact. A set $A \subset \mathbb{R}^n$ is Lebesgue measurable iff $\exists a \ G_{\delta}$ set G and an F_{σ} set F for which $F \subset A \subset G$ and $\lambda(G \setminus F) = 0$. (Note: $G \setminus F = G \cap F^c$ is a Borel set.)

Examples.

- (0) If $A = \{a\}$ is a single point, then $A \in \mathcal{L}$ and $\lambda(A) = 0$.
- (1) If $A = \{a_1, a_2, \ldots\}$ is countable, then A is measurable, and $\lambda(A) \leq \sum_{j=1}^{\infty} \lambda(\{a_j\}) = 0$, so $\lambda(A) = 0$. For example, $\lambda(\mathbb{Q}) = 0$.
- (2) $\lambda(\mathbb{R}^n) = \infty$.
- (3) **Open sets in** \mathbb{R} . Every nonempty open set $G \subset \mathbb{R}$ is a (finite or) countable disjoint union of open intervals (a_j, b_j) $(1 \le j \le J \text{ or } 1 \le j < \infty)$, and $\lambda(G) = \sum_j \lambda(a_j, b_j) = \sum_j (b_j a_j)$.
- (4) The Cantor Set is a closed subset of [0, 1]. Let

$$G_{1} = \left(\frac{1}{3}, \frac{2}{3}\right), \qquad \lambda(G_{1}) = \frac{1}{3}$$

$$G_{2} = \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right), \qquad \lambda(G_{2}) = \frac{2}{9}$$

$$G_{3} = \left(\frac{1}{27}, \frac{2}{27}\right) \cup \dots \cup \left(\frac{25}{27}, \frac{26}{27}\right), \qquad \lambda(G_{3}) = \frac{4}{27}$$
etc.
$$\left(\text{note } \lambda(G_{k}) = \frac{2^{k-1}}{3^{k}}\right)$$

$$\left[\begin{array}{c} 0 & \frac{1}{9} & \frac{2}{9} & \frac{1}{3} & \frac{2}{3} & \frac{7}{9} & \frac{8}{9} & 1\end{array}\right]$$

(middle thirds of remaining subintervals)

Let $G = \bigcup_{k=1}^{\infty} G_k$, so G is an open subset of (0, 1). Then

$$\lambda(G) = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \frac{1}{3}\left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \dots\right) = \frac{1}{3}\frac{1}{\left(1 - \frac{2}{3}\right)} = 1.$$

Define the Cantor set $C = [0,1] \setminus G$. Since $\lambda(C) + \lambda(G) = \lambda([0,1]) = 1$, we have $\lambda(C) = 0$.

Fact. For $x \in [0,1]$, $x \in C$ iff x has a base 3 expansion with only 0's and 2's, i.e., $x = \sum_{j=1}^{\infty} d_j 3^{-j}$ with each $d_j \in \{0,2\}$.

For example: $0 = (0.000 \cdots)_3$ $\frac{1}{3} = (0.100 \cdots)_3 = (0.0222 \cdots)_3$ $\frac{2}{3} = (0.200 \cdots)_3$ $1 = (0.222 \cdots)_3$

 $\frac{3}{4} = (0.202020\cdots)_3$ is in *C*, but it is not an endpoint of any interval in any G_k . Despite the fact that $\lambda(C) = 0$, *C* is not countable. In fact, *C* can be put in 1–1 correspondence with [0, 1] (and thus also with \mathbb{R}).

Invariance of Lebesgue measure

(1) **Translation**. For a fixed $x \in \mathbb{R}^n$ and $A \subset \mathbb{R}^n$, define $x + A = \{x + y : y \in A\}$.

Fact. If $x \in \mathbb{R}^n$ and $A \in \mathcal{L}$, then $x + A \in \mathcal{L}$, and $\lambda(x + A) = \lambda(A)$.

(2) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is linear and $A \in \mathcal{L}$, then $T(A) \in \mathcal{L}$, and $\lambda(T(A)) = |\det T| \cdot \lambda(A)$.

Measurable Functions

We consider functions f on \mathbb{R}^n with values in the extended real numbers $[-\infty, \infty]$. We extend the usual arithmetic operations from \mathbb{R} to $[-\infty, \infty]$ by defining $x \pm \infty = \pm \infty$ for $x \in \mathbb{R}$; $a \cdot (\pm \infty) = \pm \infty$ for a > 0; $a \cdot (\pm \infty) = \mp \infty$ for a < 0; and $0 \cdot (\pm \infty) = 0$. The expressions $\infty + (-\infty)$ and $(-\infty) + \infty$ are usually undefined, although we will need to make some convention concerning these shortly. A function $f : \mathbb{R}^n \to [-\infty, \infty]$ is called *Lebesgue measurable* if for every $t \in \mathbb{R}$, $f^{-1}([-\infty, t]) \in \mathcal{L}$ (in \mathbb{R}^n).

Recall: Inverse images commute with unions, intersections, and complements:

$$f^{-1}[B^c] = f^{-1}[B]^c, \qquad f^{-1}\left[\bigcup_{\alpha} A_{\alpha}\right] = \bigcup_{\alpha} f^{-1}[A_{\alpha}], \qquad f^{-1}\left[\bigcap_{\alpha} A_{\alpha}\right] = \bigcap_{\alpha} f[A_{\alpha}]$$

Fact. For any function $f : \mathbb{R}^n \to [-\infty, \infty]$, the collection of sets $B \subset [-\infty, \infty]$ for which $f^{-1}[B] \in \mathcal{L}$ is itself a σ -algebra of subsets of $[-\infty, \infty]$.

Note. The smallest σ -algebra of subsets of $[-\infty, \infty]$ containing all sets of the form $[-\infty, t]$ for $t \in \mathbb{R}$ contains also $\{-\infty\}$, $\{\infty\}$, and all sets of the form $[-\infty, t)$, $[t, \infty]$, $(t, \infty]$, (a, b), etc. It is the collection of all sets of the form $B, B \cup \{\infty\}, B \cup \{-\infty\}$, or $B \cup \{-\infty, \infty\}$ for Borel subsets B of \mathbb{R} .

Comments. If f and $g : \mathbb{R}^n \to [-\infty, \infty]$ are measurable, then f + g, $f \cdot g$, and |f| are measurable. (Here we need to make a convention concerning $\infty + (-\infty)$ and $(-\infty) + \infty$. This

statement concerning measurability is true so long as we define both of these expressions to be the same, arbitrary but fixed, number in $[-\infty, \infty]$. For example, we may define $\infty + (-\infty) = (-\infty) + \infty = 0$.) Moreover, if $\{f_k\}$ is a sequence of measurable functions $f_k : \mathbb{R}^n \to [-\infty, \infty]$, then so are $\sup_k f_k(x)$, $\inf_k f_k(x)$, $\limsup_k f_k(x)$, $\limsup_k f_k(x)$. Thus $\lim_{k \to \infty} \inf_{j \ge k} f_j(x)$

if $\lim_{k\to\infty} f_k(x)$ exists $\forall x$, it is also measurable.

Definition. If $A \subset \mathbb{R}^n$, $A \in \mathcal{L}$, and $f : A \to [-\infty, \infty]$, we say that f is measurable (on A) if, when we extend f to be 0 on A^c , f is measurable on \mathbb{R}^n . Equivalently, we require that $f\chi_A$ is measurable for any extension of f.

Definition. If $f : \mathbb{R}^n \to \mathbb{C}$ (not including ∞), we say f is Lebesgue measurable if $\mathcal{R}ef$ and $\mathcal{I}mf$ are both measurable.

Fact. $f : \mathbb{R}^n \to \mathbb{C}$ is measurable iff for every open set $G \subset \mathbb{C}$, $f^{-1}[G] \in \mathcal{L}$.

Integration

First consider integration of a non-negative function $f : \mathbb{R}^n \to [0, \infty]$, with f measurable. Let N be a positive integer, and define

$$S_N = \sum_{k=0}^{\infty} k 2^{-N} \lambda \left(\{ x : k 2^{-N} \le f(x) < (k+1)2^{-N} \} \right) + \infty \cdot \lambda (\{ x : f(x) = +\infty \}).$$

In the last term on the right-hand-side, we use the convention $\infty \cdot 0 = 0$. The quantity S_N can be regarded as a "lower Lebesgue sum" approximating the volume under the graph of f by subdividing the range space $[0, \infty]$ rather than by subdividing the domain \mathbb{R}^n as in the case of Riemann integration.

Claim. $S_N \leq S_{N+1}$.

Proof. We have

$$\{x : k2^{-N} \le f(x) < (k+1)2^{-N} \}$$

= $\{x : k2^{-N} \le f(x) < (k+\frac{1}{2})2^{-N} \} \cup \{x : (k+\frac{1}{2})2^{-N} \le f(x) < (k+1)2^{-N} \}$

and the union is disjoint. Thus

$$\begin{aligned} k2^{-N}\lambda(\{x:k2^{-N} \le f(x) < (k+1)2^{-N}\}) \\ \le k2^{-N}\lambda\left(\{x:k2^{-N} \le f(x) < (k+\frac{1}{2})2^{-N}\}\right) \\ + \left(k+\frac{1}{2}\right)2^{-N}\lambda\left(\{x:\left(k+\frac{1}{2}\right)2^{-N} \le f(x) < (k+1)2^{-N}\}\right) \end{aligned}$$

and the claim follows after summing and redefining indices.

Definition. The Lebesgue integral of f is defined by:

$$\int_{\mathbb{R}^n} f = \lim_{N \to \infty} S_N.$$

This limit exists (in $[0, \infty]$) by the monotonicity $S_N \leq S_{N+1}$.

Other notation for the integral is

$$\int_{\mathbb{R}^n} f = \int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} f d\lambda.$$

General Measurable Functions

Let $f : \mathbb{R}^n \to [-\infty, \infty]$ be measurable. Define

$$f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ 0 & \text{if } f(x) < 0 \end{cases}, \qquad f_{-}(x) = \begin{cases} 0 & \text{if } f(x) > 0\\ -f(x) & \text{if } f(x) \le 0 \end{cases}.$$

Then f_+ and f_- are non-negative and measurable, and $(\forall x) f(x) = f_+(x) - f_-(x)$. The integral of f is only defined if at least one of $\int f_+ < \infty$ or $\int f_- < \infty$ holds, in which case we define

$$\int_{\mathbb{R}^n} f = \int_{\mathbb{R}^n} f_+ - \int_{\mathbb{R}^n} f_-$$

Definition. A measurable function is called *integrable* if both $\int f_+ < \infty$ and $\int f_- < \infty$. Since $|f| = f_+ + f_-$, this is equivalent to $\int |f| < \infty$.

Properties of the Lebesgue Integral

(We will write $f \in L^1$ to mean f is measurable and $\int |f| < \infty$.)

(1) If
$$f, g \in L^1$$
 and $a, b \in \mathbb{R}$, then $af + bg \in L^1$, and $\int (af + bg) = a \int f + b \int g$.

We will write f = g a.e. (almost everywhere) to mean $\lambda \{x : f(x) \neq g(x)\} = 0$.

- (2) If $f, g \in L^1$ and f = g a.e., then $\int f = \int g$.
- (3) If $f \ge 0$ and $\int f < \infty$, then $f < \infty$ a.e. Thus if $f \in L^1$, then $|f| < \infty$ a.e.

In integration theory, one often identifies two functions if they agree a.e., e.g., $\chi_{\mathbb{Q}} = 0$ a.e.

- (4) If $f \ge 0$ and $\int f = 0$, then f = 0 a.e. (This is not true if f can be both positive and negative, e.g., $\int_{-\infty}^{\infty} \frac{x}{1+x^4} dx = 0.$)
- (5) If A is measurable, $\int \chi_A = \lambda(A)$.

Definition. If A is a measurable set and $f : A \to [-\infty, \infty]$ is measurable, then $\int_A f = \int_{\mathbb{R}^n} f \chi_A$.

(6) If A and B are disjoint and $f\chi_{A\cup B} \in L^1$, then

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

Definition. If $f : \mathbb{R}^n \to \mathbb{C}$ is measurable, and both $\mathcal{R}ef$ and $\mathcal{I}mf \in L^1$, define $\int_{\mathbb{R}^n} f = \int_{\mathbb{R}^n} \mathcal{R}ef + i \int_{\mathbb{R}^n} \mathcal{I}mf$.

(7) If $f : \mathbb{R}^n \to \mathbb{C}$ is measurable, then $\mathcal{R}ef$ and $\mathcal{I}mf \in L^1$ iff $|f| \in L^1$. Moreover, $|\int f| \leq \int |f|$.

Comparison of Riemann and Lebesgue integrals

If f is bounded and defined on a bounded set and f is Riemann integrable, then f is Lebesgue integrable and the two integrals are equal.

Theorem. If f is bounded and defined on a bounded set, then f is Riemann integrable iff f is continuous a.e.

Note: The two theories vary in their treatment of infinities (in both domain and range). For example, the improper Riemann integral $\lim_{R\to\infty} \int_0^R \frac{\sin x}{x} dx$ exists and is finite, but $\frac{\sin x}{x}$ is not Lebesgue integrable over $[0,\infty)$ since $\int_0^\infty \left|\frac{\sin x}{x}\right| dx = \infty$.

Convergence Theorems

Convergence theorems give conditions under which one can interchange a limit with an integral. That is, if $\lim_{k\to\infty} f_k(x) = f(x)$ (maybe only a.e.), where f_k and f are measurable, give conditions which guarantee that $\lim_{k\to\infty} \int f_k = \int f$. This is not true in general:

Examples.

- (1) Let $f_k = \chi_{[k,\infty)}$. Then $f_k \ge 0$, $\lim f_k = 0$, and $\int f_k = \infty$, so $\lim \int f_k \ne \int \lim f_k$.
- (2) Let $f_k = \chi_{[k,k+1]}$. Then again $\lim f_k = 0$, and $\int f_k = 1$, so $\lim \int f_k \neq \int \lim f_k$.

Monotone Convergence Theorem. (Jones calls this the "Increasing Convergence Theorem".) If $0 \leq f_1 \leq f_2 \leq \cdots$ a.e., $f = \lim f_k$ a.e., and f_k and f are measurable, then $\lim_{k\to\infty} \int f_k = \int f$. Here all the limits are non-negative extended real numbers. Note that $\lim f_k$ exists a.e. by monotonicity.

Fatou's Lemma. If f_k are nonnegative a.e. and measurable, then

$$\int \liminf_{k \to \infty} f_k \le \liminf_{k \to \infty} \int f_k.$$

Lebesgue Dominated Convergence Theorem. Suppose $\{f_k\}$ is a sequence of complexvalued (or extended-real-valued) measurable functions. Assume $\lim_k f_k = f$ a.e., and assume that there exists a "dominating function," i.e., an *integrable* function g such that $|f_k(x)| \leq g(x)$ a.e. Then

$$\int f = \lim_{k \to \infty} \int f_k.$$

A corollary is the

Bounded Convergence Theorem. Let A be a measurable set of finite measure, and suppose $|f_k| \leq M$ in A. Assume $\lim_k f_k$ exists a.e. Then $\lim_k \int_A f_k = \int_A f$. (Apply Dominated Convergence Theorem with $g = M\chi_A$.)

The following result illustrates how Fatou's Lemma can be used together with a dominating sequence to obtain convergence.

Extension of Lebesgue Dominated Convergence Theorem. Suppose $g_k \ge 0$, $g \ge 0$ are all integrable, and $\int g_k \to \int g$, and $g_k \to g$ a.e. Suppose f_k , f are all measurable, $|f_k| \le g_k$ a.e. (which implies that f_k is integrable), and $f_k \to f$ a.e. (which implies $|f| \le g$ a.e.). Then $\int |f_k - f| \to 0$ (which implies $\int f_k \to \int f$).

Proof. $|f_k - f| \leq |f_k| + |f| \leq g_k + g$ a.e. Apply Fatou to $g_k + g - |f_k - f|$ (which is ≥ 0 a.e.). Then $\int \liminf(g_k + g - |f_k - f|) \leq \liminf \int (g_k + g - |f_k - f|)$. So $\int 2g \leq \lim \int g_k + \int g - \limsup \int |f_k - f| = 2 \int g - \limsup \int |f_k - f|$. Since $\int g < \infty$, $\limsup \int |f_k - f| \leq 0$. Thus $\int |f_k - f| \to 0$.

Example — the Cantor Ternary Function.

The Cantor ternary function is a good example in differentiation and integration theory. It is a nondecreasing continuous function $f: [0,1] \to [0,1]$ defined as follows. Let C be the Cantor set. If $x \in C$, say $x = \sum_{k=1}^{\infty} d_k 3^{-k}$ with $d_k \in \{0,2\}$, set $f(x) = \sum_{k=1}^{\infty} \left(\frac{1}{2}d_k\right) 2^{-k}$. Recall that $[0,1] \setminus C$ is the disjoint union of open intervals, the middle thirds which were removed in the construction of C. Define f to be a constant on each of these open intervals, namely $f = \frac{1}{2}$ on $\left(\frac{1}{2}, \frac{2}{3}\right)$, $f = \frac{1}{4}$ on $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $f = \frac{3}{4}$ on $\left(\frac{7}{9}, \frac{8}{9}\right)$, etc. The general definition is: for $x \in [0,1]$, write $x = \sum_{k=1}^{\infty} d_k 3^{-k}$ where $d_k \in \{0,1,2\}$, let K be the smallest k for which $d_k = 1$, and define $f(x) = 2^{-K} + \sum_{k=1}^{K-1} \left(\frac{1}{2}d_k\right) 2^{-k}$. The graph of f looks like:

Let us calculate $\int_0^1 f(x) dx$ using our convergence theorems. Define a sequence of functions $f_k, k \ge 1$, inductively by:

$$\begin{aligned} f_1 &= \frac{1}{2}\chi_{\left(\frac{1}{3},\frac{2}{3}\right)} \\ f_2 &= f_1 + \frac{1}{4}\chi_{\left(\frac{1}{9},\frac{2}{9}\right)} + \frac{3}{4}\chi_{\left(\frac{7}{9},\frac{8}{9}\right)}, \end{aligned}$$
 etc.

Then each f_k is a simple function, i.e., a finite linear combination of characteristic functions of measurable sets. Note that if $\varphi = \sum_{j=1}^{N} a_j \chi_{A_j}$ is a simple function, where $A_j \in \mathcal{L}$ and $\lambda(A_j) < \infty$, then $\int \varphi = \sum_{j=1}^{N} a_j \lambda(A_j)$. Also, $f_k(x) \to f(x)$ for $x \in [0,1] \setminus C$, and $f_k(x) = 0$ for $x \in C(\forall k)$. Since $\lambda(C) = 0$, $f_k \to f$ a.e. on [0,1]. So by the MCT or LDCT or BCT, $\int_0^1 f(x) dx = \lim_{k \to \infty} \int_0^1 f_k(x) dx$. Now

$$\int f_k = \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3^2} \cdot \frac{1}{2^2} (1+3) + \frac{1}{3^3} \cdot \frac{1}{2^3} (1+3+5+7) + \cdots + \frac{1}{3^k} \cdot \frac{1}{2^k} (1+3+5+\cdots+(2^k-1)).$$

Recall that

$$1 + 3 + 5 + \dots + (2j - 1) = j^2$$

 So

$$\int f = \lim_{k} \int f_{k} = \sum_{m=1}^{\infty} \frac{1}{3^{m}} \frac{1}{2^{m}} 2^{2m-2} = \frac{1}{6} \left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^{2} + \dots \right) = \frac{1}{6} \left(\frac{1}{1 - \frac{2}{3}} \right) = \frac{1}{2}$$

(An easier way to see this is to note that f(1-x) = 1 - f(x), so $\int_0^1 f(1-x)dx = 1 - \int_0^1 f(x)dx$. But changing variables gives $\int_0^1 f(1-x)dx = \int_0^1 f(x)dx$, so $\int_0^1 f(x)dx = \frac{1}{2}$.)

"Multiple Integration" via Iterated Integrals

Suppose n = m + l, so $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^l$. For $x \in \mathbb{R}^n$, write $x = (y, z), y \in \mathbb{R}^m, z \in \mathbb{R}^l$. Then $\int_{\mathbb{R}^n} f d\lambda_n = \int_{\mathbb{R}^n} f(x) d\lambda_n(x) = \int_{\mathbb{R}^n} f(y, z) d\lambda_n(y, z)$. Write dx for $d\lambda_n(x)$, dy for $d\lambda_m(y)$, dz for $d\lambda_l(z)$ (λ_n denotes Lebesgue measure on \mathbb{R}^n). Consider the iterated integrals

$$\int_{\mathbb{R}^l} \left[\int_{\mathbb{R}^m} f(y, z) dy \right] dz \quad \text{and} \quad \int_{\mathbb{R}^m} \left[\int_{\mathbb{R}^l} f(y, z) dz \right] dy.$$

Questions:

- (1) When do these iterated integrals agree?
- (2) When are they equal to $\int_{\mathbb{R}^n} f(x) dx$?

There are *two* key theorems, usually used in tandem. The first is Tonelli's Theorem, for non-negative functions.

(1) Tonelli's Theorem. Suppose $f \ge 0$ is measurable on \mathbb{R}^n . Then for a.e. $z \in \mathbb{R}^l$, the function $f_z(y) \equiv f(y, z)$ is measurable on \mathbb{R}^m (as a function of y), and

$$\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^l} \left[\int_{\mathbb{R}^m} f(y, z) dy \right] dz.$$

It can happen in Tonelli's Theorem that for some z, the "slice function" f_z is not measurable:

Example. Let $A \subset \mathbb{R}^m$ be non-measurable. Pick $z_0 \in \mathbb{R}^l$ and define $f : \mathbb{R}^n \to \mathbb{R}$ by:

$$f(y,z) = \begin{cases} 0 & (z \neq z_0) \\ \chi_A(y) & (z = z_0) \end{cases}$$

Then f is measurable on \mathbb{R}^n (since $\lambda_n(\{x : f(x) \neq 0\}) = 0$). But $f_{z_0}(y) = f(y, z_0) = \chi_A(y)$ is not measurable on \mathbb{R}^m . However, since the set of z's for which $\int f_z(y) dy$ is undefined has measure zero, the iterated integral still makes sense and is 0.

② Fubini's Theorem. Suppose f is integrable on \mathbb{R}^n (i.e., f is measurable and $\int |f| < \infty$). Then for a.e. $z \in \mathbb{R}^l$, the slice functions $f_z(y)$ are integrable on \mathbb{R}^m , and

$$\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^l} \left[\int_{\mathbb{R}^m} f(y, z) dy \right] dz.$$

Typically one wants to calculate $\int_{\mathbb{R}^n} f(x) dx$ by doing an iterated integral. One uses Tonelli to verify the hypothesis of Fubini as follows:

- (i) Since |f| is non-negative, Tonelli implies that one can calculate $\int_{\mathbb{R}^n} |f|$ by doing either iterated integral. If either one is $< \infty$, then the hypotheses of Fubini have been verified: $\int_{\mathbb{R}^n} |f(x)| dx = \int \left[\int |f(y,z)| dz \right] dy < \infty.$
- (ii) Having verified now that $\int_{\mathbb{R}^n} |f| < \infty$, Fubini implies that $\int_{\mathbb{R}^n} f$ can be calculated by doing either iterated integral.

Example. Fubini's Theorem can fail without the hypothesis that $\int |f| < \infty$. Define f on $(0,1) \times (0,1)$ by

$$f(x,y) = \begin{cases} x^{-2} & 0 < y \le x < 1\\ -y^{-2} & 0 < x < y < 1 \end{cases}$$

Then $\int_0^1 \int_0^1 f(x, y) dy dx = \int_0^1 \left(\int_0^x x^{-2} dy - \int_x^1 y^{-2} dy \right) dx = \int_0^1 (x^{-1} + 1 - x^{-1}) dx = 1$. Similarly, $\int_0^1 \int_0^1 f(x, y) dx dy = -1$. Note that by Tonelli,

$$\int_{(0,1)\times(0,1)} |f(x,y)| d\lambda_2(x,y) = \int_0^1 \int_0^1 |f(x,y)| dy dx = \int_0^1 \left(x^{-1} + \int_x^1 y^{-2} dy \right) dx = \infty.$$

L^p spaces

 $1 \leq \mathbf{p} < \infty$. Fix a measurable subset $A \subset \mathbb{R}^n$. Consider measurable functions $f : A \to \mathbb{C}$ for which $\int_A |f|^p < \infty$. Define $||f||_p = (\int_A |f|^p)^{\frac{1}{p}}$. On this set of functions, $||f||_p$ is only a *seminorm*:

$$\begin{split} \|f\|_p &\geq 0 \qquad (\text{but } \|f\|_p = 0 \text{ does not imply } f = 0, \text{ only } f(x) = 0 \text{ a.e.}) \\ \|\alpha f\|_p &= |\alpha| \cdot \|f\|_p \\ \|f + g\|_p &\leq \|f\|_p + \|g\|_p \qquad (\text{Minkowski's Inequality}) \end{split}$$

(Note: $||f||_p = 0 \Rightarrow \int_A |f|^p = 0 \Rightarrow f = 0$ a.e. on A.) Define an equivalence relation on this set of functions:

$$f \sim g$$
 means $f = g$ a.e. on A

Set $\tilde{f} = \{g \text{ measurable on } A : f = g \text{ a.e.} \}$ to be the equivalence class of f. Define $\|\tilde{f}\|_p = \|f\|_p$; this is independent of the choice of representative in \tilde{f} . Define

$$L^{p}(A) = \{ \widetilde{f} : \int_{A} |f|^{p} < \infty \}.$$

Then $\|\cdot\|_p$ is a norm on $L^p(A)$. We usually abuse notation and write $f \in L^p(A)$ to mean $\tilde{f} \in L^p(A)$.

Example. We say $f \in L^p(\mathbb{R}^n)$ is "continuous" if $\exists g \in L^p(\mathbb{R}^n)$ for which $g : \mathbb{R}^n \to \mathbb{C}$ is continuous and f = g a.e. Equivalently, there exists $g \in \widetilde{f}$ such that g is continuous. In this case, one typically works with the representative g of \widetilde{f} which is continuous. This continuous representative is unique since two continuous functions which agree a.e. must be equal everywhere.

 $\mathbf{p} = \infty$. Let $A \subset \mathbb{R}^n$ be measurable. Consider "essentially bounded" measurable functions $f: A \to \mathbb{C}$, i.e., for which $\exists M < \infty$ so that $|f(x)| \leq M$ a.e. on A. Define

$$||f||_{\infty} = \inf\{M : |f(x)| \le M \text{ a.e. on } A\},\$$

the essential sup of |f|. If $0 < ||f||_{\infty} < \infty$, then for each $\epsilon > 0$, $\lambda \{x \in A : |f(x)| > ||f||_{\infty} - \epsilon \} > 0$. As above, $\|\cdot\|_{\infty}$ is a seminorm on the set of essentially bounded measurable functions, and $\|\cdot\|_{\infty}$ is a norm on

$$L^{\infty}(A) = \{ \widetilde{f} : \|f\|_{\infty} < \infty \}$$

Fact. For $f \in L^{\infty}(A)$, $|f(x)| \leq ||f||_{\infty}$ a.e. This is true since

$$\{x: |f(x)| > ||f||_{\infty}\} = \bigcup_{m=1}^{\infty} \{x: |f(x)| > ||f||_{\infty} + \frac{1}{m}\},\$$

and each of these latter sets has measure 0. So the infimum is attained in the definition of $||f||_{\infty}$.

Fact. $L^{\infty}(\mathbb{R}^n)$ is not separable (i.e., it does not have a countable dense subset).

Example. For each $\alpha \in \mathbb{R}$, let $f_{\alpha}(x) = \chi_{[\alpha,\alpha+1]}(x)$. For $\alpha \neq \beta$, $||f_{\alpha} - f_{\beta}||_{\infty} = 1$. So $\{B_{\frac{1}{3}}(f_{\alpha}) : \alpha \in \mathbb{R}\}$ is an uncountable collection of disjoint nonempty open subsets in $L^{\infty}(\mathbb{R})$.

Conjugate Exponents. If $1 \le p \le \infty$, $1 \le q \le \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$ (where $\frac{1}{\infty} \equiv 0$), we say that p and q are conjugate exponents. Examples: $\begin{array}{c|c} p \\ q \end{array} \begin{vmatrix} 1 & 2 & 3 & \infty \\ \infty & 2 & \frac{3}{2} & 1 \end{vmatrix}$.

Hölder's Inequality. If $1 \le p \le \infty$, $1 \le q \le \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\int |fg| \le \|f\|_p \cdot \|g\|_q$$

(Note: if $\int |fg| < \infty$, also $|\int fg| \le \int |fg| \le ||f||_p \cdot ||g||_q$.)

Remark. The cases $\begin{cases} p=1\\ q=\infty \end{cases}$ and $\begin{cases} p=\infty\\ q=1 \end{cases}$ are obvious. When p=2, q=2, this is the Cauchy-Schwarz inequality $\int |fg| \leq ||f||_2 \cdot ||g||_2$.

Completeness

Theorem. (Riesz-Fischer) Let $A \subset \mathbb{R}^n$ be measurable and $1 \leq p \leq \infty$. Then $L^p(A)$ is complete in the L^p norm $\|\cdot\|_p$.

The completeness of L^p is a crucially important feature of the Lebesgue theory.

Locally L^p Functions

Definition. Let $G \subset \mathbb{R}^n$ be open. Define $L^p_{loc}(G)$ to be the set of all equivalence classes of measurable functions f on G such that for each compact set $K \subset G$, $f|_K \in L^p(K)$.

There is a metric on L_{loc}^p which makes it a complete metric space (but *not* a Banach space; the metric is not given by a norm). The metric is constructed as follows. Let K_1, K_2, \ldots be a "compact exhaustion" of G, i.e., a sequence of nonempty compact subsets of G with $K_m \subset K_{m+1}^{\circ}$ (where K_{m+1}° denotes the interior of K_{m+1}), and $\bigcup_{m=1}^{\infty} K_m = G$ (e.g., $K_m = \{x \in X_m \in X_m \}$ $G : \operatorname{dist}(x, G^c) \ge \frac{1}{m} \text{ and } |x| \le m\}$). Then for any compact set $K \subset G, K \subset \bigcup_{m=1}^{\infty} K_m \subset \mathbb{C}$ $\bigcup_{m=1}^{\infty} K_{m+1}^{\circ}, \text{ so } \exists m \text{ for which } K \subset K_m. \text{ The distance in } L^p_{\text{loc}}(G) \text{ is }$

$$d(f,g) = \sum_{m=1}^{\infty} 2^{-m} \frac{\|f-g\|_{p,K_m}}{1+\|f-g\|_{p,K_m}}.$$

It is easy to see that $d(f_j, f) \to 0$ iff $(\forall K^{\text{compact}} \subset G) ||f_j - f||_{p,K} \to 0.$

To see that d is a metric, one uses the fact that if (X, p) is a metric space, and we define $\sigma(x,y) = \frac{p(x,y)}{1+p(x,y)}$, then σ is a metric on X, and (X,p) is uniformly equivalent to (X,σ) . To show that σ satisfies the triangle inequality, one uses that $t \mapsto \frac{t}{1+t}$ is increasing on $[0,\infty)$. Note that $\sigma(x, y) < 1$ for all $x, y \in X$.

Continuous Functions not closed in L^p

Let $G \subset \mathbb{R}^n$ be open and *bounded*. Consider $C_b(G)$, the set of bounded continuous functions on G. Clearly $C_b(G) \subset L^p(G)$. But $C_b(G)$ is not closed in $L^p(G)$ if $p < \infty$.

Example. Take G = (0, 1) and let f_j have graph: in $\|\cdot\|_p$ for $1 \le p < \infty$. But there is no continuous function f for which $\|f_j - f\|_p \to 0$ as $j \to \infty$.

Facts. Suppose $1 \leq p < \infty$ and $G^{\text{open}} \subset \mathbb{R}^n$.

(1) The set of simple functions (finite linear combinations of characteristic functions of measurable sets) with support in a bounded subset of G is dense in $L^{p}(G)$.

- (2) The set of step functions (finite linear combinations of characteristic functions of rectangles) with support in a bounded subset of G is dense in $L^p(G)$.
- (3) $C_c(G)$ is dense in $L^p(G)$, where $C_c(G)$ is the set of continuous functions f whose support $\overline{\{x: f(x) \neq 0\}}$ is a compact subset of G.
- (4) $C_c^{\infty}(G)$ is dense in $L^p(G)$, where $C_c^{\infty}(G)$ is the set of C^{∞} functions whose support is a compact subset of G. (Idea: mollify a given $f \in L^p(G)$. We will discuss this when we talk about convolutions.)

Consequence: For $1 \leq p < \infty$, $L^p(G)$ is separable (e.g., use (2), taking rectangles with rational endpoints and linear combinations with rational coefficients).

Another consequence of the density of $C_c(\mathbb{R}^n)$ in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$ is the continuity of translation. For $f \in L^p(\mathbb{R}^n)$ and $y \in \mathbb{R}^n$, define $f_y(x) = f(x-y)$ (translate f by y). **Claim.** If $1 \leq p < \infty$, the map $y \mapsto f_y$ from \mathbb{R}^n into $L^p(\mathbb{R}^n)$ is uniformly continuous.

Proof. Given $\epsilon > 0$, choose $g \in C_c(\mathbb{R}^n)$ for which $||g - f||_p < \frac{\epsilon}{3}$. Let

$$M = \lambda(\{x : g(x) \neq 0\}) < \infty.$$

By uniform continuity of g, $\exists \delta > 0$ for which

$$|z - y| < \delta \Rightarrow (\forall x)|g_z(x) - g_y(x)| < \frac{\epsilon}{3(2M)^{\frac{1}{p}}}.$$

Then for $|z - y| < \delta$,

$$\|g_z - g_y\|_p^p = \int |g_z - g_y|^p \le \lambda(\{x : g_z(x) \neq 0 \text{ or } g_y(x) \neq 0\}) \left(\frac{\epsilon}{3(2M)^{\frac{1}{p}}}\right)^p \le (2M)\frac{\epsilon^p}{3^p(2M)},$$

i.e., $\|g_z - g_y\|_p \le \frac{\epsilon}{3}$. Thus $\|f_z - f_y\|_p \le \|f_z - g_z\|_p + \|g_z - g_y\|_p + \|g_y - f_y\|_p < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$.

L^p convergence and pointwise a.e. convergence

 $\mathbf{p} = \infty$. $f_k \to f$ in $L^{\infty} \Rightarrow$ on the complement of a set of measure 0, $f_k \to f$ uniformly. (Let $A_k = \{x : |f_k(x) - f(x)| > ||f_k - f||_{\infty}\}$, and $A = \bigcup_{k=1}^{\infty} A_k$. Since each $\lambda(A_k) = 0$, also $\lambda(A) = 0$. On A^c , $(\forall k)|f_k(x) - f(x)| \le ||f_k - f||_{\infty}$, so $f_k \to f$ uniformly on A^c .)

 $1 \leq \mathbf{p} < \infty$. Let $A \subset \mathbb{R}^n$ be measurable. Here $f_k \to f$ in $L^p(A)$ (i.e., $||f_k - f||_p \to 0$) does not imply that $f_k \to f$ a.e. Example: $A = [0,1], f_1 = \chi_{[0,1]}, f_2 = \chi_{[0,\frac{1}{2}]}, f_3 = \chi_{[\frac{1}{2},1]}, f_4 = \chi_{[0,\frac{1}{4}]}, \cdots$ etc.

Clearly $||f_k||_p \to 0$, so $f_k \to 0$ in L^p , but for no $x \in [0, 1]$ does $f_k(x) \to 0$. So L^p convergence for $1 \le p < \infty$ does not imply a.e. convergence. However:

Fact. If $1 \leq p < \infty$ and $f_k \to f$ in $L^p(A)$, then \exists a subsequence f_{k_j} for which $f_{k_j} \to f$ a.e. as $j \to \infty$.

Example. Suppose $A \subset \mathbb{R}^n$ is measurable, $1 \leq p < \infty$, $f_k, f \in L^p(A)$, and $f_k \to f$ a.e. Question: when does $f_k \to f$ in $L^p(A)$ (i.e. $||f_k - f||_p \to 0$)? Answer: In this situation, $f_k \to f$ in $L^p(A)$ iff $||f_k||_p \to ||f||_p$.

Proof.

- (\Rightarrow) If $||f_k f||_p \to 0$, then $|||f_k||_p ||f||_p| \le ||f_k f||_p$, so $||f_k||_p \to ||f||_p$.
- (\Leftarrow) First, observe: If $x, y \ge 0$, then $(x+y)^p \le 2^p(x^p+y^p)$. (Proof: let $z = \max\{x, y\}$; then $(x+y)^p \le (2z)^p = 2^p z^p \le 2^p(x^p+y^p)$.) We will use Fatou's lemma with a "dominating sequence." We have

$$|f_k - f|^p \le (|f_k| + |f|)^p \le 2^p (|f_k|^p + |f|^p).$$

Apply Fatou to $2^p(|f_k|^p + |f|^p) - |f_k - f|^p \ge 0$. By assumption, $||f_k||_p \to ||f||_p$, so $\int |f_k|^p \to \int |f|^p$. We thus get

$$\int 2^{p}(|f|^{p} + |f|^{p}) - 0 \leq \liminf \int 2^{p}(|f_{k}|^{p} + |f|^{p}) - |f_{k} - f|^{p}$$
$$= \int 2^{p}(|f|^{p} + |f|^{p}) - \limsup \int |f_{k} - f|^{p}.$$
Thus $\limsup \int |f_{k} - f|^{p} \leq 0$. So $\|f_{k} - f\|_{p}^{p} = \int |f_{k} - f|^{p} \to 0$. So $\|f_{k} - f\|_{p} \to 0$.

Intuition for growth of functions in $L^p(\mathbb{R}^n)$

Fix n, fix p with $1 \leq p < \infty$, and fix $a \in \mathbb{R}$. Define

$$f_1(x) = \frac{1}{|x|^a} \chi_{\{x:|x|<1\}} \qquad \qquad f_2(x) = \frac{1}{|x|^a} \chi_{\{x:|x|>1\}}.$$

So f_1 blows up near x = 0 for a > 0, but vanishes near ∞ . And f_2 vanishes near 0 but grows/decays near ∞ at a rate depending on a. To calculate the integrals of powers of f_1 and f_2 , use polar coordinates on \mathbb{R}^n .

Polar Coordinates in \mathbb{R}^n

Here $d\sigma$ is "surface area" measure on S^{n-1} .

Evaluating the integral in polar coordinates,

$$\int_{\mathbb{R}^n} |f_1(x)|^p dx = \int_{S^{n-1}} \left[\int_0^1 \left(\frac{1}{r^a} \right)^p r^{n-1} dr \right] d\sigma = \omega_n \int_0^1 r^{n-ap-1} dr,$$

where $\omega_n = \sigma(S^{n-1})$. This is $< \infty$ iff n - ap - 1 > -1, i.e., $a < \frac{n}{p}$. So $f_1 \in L^p(\mathbb{R}^n)$ iff $a < \frac{n}{p}$. Similarly, $f_2 \in L^p(\mathbb{R}^n)$ iff $a > \frac{n}{p}$.

Conclusion. For any $p \neq q$ with $1 \leq p, q \leq \infty$, $L^p(\mathbb{R}^n) \not\subset L^q(\mathbb{R}^n)$.

However, for sets A of finite measure, we have:

Claim. If $\lambda(A) < \infty$ and $1 \le p < q \le \infty$, then $L^q(A) \subset L^p(A)$, and

$$||f||_p \le \lambda(A)^{\frac{1}{p} - \frac{1}{q}} ||f||_q.$$

Proof. This is obvious when $q = \infty$. So suppose $1 \le p < q < \infty$. Let $r = \frac{q}{p}$. Then

 $1 < r < \infty$. Let s be the conjugate exponent to r, so $\frac{1}{r} + \frac{1}{s} = 1$. Then $\frac{1}{s} = 1 - \frac{p}{q} = p\left(\frac{1}{p} - \frac{1}{q}\right)$. By Hölder,

$$||f||_{p}^{p} = \int_{A} |f|^{p} = \int \chi_{A} |f|^{p} \leq ||\chi_{A}||_{s} \cdot ||f|^{p}||_{r} = \lambda(A)^{\frac{1}{s}} \left(\int |f|^{q}\right)^{\frac{p}{q}}$$
$$= \lambda(A)^{p\left(\frac{1}{p} - \frac{1}{q}\right)} ||f||_{q}^{p}.$$

Now take p^{th} roots.

Remark. This is in sharp contrast to what happens in l^p . For sequences $\{x_k\}_{k=1}^{\infty}$, the l^{∞} norm is $||x||_{\infty} = \sup_k |x_k|$, and for $1 \le p < \infty$, the l^p norm is $||x||_p = (\sum_k |x_k|^p)^{\frac{1}{p}}$.

Claim. For $1 \le p < q \le \infty$, $l^p \subset l^q$. In fact $||x||_q \le ||x||_p$.

Proof. This is obvious when $q = \infty$. So suppose $1 \le p < q < \infty$. Then

$$\begin{aligned} \|x\|_{q}^{q} &= \sum_{k} |x_{k}|^{q} &= \sum_{k} |x_{k}|^{q-p} |x_{k}|^{p} \\ &\leq \|x\|_{\infty}^{q-p} \sum |x_{k}|^{p} \leq \|x\|_{p}^{q-p} \|x\|_{p}^{p} = \|x\|_{p}^{q}. \end{aligned}$$

Take q^{th} roots to get $||x||_q \leq ||x||_p$.

г	_	
L		