Lebesgue Integration on \mathbb{R}^{n}

The treatment here is based loosely on that of Jones, Lebesgue Integration on Euclidean Space. We give an overview from the perspective of a user of the theory.

Riemann integration is based on subdividing the domain of f. This leads to the requirement of some "smoothness" of f for the Riemann integal to be defined: for x, y close, $f(x)$ and $f(y)$ need to have something to do with each other. Lebesgue integration is based on subdividing the range space of f : it is built on inverse images.

Typical Example. For a set $E \subset \mathbb{R}^{n}$, define the characteristic function of the set E to be

$$
\chi_{E}(x)=\left\{\begin{array}{l}
1 \text { if } x \in E \\
0 \text { if } x \notin E
\end{array} .\right.
$$

Consider $\int_{0}^{1} \chi_{\mathbb{Q}}(x) d x$, where $\mathbb{Q} \subset \mathbb{R}$ is the set of rational numbers:

Riemann: The upper Riemann integral is the inf of the "upper sums": $\overline{\int_{0}^{1}} \chi_{\mathbb{Q}}(x) d x=1$.

Since $\overline{\int_{0}^{1}} \chi_{\mathbb{Q}}(x) d x \neq \underline{\int_{0}^{1}} \chi_{\mathbb{Q}}(x) d x, \chi_{\mathbb{Q}}$ is not Riemann integrable.

Lebesgue: Let $\lambda(E)$ denote the Lebesgue measure ("size") of E (to be defined). Then

$$
\begin{aligned}
\int_{0}^{1} \chi_{\mathbb{Q}}(x) d x & =1 \cdot \lambda(\mathbb{Q} \cap[0,1])+0 \cdot \lambda\left(\mathbb{Q}^{c} \cap[0,1]\right) \\
& =1 \cdot 0+0 \cdot 1=0
\end{aligned}
$$

First, we must develop the theory of Lebesgue measure to measure the "size" of sets.
Advantages of Lebesgue theory over Riemann theory:

1. Can integrate more functions (on finite intervals).
2. Good convergence theorems: $\lim _{n \rightarrow \infty} \int f_{n}(x) d x=\int \lim _{n \rightarrow \infty} f_{n}(x) d x$ under mild assumptions.
3. Completeness of L^{p} spaces.

Our first task is to construct Lebesgue measure on \mathbb{R}^{n}. For $A \subset \mathbb{R}^{n}$, we want to define $\lambda(A)$, the Lebesgue measure of A, with $0 \leq \lambda(A) \leq \infty$. This should be a version of n dimensional volume for general sets. However, it turns out that one can't define $\lambda(A)$ for all subsets $A \subset \mathbb{R}^{n}$ and maintain all the desired properties. We will define $\lambda(A)$ for "[Lebesgue] measurable" subsets of \mathbb{R}^{n} (very many subsets).

We define $\lambda(A)$ for increasingly complicated sets $A \subset \mathbb{R}^{n}$. See Jones for proofs of the unproved assertions made below.

Step 0. Define $\lambda(\emptyset)=0$.
Step 1. We call a set $I \subset \mathbb{R}^{n}$ a special rectangle if $I=\left[a_{1}, b_{1}\right) \times\left[a_{2}, b_{2}\right) \times \cdots \times\left[a_{n}, b_{n}\right)$, where $-\infty<a_{j}<b_{j}<\infty$. (Note: Jones leaves the right ends closed). Define $\lambda(I)=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \cdots\left(b_{n}-a_{n}\right)$.

Step 2. We call a set $P \subset \mathbb{R}^{n}$ a special polygon if P is a finite union of special rectangles.

Fact: Every special polygon is a disjoint union of finitely many special rectangles.
For $P=\bigcup_{k=1}^{N} I_{k}$, where the I_{k} 's are disjoint (i.e., for $j \neq k, I_{j} \cap I_{k}=\emptyset$), define $\lambda(P)=\sum_{k=1}^{N} \lambda\left(I_{k}\right)$. Note that a special polygon may be written as a disjoint union of special rectangles in different ways.
Fact: $\lambda(P)$ is independent of the way that P is written as a disjoint union of special rectangles.

Step 3. Let $G \subset \mathbb{R}^{n}$ be a nonempty open set. Define

$$
\lambda(G)=\sup \{\lambda(P): P \text { is a special polygon, } P \subset G\} .
$$

(Approximation by special polygons from the inside.)
Remark: Every nonempty open set in \mathbb{R}^{n} can be written as a countable disjoint union of special rectangles.

Step 4. Let $K \subset \mathbb{R}^{n}$ be compact. Define

$$
\lambda(K)=\inf \{\lambda(G): G \text { open, } K \subset G\}
$$

(Approximation by open sets from the outside.)
Fact: If $K=\bar{P}$ for a special polygon P, then $\lambda(K)=\lambda(P)$.

Now for $A \subset \mathbb{R}^{n}, A$ arbitrary, define

$$
\begin{aligned}
& \lambda^{*}(A)=\inf \{\lambda(G): G \text { open, } A \subset G\} \quad(\text { outer measure of } A) \\
& \lambda_{*}(A)=\sup \{\lambda(K): K \text { compact, } K \subset A\} \quad(\text { inner measure of } A)
\end{aligned}
$$

Facts: If A is open or compact, then $\lambda_{*}(A)=\lambda(A)=\lambda^{*}(A)$. Hence for any $A, \lambda_{*}(A) \leq$ $\lambda^{*}(A)$.

Step 5. A bounded set $A \subset \mathbb{R}^{n}$ is said to be [Lebesgue] measurable if $\lambda_{*}(A)=\lambda^{*}(A)$. In this case we define $\lambda(A)=\lambda_{*}(A)=\lambda^{*}(A)$.

Step 6. An arbitrary set $A \subset \mathbb{R}^{n}$ is said to be [Lebesgue] measurable if for each $R>0$, $A \cap B(0, R)$ is measurable, where $B(0, R)$ is the open ball of radius R with center at the origin. If A is measurable, define $\lambda(A)=\sup _{R>0} \lambda(A \cap B(0, R))$.

Let \mathcal{L} denote the collection of all Lebesgue measurable subsets of \mathbb{R}^{n}.

Fact. \mathcal{L} is a σ-algebra of subsets of \mathbb{R}^{n}. That is, \mathcal{L} has the properties:
(i) $\emptyset, \mathbb{R}^{n} \in \mathcal{L}$.
(ii) $A \in \mathcal{L} \Rightarrow A^{c} \in \mathcal{L}$.
(iii) If $A_{1}, A_{2}, \ldots \in \mathcal{L}$ is a countable collection of subsets of \mathbb{R}^{n} in \mathcal{L}, then $\bigcup_{k=1}^{\infty} A_{k} \in \mathcal{L}$.

Fact. If \mathcal{S} is any collection of subsets of a set X, then there is a smallest σ-algebra \mathcal{A} of subsets of X containing \mathcal{S} (i.e., with $\mathcal{S} \subset \mathcal{A}$), namely, the intersection of all σ-algebras of subsets of X containing \mathcal{S}. This smallest σ-algebra \mathcal{A} is called the σ-algebra generated by \mathcal{S}.

Definition. The smallest σ-algebra of subsets of \mathbb{R}^{n} containing the open sets is called the collection \mathcal{B} of Borel sets. Closed sets are Borel sets.

Fact. Every open set is [Lebesgue] measurable. Thus $\mathcal{B} \subset \mathcal{L}$.

Fact. If $A \in \mathcal{L}$, then $\lambda_{*}(A)=\lambda(A)=\lambda^{*}(A)$.

Caution: However, $\lambda_{*}(A)=\lambda^{*}(A)=\infty$ does not imply $A \in \mathcal{L}$.

Properties of Lebesgue measure

λ is a measure. This means:

1. $\lambda(\emptyset)=0$.
2. $(\forall A \in \mathcal{L}) \lambda(A) \geq 0$.
3. If $A_{1}, A_{2}, \ldots \in \mathcal{L}$ are disjoint then $\lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$. (countable additivity)

Consequences:

(i) If $A, B \in \mathcal{L}$ and $A \subset B$, then $\lambda(A) \leq \lambda(B)$.
(ii) If $A_{1}, A_{2}, \cdots \in \mathcal{L}$, then $\lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$. (countable subadditivity)

Remark: Both (i) and (ii) are true of outer measure λ^{*} on all subsets of \mathbb{R}^{n}.

Sets of Measure Zero

Fact. If $\lambda^{*}(A)=0$, then $0 \leq \lambda_{*}(A) \leq \lambda^{*}(A)=0$, so $0=\lambda_{*}(A)=\lambda^{*}(A)$, so $A \in \mathcal{L}$. Thus every subset of a set of measure zero is also measurable (we say λ is a complete measure).

Characterization of Lebesgue measurable sets

Definition. A set is called a G_{δ} if it is the intersection of a countable collection of open sets. A set is called an F_{σ} if it is the union of a countable collection of closed sets. G_{δ} sets and F_{σ} sets are Borel sets.

Fact. A set $A \subset \mathbb{R}^{n}$ is Lebesgue measurable iff \exists a G_{δ} set G and an F_{σ} set F for which $F \subset A \subset G$ and $\lambda(G \backslash F)=0$. (Note: $G \backslash F=G \cap F^{c}$ is a Borel set.)

Examples.

(0) If $A=\{a\}$ is a single point, then $A \in \mathcal{L}$ and $\lambda(A)=0$.
(1) If $A=\left\{a_{1}, a_{2}, \ldots\right\}$ is countable, then A is measurable, and $\lambda(A) \leq \sum_{j=1}^{\infty} \lambda\left(\left\{a_{j}\right\}\right)=0$, so $\lambda(A)=0$. For example, $\lambda(\mathbb{Q})=0$.
(2) $\lambda\left(\mathbb{R}^{n}\right)=\infty$.
(3) Open sets in \mathbb{R}. Every nonempty open set $G \subset \mathbb{R}$ is a (finite or) countable disjoint union of open intervals $\left(a_{j}, b_{j}\right)(1 \leq j \leq J$ or $1 \leq j<\infty)$, and $\lambda(G)=\sum_{j} \lambda\left(a_{j}, b_{j}\right)=$ $\sum_{j}\left(b_{j}-a_{j}\right)$.
(4) The Cantor Set is a closed subset of $[0,1]$. Let

$$
\begin{aligned}
G_{1} & =\left(\frac{1}{3}, \frac{2}{3}\right), \quad \lambda\left(G_{1}\right)=\frac{1}{3} \\
G_{2} & =\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right), \quad \lambda\left(G_{2}\right)=\frac{2}{9} \\
G_{3} & =\left(\frac{1}{27}, \frac{2}{27}\right) \cup \cdots \cup\left(\frac{25}{27}, \frac{26}{27}\right), \quad \lambda\left(G_{3}\right)=\frac{4}{27} \\
\text { etc. } & \left(\text { note } \lambda\left(G_{k}\right)=\frac{2^{k-1}}{3^{k}}\right) \\
& \quad \frac{1}{9} \quad \frac{2}{9} \quad \frac{1}{3} \quad \frac{2}{3} \quad \frac{7}{9} \quad \frac{8}{9} \quad 1 \\
0 & \text { (middle thirds of remaining subintervals) }
\end{aligned}
$$

Let $G=\bigcup_{k=1}^{\infty} G_{k}$, so G is an open subset of $(0,1)$. Then

$$
\lambda(G)=\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\cdots=\frac{1}{3}\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\frac{1}{3} \frac{1}{\left(1-\frac{2}{3}\right)}=1 .
$$

Define the Cantor set $C=[0,1] \backslash G$. Since $\lambda(C)+\lambda(G)=\lambda([0,1])=1$, we have $\lambda(C)=0$.

Fact. For $x \in[0,1], x \in C$ iff x has a base 3 expansion with only 0 's and 2's, i.e., $x=\sum_{j=1}^{\infty} d_{j} 3^{-j}$ with each $d_{j} \in\{0,2\}$.

For example: $0=(0.000 \cdots)_{3}$

$$
\begin{aligned}
\frac{1}{3} & =(0.100 \cdots)_{3}=(0.0222 \cdots)_{3} \\
\frac{2}{3} & =(0.200 \cdots)_{3} \\
1 & =(0.222 \cdots)_{3}
\end{aligned}
$$

$\frac{3}{4}=(0.202020 \cdots)_{3}$ is in C, but it is not an endpoint of any interval in any G_{k}. Despite the fact that $\lambda(C)=0, C$ is not countable. In fact, C can be put in 1-1 correspondence with $[0,1]$ (and thus also with \mathbb{R}).

Invariance of Lebesgue measure

(1) Translation. For a fixed $x \in \mathbb{R}^{n}$ and $A \subset \mathbb{R}^{n}$, define $x+A=\{x+y: y \in A\}$.

Fact. If $x \in \mathbb{R}^{n}$ and $A \in \mathcal{L}$, then $x+A \in \mathcal{L}$, and $\lambda(x+A)=\lambda(A)$.
(2) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear and $A \in \mathcal{L}$, then $T(A) \in \mathcal{L}$, and $\lambda(T(A))=|\operatorname{det} T| \cdot \lambda(A)$.

Measurable Functions

We consider functions f on \mathbb{R}^{n} with values in the extended real numbers $[-\infty, \infty]$. We extend the usual arithmetic operations from \mathbb{R} to $[-\infty, \infty]$ by defining $x \pm \infty= \pm \infty$ for $x \in \mathbb{R} ; a \cdot(\pm \infty)= \pm \infty$ for $a>0 ; a \cdot(\pm \infty)=\mp \infty$ for $a<0$; and $0 \cdot(\pm \infty)=0$. The expressions $\infty+(-\infty)$ and $(-\infty)+\infty$ are usually undefined, although we will need to make some convention concerning these shortly. A function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is called Lebesgue measurable if for every $t \in \mathbb{R}, f^{-1}([-\infty, t]) \in \mathcal{L}\left(\right.$ in $\left.\mathbb{R}^{n}\right)$.
Recall: Inverse images commute with unions, intersections, and complements:

$$
f^{-1}\left[B^{c}\right]=f^{-1}[B]^{c}, \quad f^{-1}\left[\bigcup_{\alpha} A_{\alpha}\right]=\bigcup_{\alpha} f^{-1}\left[A_{\alpha}\right], \quad f^{-1}\left[\bigcap_{\alpha} A_{\alpha}\right]=\bigcap_{\alpha} f\left[A_{\alpha}\right] .
$$

Fact. For any function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$, the collection of sets $B \subset[-\infty, \infty]$ for which $f^{-1}[B] \in \mathcal{L}$ is itself a σ-algebra of subsets of $[-\infty, \infty]$.

Note. The smallest σ-algebra of subsets of $[-\infty, \infty]$ containing all sets of the form $[-\infty, t]$ for $t \in \mathbb{R}$ contains also $\{-\infty\},\{\infty\}$, and all sets of the form $[-\infty, t),[t, \infty],(t, \infty],(a, b)$, etc. It is the collection of all sets of the form $B, B \cup\{\infty\}, B \cup\{-\infty\}$, or $B \cup\{-\infty, \infty\}$ for Borel subsets B of \mathbb{R}.

Comments. If f and $g: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ are measurable, then $f+g, f \cdot g$, and $|f|$ are measurable. (Here we need to make a convention concerning $\infty+(-\infty)$ and $(-\infty)+\infty$. This statement concerning measurability is true so long as we define both of these expressions to be the same, arbitrary but fixed, number in $[-\infty, \infty]$. For example, we may define $\infty+(-\infty)=(-\infty)+\infty=0$.) Moreover, if $\left\{f_{k}\right\}$ is a sequence of measurable functions $f_{k}: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$, then so are $\sup _{k} f_{k}(x), \inf _{k} f_{k}(x), \limsup f_{k}(x), \lim \inf _{k} f_{k}(x)$. Thus

$$
\underbrace{k}_{=\inf _{k \geq 1} \sup _{j \geq k} f_{j}(x)}
$$

if $\lim _{k \rightarrow \infty} f_{k}(x)$ exists $\forall x$, it is also measurable.
Definition. If $A \subset \mathbb{R}^{n}, A \in \mathcal{L}$, and $f: A \rightarrow[-\infty, \infty]$, we say that f is measurable (on A) if, when we extend f to be 0 on A^{c}, f is measurable on \mathbb{R}^{n}. Equivalently, we require that $f \chi_{A}$ is measurable for any extension of f.

Definition. If $f: \mathbb{R}^{n} \rightarrow \mathbb{C}(n o t$ including ∞), we say f is Lebesgue measurable if $\mathcal{R} e f$ and $\mathcal{I} m f$ are both measurable.

Fact. $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is measurable iff for every open set $G \subset \mathbb{C}, f^{-1}[G] \in \mathcal{L}$.

Integration

First consider integration of a non-negative function $f: \mathbb{R}^{n} \rightarrow[0, \infty]$, with f measurable. Let N be a positive integer, and define

$$
S_{N}=\sum_{k=0}^{\infty} k 2^{-N} \lambda\left(\left\{x: k 2^{-N} \leq f(x)<(k+1) 2^{-N}\right\}\right)+\infty \cdot \lambda(\{x: f(x)=+\infty\})
$$

In the last term on the right-hand-side, we use the convention $\infty \cdot 0=0$. The quantity S_{N} can be regarded as a "lower Lebesgue sum" approximating the volume under the graph of f by subdividing the range space $[0, \infty]$ rather than by subdividing the domain \mathbb{R}^{n} as in the case of Riemann integration.

Claim. $S_{N} \leq S_{N+1}$.
Proof. We have

$$
\begin{aligned}
\left\{x: k 2^{-N}\right. & \left.\leq f(x)<(k+1) 2^{-N}\right\} \\
& =\left\{x: k 2^{-N} \leq f(x)<\left(k+\frac{1}{2}\right) 2^{-N}\right\} \cup\left\{x:\left(k+\frac{1}{2}\right) 2^{-N} \leq f(x)<(k+1) 2^{-N}\right\}
\end{aligned}
$$

and the union is disjoint. Thus

$$
\begin{aligned}
& k 2^{-N} \lambda\left(\left\{x: k 2^{-N} \leq f(x)<(k+1) 2^{-N}\right\}\right) \\
& \leq k 2^{-N} \lambda\left(\left\{x: k 2^{-N} \leq f(x)<\left(k+\frac{1}{2}\right) 2^{-N}\right\}\right) \\
& \quad+\left(k+\frac{1}{2}\right) 2^{-N} \lambda\left(\left\{x:\left(k+\frac{1}{2}\right) 2^{-N} \leq f(x)<(k+1) 2^{-N}\right\}\right)
\end{aligned}
$$

and the claim follows after summing and redefining indices.
Definition. The Lebesgue integral of f is defined by:

$$
\int_{\mathbb{R}^{n}} f=\lim _{N \rightarrow \infty} S_{N} .
$$

This limit exists (in $[0, \infty]$) by the monotonicity $S_{N} \leq S_{N+1}$.

Other notation for the integral is

$$
\int_{\mathbb{R}^{n}} f=\int_{\mathbb{R}^{n}} f(x) d x=\int_{\mathbb{R}^{n}} f d \lambda .
$$

General Measurable Functions

Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ be measurable. Define

$$
f_{+}(x)=\left\{\begin{array}{ccc}
f(x) & \text { if } & f(x) \geq 0 \\
0 & \text { if } & f(x)<0
\end{array}, \quad f_{-}(x)=\left\{\begin{array}{cll}
0 & \text { if } & f(x)>0 \\
-f(x) & \text { if } & f(x) \leq 0
\end{array} .\right.\right.
$$

Then f_{+}and f_{-}are non-negative and measurable, and $(\forall x) f(x)=f_{+}(x)-f_{-}(x)$. The integral of f is only defined if at least one of $\int f_{+}<\infty$ or $\int f_{-}<\infty$ holds, in which case we define

$$
\int_{\mathbb{R}^{n}} f=\int_{\mathbb{R}^{n}} f_{+}-\int_{\mathbb{R}^{n}} f_{-} .
$$

Definition. A measurable function is called integrable if both $\int f_{+}<\infty$ and $\int f_{-}<\infty$. Since $|f|=f_{+}+f_{-}$, this is equivalent to $\int|f|<\infty$.

Properties of the Lebesgue Integral

(We will write $f \in L^{1}$ to mean f is measurable and $\int|f|<\infty$.)
(1) If $f, g \in L^{1}$ and $a, b \in \mathbb{R}$, then $a f+b g \in L^{1}$, and $\int(a f+b g)=a \int f+b \int g$.

We will write $f=g$ a.e. (almost everywhere) to mean $\lambda\{x: f(x) \neq g(x)\}=0$.
(2) If $f, g \in L^{1}$ and $f=g$ a.e., then $\int f=\int g$.
(3) If $f \geq 0$ and $\int f<\infty$, then $f<\infty$ a.e. Thus if $f \in L^{1}$, then $|f|<\infty$ a.e.

In integration theory, one often identifies two functions if they agree a.e., e.g., $\chi_{\mathbb{Q}}=0$ a.e.
(4) If $f \geq 0$ and $\int f=0$, then $f=0$ a.e. (This is not true if f can be both positive and negative, e.g., $\int_{-\infty}^{\infty} \frac{x}{1+x^{4}} d x=0$.)
(5) If A is measurable, $\int \chi_{A}=\lambda(A)$.

Definition. If A is a measurable set and $f: A \rightarrow[-\infty, \infty]$ is measurable, then $\int_{A} f=$ $\int_{\mathbb{R}^{n}} f \chi_{A}$.
(6) If A and B are disjoint and $f \chi_{A \cup B} \in L^{1}$, then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f .
$$

Definition. If $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is measurable, and both $\mathcal{R} e f$ and $\operatorname{Imf} \in L^{1}$, define $\int_{\mathbb{R}^{n}} f=$ $\int_{\mathbb{R}^{n}} \operatorname{Re} e f+i \int_{\mathbb{R}^{n}} \mathcal{I} m f$.
(7) If $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is measurable, then $\mathcal{R} e f$ and $\operatorname{Im} f \in L^{1}$ iff $|f| \in L^{1}$. Moreover, $\left|\int f\right| \leq \int|f|$.

Comparison of Riemann and Lebesgue integrals

If f is bounded and defined on a bounded set and f is Riemann integrable, then f is Lebesgue integrable and the two integrals are equal.
Theorem. If f is bounded and defined on a bounded set, then f is Riemann integrable iff f is continuous a.e.

Note: The two theories vary in their treatment of infinities (in both domain and range). For example, the improper Riemann integral $\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sin x}{x} d x$ exists and is finite, but $\frac{\sin x}{x}$ is not Lebesgue integrable over $[0, \infty)$ since $\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty$.

Convergence Theorems

Convergence theorems give conditions under which one can interchange a limit with an integral. That is, if $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ (maybe only a.e.), where f_{k} and f are measurable, give conditions which guarantee that $\lim _{k \rightarrow \infty} \int f_{k}=\int f$. This is not true in general:
Examples.
(1) Let $f_{k}=\chi_{[k, \infty)}$. Then $f_{k} \geq 0, \lim f_{k}=0$, and $\int f_{k}=\infty$, so $\lim \int f_{k} \neq \int \lim f_{k}$.
(2) Let $f_{k}=\chi_{[k, k+1]}$. Then again $\lim f_{k}=0$, and $\int f_{k}=1$, so $\lim \int f_{k} \neq \int \lim f_{k}$.

Monotone Convergence Theorem. (Jones calls this the "Increasing Convergence Theorem".) If $0 \leq f_{1} \leq f_{2} \leq \cdots$ a.e., $f=\lim f_{k}$ a.e., and f_{k} and f are measurable, then $\lim _{k \rightarrow \infty} \int f_{k}=\int f$. Here all the limits are non-negative extended real numbers. Note that $\lim f_{k}$ exists a.e. by monotonicity.

Fatou's Lemma. If f_{k} are nonnegative a.e. and measurable, then

$$
\int \liminf _{k \rightarrow \infty} f_{k} \leq \liminf _{k \rightarrow \infty} \int f_{k} .
$$

Lebesgue Dominated Convergence Theorem. Suppose $\left\{f_{k}\right\}$ is a sequence of complexvalued (or extended-real-valued) measurable functions. Assume $\lim _{k} f_{k}=f$ a.e., and assume that there exists a "dominating function," i.e., an integrable function g such that $\left|f_{k}(x)\right| \leq$ $g(x)$ a.e. Then

$$
\int f=\lim _{k \rightarrow \infty} \int f_{k}
$$

A corollary is the
Bounded Convergence Theorem. Let A be a measurable set of finite measure, and suppose $\left|f_{k}\right| \leq M$ in A. Assume $\lim _{k} f_{k}$ exists a.e. Then $\lim _{k} \int_{A} f_{k}=\int_{A} f$. (Apply Dominated Convergence Theorem with $g=M \chi_{A}$.)

The following result illustrates how Fatou's Lemma can be used together with a dominating sequence to obtain convergence.

Extension of Lebesgue Dominated Convergence Theorem. Suppose $g_{k} \geq 0, g \geq 0$ are all integrable, and $\int g_{k} \rightarrow \int g$, and $g_{k} \rightarrow g$ a.e. Suppose f_{k}, f are all measurable, $\left|f_{k}\right| \leq g_{k}$ a.e. (which implies that f_{k} is integrable), and $f_{k} \rightarrow f$ a.e. (which implies $|f| \leq g$ a.e.). Then $\int\left|f_{k}-f\right| \rightarrow 0$ (which implies $\int f_{k} \rightarrow \int f$).
Proof. $\left|f_{k}-f\right| \leq\left|f_{k}\right|+|f| \leq g_{k}+g$ a.e. Apply Fatou to $g_{k}+g-\left|f_{k}-f\right|$ (which is ≥ 0 a.e.). Then $\int \liminf \left(g_{k}+g-\left|f_{k}-f\right|\right) \leq \liminf \int\left(g_{k}+g-\left|f_{k}-f\right|\right)$. So $\int 2 g \leq \lim \int g_{k}+$ $\int g-\lim \sup \int\left|f_{k}-f\right|=2 \int g-\lim \sup \int\left|f_{k}-f\right|$. Since $\int g<\infty, \lim \sup \int\left|f_{k}-f\right| \leq 0$. Thus $\int\left|f_{k}-f\right| \rightarrow 0$.

Example - the Cantor Ternary Function.

The Cantor ternary function is a good example in differentiation and integration theory. It is a nondecreasing continuous function $f:[0,1] \rightarrow[0,1]$ defined as follows. Let C be the Cantor set. If $x \in C$, say $x=\sum_{k=1}^{\infty} d_{k} 3^{-k}$ with $d_{k} \in\{0,2\}$, set $f(x)=\sum_{k=1}^{\infty}\left(\frac{1}{2} d_{k}\right) 2^{-k}$. Recall that $[0,1] \backslash C$ is the disjoint union of open intervals, the middle thirds which were removed in the construction of C. Define f to be a constant on each of these open intervals, namely $f=\frac{1}{2}$ on $\left(\frac{1}{2}, \frac{2}{3}\right), f=\frac{1}{4}$ on $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $f=\frac{3}{4}$ on $\left(\frac{7}{9}, \frac{8}{9}\right)$, etc. The general definition is: for $x \in[0,1]$, write $x=\sum_{k=1}^{\infty} d_{k} 3^{-k}$ where $d_{k} \in\{0,1,2\}$, let K be the smallest k for which $d_{k}=1$, and define $f(x)=2^{-K}+\sum_{k=1}^{K-1}\left(\frac{1}{2} d_{k}\right) 2^{-k}$. The graph of f looks like:

Let us calculate $\int_{0}^{1} f(x) d x$ using our convergence theorems. Define a sequence of functions $f_{k}, k \geq 1$, inductively by:

$$
\begin{aligned}
f_{1} & =\frac{1}{2} \chi_{\left(\frac{1}{3}, \frac{2}{3}\right)} \\
f_{2} & =f_{1}+\frac{1}{4} \chi_{\left(\frac{1}{9}, \frac{2}{9}\right)}+\frac{3}{4} \chi_{\left(\frac{7}{9}, \frac{8}{9}\right)},
\end{aligned}
$$

Then each f_{k} is a simple function, i.e., a finite linear combination of characteristic functions of measurable sets. Note that if $\varphi=\sum_{j=1}^{N} a_{j} \chi_{A_{j}}$ is a simple function, where $A_{j} \in \mathcal{L}$ and $\lambda\left(A_{j}\right)<\infty$, then $\int \varphi=\sum_{j=1}^{N} a_{j} \lambda\left(A_{j}\right)$. Also, $f_{k}(x) \rightarrow f(x)$ for $x \in[0,1] \backslash C$, and $f_{k}(x)=0$ for $x \in C(\forall k)$. Since $\lambda(C)=0, f_{k} \rightarrow f$ a.e. on $[0,1]$. So by the MCT or LDCT or BCT, $\int_{0}^{1} f(x) d x=\lim _{k \rightarrow \infty} \int_{0}^{1} f_{k}(x) d x$. Now

$$
\begin{array}{r}
\int f_{k}=\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{3^{2}} \cdot \frac{1}{2^{2}}(1+3)+\frac{1}{3^{3}} \cdot \frac{1}{2^{3}}(1+3+5+7) \\
+\cdots+\frac{1}{3^{k}} \cdot \frac{1}{2^{k}}\left(1+3+5+\cdots+\left(2^{k}-1\right)\right)
\end{array}
$$

Recall that

$$
1+3+5+\cdots+(2 j-1)=j^{2}
$$

So

$$
\int f=\lim _{k} \int f_{k}=\sum_{m=1}^{\infty} \frac{1}{3^{m}} \frac{1}{2^{m}} 2^{2 m-2}=\frac{1}{6}\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\frac{1}{6}\left(\frac{1}{1-\frac{2}{3}}\right)=\frac{1}{2} .
$$

(An easier way to see this is to note that $f(1-x)=1-f(x)$, so $\int_{0}^{1} f(1-x) d x=1-\int_{0}^{1} f(x) d x$. But changing variables gives $\int_{0}^{1} f(1-x) d x=\int_{0}^{1} f(x) d x$, so $\int_{0}^{1} f(x) d x=\frac{1}{2}$.)

"Multiple Integration" via Iterated Integrals

Suppose $n=m+l$, so $\mathbb{R}^{n}=\mathbb{R}^{m} \times \mathbb{R}^{l}$. For $x \in \mathbb{R}^{n}$, write $x=(y, z), y \in \mathbb{R}^{m}, z \in \mathbb{R}^{l}$. Then $\int_{\mathbb{R}^{n}} f d \lambda_{n}=\int_{\mathbb{R}^{n}} f(x) d \lambda_{n}(x)=\int_{\mathbb{R}^{n}} f(y, z) d \lambda_{n}(y, z)$. Write $d x$ for $d \lambda_{n}(x), d y$ for $d \lambda_{m}(y), d z$ for $d \lambda_{l}(z)$ (λ_{n} denotes Lebesgue measure on \mathbb{R}^{n}). Consider the iterated integrals

$$
\int_{\mathbb{R}^{l}}\left[\int_{\mathbb{R}^{m}} f(y, z) d y\right] d z \quad \text { and } \quad \int_{\mathbb{R}^{m}}\left[\int_{\mathbb{R}^{l}} f(y, z) d z\right] d y .
$$

Questions:
(1) When do these iterated integrals agree?
(2) When are they equal to $\int_{\mathbb{R}^{n}} f(x) d x$?

There are two key theorems, usually used in tandem. The first is Tonelli's Theorem, for non-negative functions.
(1) Tonelli's Theorem. Suppose $f \geq 0$ is measurable on \mathbb{R}^{n}. Then for a.e. $z \in \mathbb{R}^{l}$, the function $f_{z}(y) \equiv f(y, z)$ is measurable on \mathbb{R}^{m} (as a function of y), and

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{\mathbb{R}^{l}}\left[\int_{\mathbb{R}^{m}} f(y, z) d y\right] d z .
$$

It can happen in Tonelli's Theorem that for some z, the "slice function" f_{z} is not measurable:

Example. Let $A \subset \mathbb{R}^{m}$ be non-measurable. Pick $z_{0} \in \mathbb{R}^{l}$ and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by:

$$
f(y, z)=\left\{\begin{array}{cc}
0 & \left(z \neq z_{0}\right) \\
\chi_{A}(y) & \left(z=z_{0}\right)
\end{array} .\right.
$$

Then f is measurable on \mathbb{R}^{n} (since $\left.\lambda_{n}(\{x: f(x) \neq 0\})=0\right)$. But $f_{z_{0}}(y)_{=} f\left(y, z_{0}\right)=\chi_{A}(y)$ is not measurable on \mathbb{R}^{m}. However, since the set of z 's for which $\int f_{z}(y) d y$ is undefined has measure zero, the iterated integral still makes sense and is 0 .
(2) Fubini's Theorem. Suppose f is integrable on \mathbb{R}^{n} (i.e., f is measurable and $\int|f|<\infty$). Then for a.e. $z \in \mathbb{R}^{l}$, the slice functions $f_{z}(y)$ are integrable on \mathbb{R}^{m}, and

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{\mathbb{R}^{l}}\left[\int_{\mathbb{R}^{m}} f(y, z) d y\right] d z
$$

Typically one wants to calculate $\int_{\mathbb{R}^{n}} f(x) d x$ by doing an iterated integral. One uses Tonelli to verify the hypothesis of Fubini as follows:
(i) Since $|f|$ is non-negative, Tonelli implies that one can calculate $\int_{\mathbb{R}^{n}}|f|$ by doing either iterated integral. If either one is $<\infty$, then the hypotheses of Fubini have been verified: $\int_{\mathbb{R}^{n}}|f(x)| d x=\int\left[\int|f(y, z)| d z\right] d y<\infty$.
(ii) Having verified now that $\int_{\mathbb{R}^{n}}|f|<\infty$, Fubini implies that $\int_{\mathbb{R}^{n}} f$ can be calculated by doing either iterated integral.

Example. Fubini's Theorem can fail without the hypothesis that $\int|f|<\infty$. Define f on $(0,1) \times(0,1)$ by

$$
f(x, y)=\left\{\begin{array}{cc}
x^{-2} & 0<y \leq x<1 \\
-y^{-2} & 0<x<y<1
\end{array} .\right.
$$

Then $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=\int_{0}^{1}\left(\int_{0}^{x} x^{-2} d y-\int_{x}^{1} y^{-2} d y\right) d x=\int_{0}^{1}\left(x^{-1}+1-x^{-1}\right) d x=1$. Similarly, $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=-1$. Note that by Tonelli,

$$
\int_{(0,1) \times(0,1)}|f(x, y)| d \lambda_{2}(x, y)=\int_{0}^{1} \int_{0}^{1}|f(x, y)| d y d x=\int_{0}^{1}\left(x^{-1}+\int_{x}^{1} y^{-2} d y\right) d x=\infty .
$$

L^{p} spaces

$\mathbf{1} \leq \mathbf{p}<\infty$. Fix a measurable subset $A \subset \mathbb{R}^{n}$. Consider measurable functions $f: A \rightarrow \mathbb{C}$ for which $\int_{A}|f|^{p}<\infty$. Define $\|f\|_{p}=\left(\int_{A}|f|^{p}\right)^{\frac{1}{p}}$. On this set of functions, $\|f\|_{p}$ is only a seminorm:

$$
\begin{aligned}
\|f\|_{p} & \geq 0 \quad\left(\text { but }\|f\|_{p}=0 \text { does not imply } f=0, \text { only } f(x)=0\right. \text { a.e.) } \\
\|\alpha f\|_{p} & =|\alpha| \cdot\|f\|_{p} \\
\|f+g\|_{p} & \leq\|f\|_{p}+\|g\|_{p} \quad \text { (Minkowski's Inequality) }
\end{aligned}
$$

(Note: $\|f\|_{p}=0 \Rightarrow \int_{A}|f|^{p}=0 \Rightarrow f=0$ a.e. on A.) Define an equivalence relation on this set of functions:

$$
f \sim g \text { means } f=g \text { a.e. on } A .
$$

Set $\widetilde{f}=\{g$ measurable on $A: f=g$ a.e. $\}$ to be the equivalence class of f. Define $\|\widetilde{f}\|_{p}=$ $\|f\|_{p}$; this is independent of the choice of representative in \widetilde{f}. Define

$$
L^{p}(A)=\left\{\tilde{f}: \int_{A}|f|^{p}<\infty\right\} .
$$

Then $\|\cdot\|_{p}$ is a norm on $L^{p}(A)$. We usually abuse notation and write $f \in L^{p}(A)$ to mean $\tilde{f} \in L^{p}(A)$.
Example. We say $f \in L^{p}\left(\mathbb{R}^{n}\right)$ is "continuous" if $\exists g \in L^{p}\left(\mathbb{R}^{n}\right)$ for which $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is continuous and $f=g$ a.e. Equivalently, there exists $g \in \widetilde{f}$ such that g is continuous. In this case, one typically works with the representative g of \tilde{f} which is continous. This continuous representative is unique since two continuous functions which agree a.e. must be equal everywhere.
$\mathbf{p}=\infty$. Let $A \subset \mathbb{R}^{n}$ be measurable. Consider "essentially bounded" measurable functions $f: A \rightarrow \mathbb{C}$, i.e., for which $\exists M<\infty$ so that $|f(x)| \leq M$ a.e. on A. Define

$$
\|f\|_{\infty}=\inf \{M:|f(x)| \leq M \text { a.e. on } A\},
$$

the essential sup of $|f|$. If $0<\|f\|_{\infty}<\infty$, then for each $\epsilon>0, \lambda\{x \in A:|f(x)|>$ $\left.\|f\|_{\infty}-\epsilon\right\}>0$. As above, $\|\cdot\|_{\infty}$ is a seminorm on the set of essentially bounded measurable functions, and $\|\cdot\|_{\infty}$ is a norm on

$$
L^{\infty}(A)=\left\{\widetilde{f}:\|f\|_{\infty}<\infty\right\} .
$$

Fact. For $f \in L^{\infty}(A),|f(x)| \leq\|f\|_{\infty}$ a.e. This is true since

$$
\left\{x:|f(x)|>\|f\|_{\infty}\right\}=\bigcup_{m=1}^{\infty}\left\{x:|f(x)|>\|f\|_{\infty}+\frac{1}{m}\right\},
$$

and each of these latter sets has measure 0 . So the infimum is attained in the definition of $\|f\|_{\infty}$.

Fact. $L^{\infty}\left(\mathbb{R}^{n}\right)$ is not separable (i.e., it does not have a countable dense subset).
Example. For each $\alpha \in \mathbb{R}$, let $f_{\alpha}(x)=\chi_{[\alpha, \alpha+1]}(x)$. For $\alpha \neq \beta,\left\|f_{\alpha}-f_{\beta}\right\|_{\infty}=1$. So $\left\{B_{\frac{1}{3}}\left(f_{\alpha}\right): \alpha \in \mathbb{R}\right\}$ is an uncountable collection of disjoint nonempty open subsets in $L^{\infty}(\mathbb{R})$.

Conjugate Exponents. If $1 \leq p \leq \infty, 1 \leq q \leq \infty$, and $\frac{1}{p}+\frac{1}{q}=1$ (where $\frac{1}{\infty} \equiv 0$), we say that p and q are conjugate exponents. Examples: | p | 1 | 2 | 3 | ∞ |
| :---: | :---: | :---: | :---: | :---: |
| q | ∞ | 2 | $\frac{3}{2}$ | 1 | .

Hölder's Inequality. If $1 \leq p \leq \infty, 1 \leq q \leq \infty$, and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\int|f g| \leq\|f\|_{p} \cdot\|g\|_{q}
$$

(Note: if $\int|f g|<\infty$, also $\left|\int f g\right| \leq \int|f g| \leq\|f\|_{p} \cdot\|g\|_{q}$.)
Remark. The cases $\left\{\begin{array}{l}p=1 \\ q=\infty\end{array}\right.$ and $\left\{\begin{array}{l}p=\infty \\ q=1\end{array}\right.$ are obvious. When $p=2, q=2$, this is the Cauchy-Schwarz inequality $\int|f g| \leq\|f\|_{2} \cdot\|g\|_{2}$.

Completeness

Theorem. (Riesz-Fischer) Let $A \subset \mathbb{R}^{n}$ be measurable and $1 \leq p \leq \infty$. Then $L^{p}(A)$ is complete in the L^{p} norm $\|\cdot\|_{p}$.

The completeness of L^{p} is a crucially important feature of the Lebesgue theory.

Locally L^{p} Functions

Definition. Let $G \subset \mathbb{R}^{n}$ be open. Define $L_{\mathrm{loc}}^{p}(G)$ to be the set of all equivalence classes of measurable functions f on G such that for each compact set $K \subset G,\left.f\right|_{K} \in L^{p}(K)$.

There is a metric on L_{loc}^{p} which makes it a complete metric space (but not a Banach space; the metric is not given by a norm). The metric is constructed as follows. Let K_{1}, K_{2}, \ldots be a "compact exhaustion" of G, i.e., a sequence of nonempty compact subsets of G with $K_{m} \subset K_{m+1}^{\circ}$ (where K_{m+1}° denotes the interior of K_{m+1}), and $\bigcup_{m=1}^{\infty} K_{m}=G$ (e.g., $K_{m}=\{x \in$ $G: \operatorname{dist}\left(x, G^{c}\right) \geq \frac{1}{m}$ and $\left.\left.|x| \leq m\right\}\right)$. Then for any compact set $K \subset G, K \subset \bigcup_{m=1}^{\infty} K_{m} \subset$ $\bigcup_{m=1}^{\infty} K_{m+1}^{\circ}$, so $\exists m$ for which $K \subset K_{m}$. The distance in $L_{\text {loc }}^{p}(G)$ is

$$
d(f, g)=\sum_{m=1}^{\infty} 2^{-m} \frac{\|f-g\|_{p, K_{m}}}{1+\|f-g\|_{p, K_{m}}}
$$

It is easy to see that $d\left(f_{j}, f\right) \rightarrow 0$ iff $\left(\forall K^{\text {compact }} \subset G\right)\left\|f_{j}-f\right\|_{p, K} \rightarrow 0$.
To see that d is a metric, one uses the fact that if (X, p) is a metric space, and we define $\sigma(x, y)=\frac{p(x, y)}{1+p(x, y)}$, then σ is a metric on X, and (X, p) is uniformly equivalent to (X, σ). To show that σ satisfies the triangle inequality, one uses that $t \mapsto \frac{t}{1+t}$ is increasing on $[0, \infty)$. Note that $\sigma(x, y)<1$ for all $x, y \in X$.

Continuous Functions not closed in L^{p}

Let $G \subset \mathbb{R}^{n}$ be open and bounded. Consider $C_{b}(G)$, the set of bounded continuous functions on G. Clearly $C_{b}(G) \subset L^{p}(G)$. But $C_{b}(G)$ is not closed in $L^{p}(G)$ if $p<\infty$.

Example. Take $G=(0,1)$ and let f_{j} have graph:

Then $\left\{f_{j}\right\}$ is Cauchy in $\|\cdot\|_{p}$ for $1 \leq p<\infty$. But there is no continuous function f for which $\left\|f_{j}-f\right\|_{p} \rightarrow 0$ as $j \rightarrow \infty$.

Facts. Suppose $1 \leq p<\infty$ and $G^{\text {open }} \subset \mathbb{R}^{n}$.
(1) The set of simple functions (finite linear combinations of characteristic functions of measurable sets) with support in a bounded subset of G is dense in $L^{p}(G)$.
(2) The set of step functions (finite linear combinations of characteristic functions of rectangles) with support in a bounded subset of G is dense in $L^{p}(G)$.
(3) $C_{c}(G)$ is dense in $L^{p}(G)$, where $C_{c}(G)$ is the set of continuous functions f whose support $\overline{\{x: f(x) \neq 0\}}$ is a compact subset of G.
(4) $C_{c}^{\infty}(G)$ is dense in $L^{p}(G)$, where $C_{c}^{\infty}(G)$ is the set of C^{∞} functions whose support is a compact subset of G. (Idea: mollify a given $f \in L^{p}(G)$. We will discuss this when we talk about convolutions.)

Consequence: For $1 \leq p<\infty, L^{p}(G)$ is separable (e.g., use (2), taking rectangles with rational endpoints and linear combinations with rational coefficients).

Another consequence of the density of $C_{c}\left(\mathbb{R}^{n}\right)$ in $L^{p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p<\infty$ is the continuity of translation. For $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $y \in \mathbb{R}^{n}$, define $f_{y}(x)=f(x-y)$ (translate f by y).
Claim. If $1 \leq p<\infty$, the map $y \mapsto f_{y}$ from \mathbb{R}^{n} into $L^{p}\left(\mathbb{R}^{n}\right)$ is uniformly continuous.
Proof. Given $\epsilon>0$, choose $g \in C_{c}\left(\mathbb{R}^{n}\right)$ for which $\|g-f\|_{p}<\frac{\epsilon}{3}$. Let

$$
M=\lambda(\{x: g(x) \neq 0\})<\infty .
$$

By uniform continuity of $g, \exists \delta>0$ for which

$$
|z-y|<\delta \Rightarrow(\forall x)\left|g_{z}(x)-g_{y}(x)\right|<\frac{\epsilon}{3(2 M)^{\frac{1}{p}}} .
$$

Then for $|z-y|<\delta$,

$$
\left\|g_{z}-g_{y}\right\|_{p}^{p}=\int\left|g_{z}-g_{y}\right|^{p} \leq \lambda\left(\left\{x: g_{z}(x) \neq 0 \text { or } g_{y}(x) \neq 0\right\}\right)\left(\frac{\epsilon}{3(2 M)^{\frac{1}{p}}}\right)^{p} \leq(2 M) \frac{\epsilon^{p}}{3^{p}(2 M)}
$$

i.e., $\left\|g_{z}-g_{y}\right\|_{p} \leq \frac{\epsilon}{3}$. Thus $\left\|f_{z}-f_{y}\right\|_{p} \leq\left\|f_{z}-g_{z}\right\|_{p}+\left\|g_{z}-g_{y}\right\|_{p}+\left\|g_{y}-f_{y}\right\|_{p}<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$.

L^{p} convergence and pointwise a.e. convergence

$\mathbf{p}=\infty . f_{k} \rightarrow f$ in $L^{\infty} \Rightarrow$ on the complement of a set of measure $0, f_{k} \rightarrow f$ uniformly. (Let $A_{k}=\left\{x:\left|f_{k}(x)-f(x)\right|>\left\|f_{k}-f\right\|_{\infty}\right\}$, and $A=\bigcup_{k=1}^{\infty} A_{k}$. Since each $\lambda\left(A_{k}\right)=0$, also $\lambda(A)=0$. On $A^{c},(\forall k)\left|f_{k}(x)-f(x)\right| \leq\left\|f_{k}-f\right\|_{\infty}$, so $f_{k} \rightarrow f$ uniformly on A^{c}.)
$\mathbf{1} \leq \mathbf{p}<\infty$. Let $A \subset \mathbb{R}^{n}$ be measurable. Here $f_{k} \rightarrow f$ in $L^{p}(A)$ (i.e., $\left\|f_{k}-f\right\|_{p} \rightarrow 0$) does not imply that $f_{k} \rightarrow f$ a.e. Example: $A=[0,1], f_{1}=\chi_{[0,1]}, f_{2}=\chi_{\left[0, \frac{1}{2}\right]}, f_{3}=\chi_{\left[\frac{1}{2}, 1\right]}$, $f_{4}=\chi_{\left[0, \frac{1}{4}\right]}, \cdots$ etc.

Clearly $\left\|f_{k}\right\|_{p} \rightarrow 0$, so $f_{k} \rightarrow 0$ in L^{p}, but for no $x \in[0,1]$ does $f_{k}(x) \rightarrow 0$. So L^{p} convergence for $1 \leq p<\infty$ does not imply a.e. convergence. However:

Fact. If $1 \leq p<\infty$ and $f_{k} \rightarrow f$ in $L^{p}(A)$, then \exists a subsequence $f_{k_{j}}$ for which $f_{k_{j}} \rightarrow f$ a.e. as $j \rightarrow \infty$.

Example. Suppose $A \subset \mathbb{R}^{n}$ is measurable, $1 \leq p<\infty, f_{k}, f \in L^{p}(A)$, and $f_{k} \rightarrow f$ a.e. Question: when does $f_{k} \rightarrow f$ in $L^{p}(A)$ (i.e. $\left\|f_{k}-f\right\|_{p} \rightarrow 0$)? Answer: In this situation, $f_{k} \rightarrow f$ in $L^{p}(A)$ iff $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}$.

Proof.

(\Rightarrow) If $\left\|f_{k}-f\right\|_{p} \rightarrow 0$, then $\left|\left\|f_{k}\right\|_{p}-\|f\|_{p}\right| \leq\left\|f_{k}-f\right\|_{p}$, so $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}$.
(\Leftarrow) First, observe: If $x, y \geq 0$, then $(x+y)^{p} \leq 2^{p}\left(x^{p}+y^{p}\right)$. (Proof: let $z=\max \{x, y\}$; then $(x+y)^{p} \leq(2 z)^{p}=2^{p} z^{p} \leq 2^{p}\left(x^{p}+y^{p}\right)$.) We will use Fatou's lemma with a "dominating sequence." We have

$$
\left|f_{k}-f\right|^{p} \leq\left(\left|f_{k}\right|+|f|\right)^{p} \leq 2^{p}\left(\left|f_{k}\right|^{p}+|f|^{p}\right)
$$

Apply Fatou to $2^{p}\left(\left|f_{k}\right|^{p}+|f|^{p}\right)-\left|f_{k}-f\right|^{p} \geq 0$. By assumption, $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}$, so $\int\left|f_{k}\right|^{p} \rightarrow \int|f|^{p}$. We thus get

$$
\begin{aligned}
\int 2^{p}\left(|f|^{p}+|f|^{p}\right)-0 & \leq \liminf \int 2^{p}\left(\left|f_{k}\right|^{p}+|f|^{p}\right)-\left|f_{k}-f\right|^{p} \\
& =\int 2^{p}\left(|f|^{p}+|f|^{p}\right)-\limsup \int\left|f_{k}-f\right|^{p}
\end{aligned}
$$

Thus $\lim \sup \int\left|f_{k}-f\right|^{p} \leq 0$. So $\left\|f_{k}-f\right\|_{p}^{p}=\int\left|f_{k}-f\right|^{p} \rightarrow 0$. So $\left\|f_{k}-f\right\|_{p} \rightarrow 0$.

Intuition for growth of functions in $L^{p}\left(\mathbb{R}^{n}\right)$

Fix n, fix p with $1 \leq p<\infty$, and fix $a \in \mathbb{R}$. Define

$$
f_{1}(x)=\frac{1}{|x|^{a}} \chi_{\{x:|x|<1\}} \quad f_{2}(x)=\frac{1}{|x|^{a}} \chi_{\{x:|x|>1\}} .
$$

So f_{1} blows up near $x=0$ for $a>0$, but vanishes near ∞. And f_{2} vanishes near 0 but grows/decays near ∞ at a rate depending on a. To calculate the integrals of powers of f_{1} and f_{2}, use polar coordinates on \mathbb{R}^{n}.

Polar Coordinates in \mathbb{R}^{n}

Here $d \sigma$ is "surface area" measure on S^{n-1}.
Evaluating the integral in polar coordinates,

$$
\int_{\mathbb{R}^{n}}\left|f_{1}(x)\right|^{p} d x=\int_{S^{n-1}}\left[\int_{0}^{1}\left(\frac{1}{r^{a}}\right)^{p} r^{n-1} d r\right] d \sigma=\omega_{n} \int_{0}^{1} r^{n-a p-1} d r,
$$

where $\omega_{n}=\sigma\left(S^{n-1}\right)$. This is $<\infty$ iff $n-a p-1>-1$, i.e., $a<\frac{n}{p}$. So $f_{1} \in L^{p}\left(\mathbb{R}^{n}\right)$ iff $a<\frac{n}{p}$. Similarly, $f_{2} \in L^{p}\left(\mathbb{R}^{n}\right)$ iff $a>\frac{n}{p}$.

Conclusion. For any $p \neq q$ with $1 \leq p, q \leq \infty, L^{p}\left(\mathbb{R}^{n}\right) \not \subset L^{q}\left(\mathbb{R}^{n}\right)$.
However, for sets A of finite measure, we have:
Claim. If $\lambda(A)<\infty$ and $1 \leq p<q \leq \infty$, then $L^{q}(A) \subset L^{p}(A)$, and

$$
\|f\|_{p} \leq \lambda(A)^{\frac{1}{p}-\frac{1}{q}}\|f\|_{q} .
$$

Proof. This is obvious when $q=\infty$. So suppose $1 \leq p<q<\infty$. Let $r=\frac{q}{p}$. Then
$1<r<\infty$. Let s be the conjugate exponent to r, so $\frac{1}{r}+\frac{1}{s}=1$. Then $\frac{1}{s}=1-\frac{p}{q}=p\left(\frac{1}{p}-\frac{1}{q}\right)$. By Hölder,

$$
\begin{aligned}
\|f\|_{p}^{p}=\int_{A}|f|^{p} & =\int \chi_{A}|f|^{p} \leq\left\|\chi_{A}\right\|_{s} \cdot\left\||f|^{p}\right\|_{r}=\lambda(A)^{\frac{1}{s}}\left(\int|f|^{q}\right)^{\frac{p}{q}} \\
& =\lambda(A)^{p\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{q}^{p} .
\end{aligned}
$$

Now take $p^{\text {th }}$ roots.
Remark. This is in sharp contrast to what happens in l^{p}. For sequences $\left\{x_{k}\right\}_{k=1}^{\infty}$, the l^{∞} norm is $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$, and for $1 \leq p<\infty$, the l^{p} norm is $\|x\|_{p}=\left(\sum_{k}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}$.

Claim. For $1 \leq p<q \leq \infty, l^{p} \subset l^{q}$. In fact $\|x\|_{q} \leq\|x\|_{p}$.
Proof. This is obvious when $q=\infty$. So suppose $1 \leq p<q<\infty$. Then

$$
\begin{aligned}
\|x\|_{q}^{q}=\sum_{k}\left|x_{k}\right|^{q} & =\sum_{k}\left|x_{k}\right|^{q-p}\left|x_{k}\right|^{p} \\
& \leq\|x\|_{\infty}^{q-p} \sum\left|x_{k}\right|^{p} \leq\|x\|_{p}^{q-p}\|x\|_{p}^{p}=\|x\|_{p}^{q} .
\end{aligned}
$$

Take $q^{\text {th }}$ roots to get $\|x\|_{q} \leq\|x\|_{p}$.

