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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS*

JAMES V. BURKE- AND JORGE J. MORI$

Abstract. Nondegeneracy conditions that guarantee that the optimal active constraints are identified
in a finite number of iterations are studied. Results of this type have only been established for a few
algorithms, and then under restrictive hypothesis. The main result is a characterization of those algorithms
that identify the optimal constraints in a finite number of iterations. This result is obtained with a non-

degeneracy assumption which is equivalent, in the standard nonlinear programming problem, to the
assumption that there is a set of strictly complementary Lagrange multipliers. As an important consequence
of the authors’ results the way that this characterization applies to gradient projection and sequential
quadratic programming algorithms is shown.

Key words, projected gradient, nondegeneracy, strict complementarity, active constraints, constrained
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1. Introduction. The problem of minimizing a continuously differentiable mapping
f: R R over a nonempty closed convex set c R n,
(1.1) min {f(x): x f},

has received considerable attention. The linearly constrained case where f is a polyhe-
dron is of special interest. Our discussion centers on certain geometrical aspects that
arise in the analysis of algorithms for the numerical solution of problem (1.1). We are
interested in nondegeneracy conditions that guarantee that the optimal active con-
straints are identified in a finite number of iterations. Results of this type have only
been established for a few algorithms, and then under restrictive hypothesis. Our main
result is a characterization of those algorithms that identify the optimal constraints in
a finite number of iterations. This result is obtained with a nondegeneracy assumption
which is equivalent, in the standard nonlinear programming problem, to the assumption
that there is a set of strictly complementary Lagrange multipliers. As an important
consequence of our results, we show that this characterization applies to gradient
projection algorithms and to sequential quadratic programming algorithms.

Motivation for this work came from recent convergence results on the gradient
projection algorithm. Given an inner product norm [[. II, the projection into a nonempty
closed convex set f is the mapping P:R -0 f defined by

(1.2) P(x) argmin {ll z x {l: z },

The gradient projection algorithm is defined by

(1.3) Xk+l P(Xk OkVf(Xk)),

where ak > 0 is the step and Vf is the gradient of f with respect to the inner product
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1198 J.V. BURKE AND J. J. MORI

associated with the norm 1]. 1[. The dependence of P on is usually clear from the
context, but if there is a possibility of confusion Pa will be used to denote the projection
into

An interesting aspect of Dunn’s 1987] work on the gradient projection algorithm
is that his definition of nondegeneracy is geometric. In particular, the definition of
nondegeneracy is independent of the representation of by constraints, and is valid
for any convex set f. Moreover, this definition of nondegeneracy is weaker than the
standard definition which requires independence of the active constraint normals and
strictly complementary Lagrange multipliers. Another interesting aspect of Dunn’s
work is that it is not necessary to assume that f is a polyhedron. This is done by
replacing the notion of active constraints by the notion of an open facet of f, and
showing that the gradient projection algorithm identifies the optimal facet in a finite
number of iterations.

Calamai and Mor6 [1987] introduced the notion of the projected gradient Vaf,
and showed that if {x} is the sequence generated by the gradient projection algorithm
then {XTaf(x)} converges to zero. This result strengthened previous convergence results
(see, for example, Bertsekas 1976] and Dunn 1981]) because it implies that any limit
point of {x} is a stationary point for problem (1.1). In the linearly constrained case,
Calamai and Mor6 also showed that if {x} is any sequence which converges to a

stationary point x* that is nondegenerate in the classical sense, and if {Vaf(x,)}
converges to zero, then the active constraints at x* are identified in a finite number of
iterations. This result is of interest because it applies to any algorithm that generates
a sequence {x} such that {Vaf(xk)} converges to zero.

The concept of the face of a convex set is important to our development because
the face of a polyhedron is the geometric analogue of the set of active constraints. We
thus begin our development by discussing the geometry of faces. For general convex
sets, our results hold if we consider the class of quasi-polyhedral faces defined in 2.
We provide a topological characterization of quasi-polyhedral faces, and in particular,
we show that every face of a polyhedron is quasi-polyhedral. It is also shown that
quasi-polyhedral faces are essentially the open facets of Dunn 1987]. Quasi-polyhedral
faces, however, have a more transparent definition.

We consider the nondegeneracy condition of Dunn [1987] in 3, and show that
this condition is a geometric generalization of the standard strict complementarity
condition. For linearly constrained problems and for convex sets defined by constraint
functions that satisfy a constraint qualification, this nondegeneracy condition is shown
to be equivalent to the assumption that there is a set of strictly complementary Lagrange
multipliers; linear independence of the active constraint normals is not needed. We
also characterize those algorithms that achieve the optimal face in a finite number of
iterations. We prove that if {x} is any sequence that converges to a nondegenerate
stationary point x* in the relative interior of a quasi-polyhedral face, then the optimal
face is identified in a finite number of iterations if and only if {Vaf(x)} converges to
zero. This characterization generalizes and extends the results of Calamai and Mor6
[1987], and Dunn [1987].

We consider sequential quadratic programming algorithms and gradient projection
methods in 4, and show how the characterization result applies to these algorithms.
In particular, we show that the sequential quadratic programming algorithm for linearly
constrained problems identifies the optimal active constraints if the limit point of the
iterates is nondegenerate in the sense of 3.

We finish the paper by establishing a connection between the projected gradient
of f and the Clarke subdifferential of the composite mapping fo P. This relationship
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1199

is of interest because it relates our results to the convergence results for nonditterentiable
optimization.

2. Face geometry. We assume a basic background in convex analysis. In particular,
recall that for a set S c R the affine hull att (S) is the smallest affine set which contains
S, and the relative interior ri (S) is the interior of S relative to aft (S).

Let 1) be a convex set in R n. A convex set 1)F c 1) is a face of 1) if the endpoints
of any closed line segment in 1) whose relative interior intersects 1)F are contained in
DF. Thus, if x and y are in D and Ax+(1-A)y lies in 1)F for some 0<A <1, then x
and y must also belong to fl:. This terminology is fairly standard (see, for example,
Rockafellar [1970]), although other authors use the term extreme subset and reserve
the term face for the extreme subsets of a polyhedron. A set f c 1) is exposed if

(2.1) 1) argmax {b(x): x 1)},

for some linear functional 4,:R" -> R. It. is not difficult to show that (2.1) implies that
1)v is a face, so the term exposed face is justified. Also note that not all faces are
exposed. For example, if

(2.2) 1) {(SOl, 2) 2--< (1 :)’/2, 0 , 1},

then (1, 0) is a face of 1), but it is not an exposed face.
The key to understanding the geometry of the faces of a convex set lies in the

following two well-known results (see, for example, Theorems 18.1 and 18.2 of Rock-
afellar 1970]).

THEOREM 2.1. Let 1)F be a face of the convex set 1). If F is a convex subset of
such that ri (F) meets :, then F 1)F.

This result shows that it is possible to replace line segments by convex subsets in
the definition of face. Also note that it implies that the relative interior of distinct faces
do not intersect. The next result shows, in particular, that each x 1) can be associated
with a unique face of

THEOREM 2.2. The collection ofall relative interiors offaces is a partition ofa convex
set 1).

We will use the notation 1)(x) to denote the unique face of 1) such that x ri (l)(x)).
For example, if 1) is defined by (2.2) then (1, 2) is independent of (z for 2 < 0, but
a new face is obtained for z 0. Note that for this 1) there are an infinite number of
faces of the form (x).

We now show that the tangent and normal cones at points x in the relative interior
of a face are independent of x. Recall that for a convex set 1) and a point x in 1), the
normal cone at x is defined by

N(x)={u6R": (u,y-x)<-_O,y1)}.

The tangent cone can be defined by polarity. The polar K of a cone K in R" is the
set of all u6R such that (u, v)_-<0 for all vK. The tangent cone T(x) at x is then
N(x).

THEORES4 2.3. If 1) is a face of the convex set 1), tken N(x) is independent of x
for x ri

Proof. Let x and x belong to ri (1)F). Choose u N(x) and consider the exposed
face

1)e argmax {(u, x): x e 1)}.

Clearly, Xl e 1)e since u N(xl), and thus ri (1):) meets 1)e. Theorem 2.1 thus shows
that 1):c fie. In particular, Xze 1)e, and thus u N(xz). This argument shows that
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1200 . v. BURKE AND J. J. MORI

N(x1)c N(x2). Since the argument is symmetric in xl and x2, this establishes the
result.

From Theorem 2.3 we see that it makes sense to speak of the normal cone and
the tangent cone of a face of fI. Consequently, we make the following definition.

DEFINITION 2.4. If IF is a face of the convex set 1), then the normal cone
and the tangent cone T(I) are, respectively, the normal cone and the tangent cone
at any x ri (fv).

As opposed to general convex sets, the face structure of a polyhedron is more
tractable. For example, every face of a polyhedron is exposed, while this is not the
case for general convex sets. Faces of polyhedrons have several other properties that
are not shared by faces in general. The property needed for our purposes can be
expressed in terms of the linearity of the tangent cone of the face; for a cone K = R n,
the linearity lin {K} of the cone is the largest subspace contained in K.

DEFINITION 2.5. A face v of a convex set 11 is quasi-polyhedral if

(2.3) alt (v) x + lin { T(x)}

for any x ri (v).
The relative interior of a convex set is a quasi-polyhedral face. As another example,

note that if f is the convex set defined by (2.2) then there are four quasi-polyhedral
faces of the form t)(x): the relative interior of , the line segments (1,-1) and
(0, 0), and the point l(0, 1). Note that the face t)(1, 0) is not quasi-polyhedral.

We only require that (2.3) hold for x ri (t):). This is sufficient for our purposes
because Theorem 2.2 guarantees that any x t) lies in the relative interior of a unique
face .. Also note that if x ri (1)) then att () x is a subspace in T(x), and thus

(2.4) att (f:) c x + lin { T(x)}.

This is not difficult to verify because if z aft (v) then x + x(z- x) is in att (1)v) for
all scalars t, and since x ri (v), we must have x + t(z x) in fz if ]x[ is sufficiently
small. In particular, z belongs to x + T(x) as desired. We now show that the reverse
inclusion holds if is the polyhedron defined by

(2.5) f {x R" (c, x) >= 6,j 1,. ., rn}

for some vectors c R" and scalars 6. For future reference, we define

a(x) {j: (cj, x)=

as the set of active constraints at x.
TI-IEOREM 2.6. If 1: is aface ofthepolyhedron 1 then 1: is a quasi-polyhedralface.
Proof As noted above, we only need to show that if x e ri (fv) then

x + lin { T(x)} catt

If l) is the polyhedron (2.5), then a short computation verifies that

(2.6) lin{T(x)}={ueR": (c, ,)=O, jea(x)}.

Now choose y in x + lin { T(x)}. Then (2.6) shows that if I/x] is sufficiently small, then

x,, x + t(y x) .
Since x e fF, the definition of a face implies that x, :. Since y- att {x, x,}, we
obtain that y e att (v) as desired.
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1201

Theorems 2.2 and 2.6 show that any x in a polyhedron 12 lies in the relative interior
of a quasi-polyhedral face of . Given a set of constraints A of the polyhedron (2.5),
the relative interior of a quasi-polyhedral face is defined by

(2.7) ri (12) {x R": (cj, x)= j,j A, (Cj, X) > 6j,j = a}.

Conversely, given a quasi-polyhedral face 12e of the polyhedron (2.5) the set of active
constraints A(x) is independent of x ri (fv) and satisfies (2.7) with A= A(x).

A quasi-polyhedral face need not be polyhedral, and conversely, a polyhedral
face need not be quasi-polyhedral. For example, the bases of a right circular cylinder
are quasi-polyhedral faces but are not polyhedral. Also, all boundary line segments
that connect the bases in a perpendicular fashion are polyhedral faces, but are not
quasi-polyhedral.

Quasi-polyhedral faces are closely related to the concept of an open facet as defined
by Dunn [1987]. Open facets are defined in terms of the orthogonal complement of
the normal cone: for a set S R the orthogonal complement of S is the subspace S+/-

of all vectors orthogonal to S. A nonempty subset 12 of 12 is an open facet of if
there is an affine subspace V such that

(2.s) V=x+(x)
for all x ., and

fv int v (12 V),

where intv(’) is the interior with respect to V. We now show that any open facet is
the relative interior of a quasi-polyhedral face, and that the relative interior of a
quasi-polyhedral face is an open facet. The following result is the first step in establish-
ing this relationship.

LEMMA 2.7. Let K be a closed convex cone. Then

lin{K}={K}.
Proof Since K is a closed convex cone, K= K. Hence,

[K]+/- = KOO K,
and since [K] is a subspace,

[K]+/- lin {K}.

Conversely, let xlin{K} and choose any vK. Then (x,v)-<0, and since -x
lin {K} also, (x, v)=>0. Hence, (x, v)=0, and this implies that x [K]+. Thus,

lin {K}c [K] +/-

as desired.
Lemma 2.7 shows that if v is a quasi-polyhedral face then aft ()= V where

V is defined by (2.8) for any x ri (). Since v is a face, a computation based on
Theorem 2.1 shows that

av 12 71 att (fF).

Thus fe 12 c V, and this implies that the relative interior of fe is an open facet.
We now show that an open facet fe is the relative interior of a quasi-polyhedral

face. We begin by proving that att (fe)= V. It is clear that aft (f) is in V. Now let
x fe and choose any y V. Then x, x + x (y x) belongs to V, and since )e
intv (f f’l V), we must have x, fv for all x sufficiently small. Since y e att {x, x,},
we obtain that y att (e) as desired. This proves, in particular, that
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1202 J.v. BURKE AND J. J. MORt

We complete the proof by showing that if x {iv and {i(x) is the face of {i with
x ri ({i(x)), thenv ri ({i(x)) and {i(x) is quasi-polyhedral. Theorem 2.2 guarantees
the existence of {i(x). Also note that since {iv is convex and x {IF ri ({iv), Theorem
2.1 shows that {iv c {i(x). Thus aft ({iv)C att ({i(x)), and since (2.4) holds for any
x ri ({iv),

att ({i(x)) c x + lin { T(x)} =att ({iv).

This proves that {i(x) is a quasi-polyhedral face and that att ({i(x))=att ({iv) V.
Hence

and since {iv c {i(x),

ri ({i(x)) intv ({i UI V) {IF,

{IF ri ({iv) c ri ({i(x)).

This proves that the open facet {Iv is the relative interior of the quasi-polyhedral face
n(x).

Although the definition of a quasi-polyhedral face appears to be purely geometric,
we show in our next result that a topological characterization is possible. This is the
main result of this section and is employed in the following section to relate the analytic
behavior of sequences in {i to their geometric behavior.

THEOREM 2.8. Let fv be a nonempty face of the convex set {i. Then {iv is a

nonernpty quasi-polyhedralface ifand only if {iv + N({iv) has an interior. In either case,

int {{iv+ N({iv)} ri ({iv) + ri (N({iv)).

Proof Assume that {iv + N({iv) has an interior. Since (2.4) holds, we only need
to show that

x + lin { T(x)} c att ({iv)

for any x e ri ({iv). Since (aft ({iv)- x) + span {N({iv)} is a subspace with a nonempty
interior,

R" (aft ({iv) x)+span

Now choose zelin{T(x)}. Then z=xl+x2 where xl
span {N({iv)}. We claim that x2 e span {N({iv)}+/-, and thus that x2= 0. Note that (2.4)
guarantees that x e lin {T(x)}, and since z e lin {T(x)} also, we must have x2 z-x
in lin { T(x)}. Lemma 2.7 then yields that x2 e span {N({iv)}+/- because span {S}" S-for any set S. We conclude that x=0, and thus z belongs to aft ({iv)-x. Hence,
x + z e att ({i v) as desired.

Now assume that {iv is a quasi-polyhedral face, and choose z in the set ri ({iv)+
ri (N({iv)). Then z= x ql-x2 where x eri ({ix) and x2 e ri (N({iv)). Wecan also choose
e > 0 so that if B is the unit ball then

(2.9)

and

(2.10)

(X -[- EB) [’ aft ({iv) {iv

(x+ eB) Vlatt (N({iv))c N({iv).

We now show that z+u belongs to ftv+N({iv) for any vR with Ilvll<-e. Since
{iv is quasi-polyhedral, Lemma 2.7 implies that

aft ({iv)- x1 lin { r(a)} N({iv) +/-.
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1203

Thus aft (12:)-x is the orthogonal complement of the subspace aft (N(12:)), and
therefore we can decompose u as u + u2 where (t,, ’2)= 0 and

, e aft (12e)-x, ,2 e aft (N(a.)).

Clearly, v[[ _-< e and x, + v belongs to aft (12F). Hence (2.9) implies that x + v is in
12F. Similarly, IIv2[[ _-< e and x2+ v2 belongs to att (N(fv)). Hence (2.10)implies that
X I- /2 is in N(fF). This shows that z + v belongs to 12F + N(12:), and thus

ri (12v) + ri (N(av)) int {12: + N(12v)}.

The reverse inclusion is established by noting that

int {12z + N(a:)} ri {12F + N(12)} ri (12)+ ri (N(a:)).

The first equality holds because the definition of the relative interior shows that if the
interior of a convex set is not empty then the interior agrees with the relative interior.
The second equality holds because the relative interior of the sum of convex sets is
the sum of the relative interiors. This result is classical. See, for example, Corollary
6.6.2 of Rockafellar [1970]. V1

3. Nondegeneracy and faces. Let f: R - R be a continuously differentiable map-
ping over a nonempty closed convex set 12 R", and consider a sequence {xk} which
converges to a point x* 12 that satisfies the first order necessary conditions for
optimality for problem (1.1). Theorem 2.2 guarantees that x* ri (12z) for some face
12v of 12. In this section we assume that 12z is quasi-polyhedral, and study conditions
which guarantee that xk ri (12z) for all k sufficiently large.

Any point x* which satisfies the first order necessary conditions for optimality of
problem (1.1) is a stationary point for problem (1.1). The standard first order conditions
are that

(Vf(x*),x-x*)>-_o, xea.
An equivalent characterization in terms of the normal cone is that x* is a stationary
point if

(3.1) -Vf(x*) 6 N(x*).

If 12 is a convex set of the form

(3.2) 12 {x e R’: Cy(X) >- O,j 1,. ., rn},

for some differentiable functions cy:R"--> R, then stationary points are related to
Kuhn-Tucker points if the constraint functions satisfy a constraint qualification. We
shall use the Guignard [1969] constraint qualification which requires that

T(x)={,R’: (,Vci(x))>=O,ja(x)}.

Gould and Tolle 1971] proved that the Guignard constraint qualification is the weakest
condition that guarantees that a stationary point is a Kuhn-Tucker point. Note that
if the constraint functions defining 12 are affine, then the Guignard constraint
qualification is satisfied at every point in 12. Also note that the Guignard constraint
qualification implies that N(x) is a polyhedral cone, that is, a cone of the form

(3.3) K= ’: ’= Ai’i, Ai >- O, ui R
i=1
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1204 J.v. BURKE AND J. J. MORI

In fact, the Farkas lemma implies that if the Guignard constraint qualification holds
at x e f then

N(x) { , e R"" , E
ieA(x)

iiV Ci(X), t 0}.
Thus the normal cone is generated by the negatives of the active constraint gradients.

DEFINITION 3.1. A stationary point x* of problem (1.1) is nondegenerate if

-Vf(x*) e ri (N(x*)).
Dunn 1987] introduced this definition of nondegeneracy and used it to show that

the gradient projection method identifies the optimal face in a finite number of
iterations. We shall show that this result can be extended considerably.

We claim that Definition 3.1 is a generalization of the strict complementarity
condition. The classical definition of strict complementarity only applies to Kuhn-
Tucker pairs when f is defined by a system of equations and inequalities. If the
multipliers are not unique, then the active constraint normals are linearly dependent,
and thus there is a set of Lagrange multipliers which fails the strict complementarity
condition. We show this as follows. If

Vf(x) Y Air c,(x), A, >= O,
iA(x)

but the active constraint normals V ci(x) are linearly dependent, then there are constants

/zi, not all zero, such that

V/(x) E (li "[- O[’bi)VCi(X)
iA(x)

for any a. We can choose a so that hi-1-a/zi 0, but with hi + o[./,i---0 for at least one
A(x). Thus hi + a/z is a set of multipliers which fails the strict complementarity

condition.
We now show that if satisfies the Guignard constraint qualification then

Definition 3.1 only requires the existence of some set of strictly complementary
Lagrange multipliers. Since the Guignard constraint qualification implies that the
normal cone is generated by the negative of the active constraint normals, we justify
this claim by assuming that N(x) is a polyhedral cone.

LEMMA 3.2. If K is the polyhedral cone (3.3) then ,ri (K) if and only if pc
span { vi" 1 _-< -_< m} with coefficients hi > 0 for 1, , m.

Proof Assume that , span {vi" _-< -< m} with coefficients hi > 0 for 1, , m.
Note that if K is the polyhedral cone (3.3) then

aft (K)= span { Pi" i= 1,’’., m},

and let I be such that {ui’i I} is a basis for aft (K). The linear independence of
{ui" I} shows that there is an e > 0 such that if w aft (K) and w [I--< then

W-- E ]il]i, I/z/[ < min {/i" i= 1,..., m}.
il

Hence, v+ w is in K, and thus v e ri (K). Conversely, assume that v e ri (K), and
choose any Vo in span {v" 1 -<_ i-<_ m} with coefficients Ai > 0 for 1, , m. Since
v e ri (K), there is an a > such that a, + (1 a) ’o belongs to K. Hence,

and thus , span ,i" _<- i_-< m} with coefficients A > 0 for 1, , m. S
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1205

Lemma 3.2 shows that if is a convex set of the form (3.2), and if the Guignard
constraint qualification holds at x*, then x* is a nondegenerate Kuhn-Tucker point
if and only if

Vf(x*)= E AiVci(x*), A>O.
iA(x*)

In other words, x* is a nondegenerate Kuhn-Tucker point if and only if there is a set
of strictly complementary Lagrange multipliers.

Definition 3.1 applies even in those cases where N(x*) fails to be polyhedral. For
example, if is the cone defined by

a {(:,, , ): ->0, :_->+},

then N(0) is not polyhedral, but it is clear that Definition 3.1 makes sense. Note that
the constraint functions which define do not satisfy the Guignard constraint
qualification at the origin.

The characterization of algorithms that generate sequences {xk} such that xk
ri (:) for all k sufficiently large is in terms of the projected gradient 7nf which is
defined by

7f(x) argmin {[[ ,+ Tf(x) [[: , T(x)}.

Since T(x) is a nonempty closed convex set, this defines 7nf(x) uniquely. Note that
Vf(x) is the projection of-Tf(x) into T(x), that is,

Vaf(x) PT-x)[-Vf(x)].

This definition of the projected gradient was used by Calamai and Mor6 [1987] in
their work on the projected gradient. They showed, in particular, that if {x} is the
sequence generated by the gradient projection algorithm, then {Vnf(x)} converges to
zero. In the next section we show that sequential quadratic programming algorithms
also force {Vaf(x)} to zero.

The projected gradient shares many properties with the standard gradient. For
example, Vaf(x*)= 0 if and only if x* is a stationary point for problem (1.1). In
general Vaf is not continuous because it depends on the tangent cone. However,
Calamai and Mor6 [1987] prove that [[Vf(. )[] is lower semicontinuous, and Theorem
2.3 shows that Vaf is continuous on the relative interior of any face of .

The proof of the characterization result relies on the following technical lemma.
LEMMA 3.3. Assume that v is a quasi-polyhedral face of the convex set with

x* ri (F) and d* ri (N(:)). Ifx and dk N(x), and the sequences {x} and
{d} converge to x* and d*, respectively, then x ri (:) for all k sufficiently large.

Proof Theorem 2.8 guarantees that

x* + d* e int {2. + N()},

and since {xk + d} converges to x* + d*,

x + d int {1). + N(v)}.

We now claim that if P is the projection into , then P(u + v)= u for any u e 12 and
v N(u). The validity of this observation is established by noting that P(x) is character-
ized by the requirement that x- P(x) be in the normal cone N(P(x)). Hence, Theorem
2.8 and this observation yield that

(3.4) x P(xk + d) P(ri (1:)+ ri (N(:)))
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1206 J.v. BURKE AND J. J. MORI

for all k sufficiently large. Now note that if u ri (f:) and v ri (N(12:)) then Theorem
2.3 implies that v N(u). Hence, P(u + v) u ri (:). In particular,

P(ri (f:)+ri (N(f))) ri (f:).

Thus (3.4) implies that Xk ri (f:) as desired.
The gradient and the projected gradient are related via the Moreau decomposition:

If K is a closed convex cone then every x R can be uniquely expressed as

x=P(x)+Po(x).

This result can be found, for example, as Lemma 2.2 of Zarantonello [1971]. An
immediate consequence of this decomposition is that

]]Vf(x)]]- dist (-Vf(x), N(x)),

where

dist (y, F) inf {IlY x II. x
is the distance function for the set F. We now show that the main result of this section
is a consequence of the Moreau decomposition and Lemma 3.3.

THEOREM 3.4. Let f R - R be continuously differentiable over a nonernpty closed
convex set , and assume that {x} is a sequence in which converges to a nondegenerate
stationary point z*. If 1 is a quasi-polyhedral face of with x* ri (), then

x ri () for all k sufficiently large if and only if {7f(x)} converges to zero.

Proof If x ri () for all k sufficiently large, then Theorem 2.3 shows that

Vaf(Xk PT(x*)[-Vf(xk ].

Since Vf is continuous, and since x* is a stationary point of problem (1.1), we obtain
that {Vaf(Xk)} converges to zero. For the converse define

dk Pu(xk)[--V/(Xk) ],

and note that the Moreau decomposition of--Vf(Xk) yields

-Vf(x,) Vnf(Xk) + dk.
Since {Vf(x)} converges to zero, and since x* is nondegenerate,

lim dk d* -Vf(x*) ri (N(le)).
k-->

Thus, Lemma 3.3 shows that Xk ri (f:) for all k sufficiently large.
We now show that if x* is a nondegenerate stationary point and if N(x*) has a

nonempty interior, then finite termination is obtained.
COROLLARY 3.5. Let the hypothesis of Theorem 3.4 hold. If N(x*) has a nonempty

interior and {Vaf(xg)} converges to zero, then Xk- X* for all k sufficiently large.
Proof The result follows from Theorem 3.4 once we show that {x*} is a quasi-

polyhedral face. If f(x*) is the face of ) with x* ri (f(x*)) then f(x*)+ N(x*) has
an interior, and thus Theorem 2.8 shows that f(x*) is quasi-polyhedral. Moreover,
since int (N(x*)) is not empty, the linearity of T(x*) is {0}. Thus {x*}=f(x*) is a
quasi-polyhedral face.

The proof of this result shows that if N(x*) has a nonempty interior then {x*} is
a quasi-polyhedral face of 12. The converse of this statement is easily established. We
also claim that if N(x*) has a nonempty interior then x* is an extreme point of
We prove this by assuming that x*= Axl + (1- A)x2 for some 0< , < and xl, x2 in
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1207

1). Then span {x2- x} is in T(x*), and thus Xl x2. Note that the converse fails because
an extreme point of a general convex set may have N(x*) with a nonempty interior.
However, if 1) is a polyhedron then any extreme point x* has a normal cone N(x*)
with a nonempty interior.

If 1) is a polyhedron then any x* in 1) is in the relative interior of a quasi-polyhedral
face. Theorem 3.4 simplifies .in this situation, and we can express our results in terms
of the active constraints.

COROLLARY 3.6. Let f: R --> R be continuously differentiable on the polyhedron 1),
and assume that {xk} is a sequence in 1) which converges to a nondegenerate stationary
point x*. Then A(Xk) A(x*) for all k sufficiently large ifand only if {Vf(Xk)} converges
to zero.

Proof. We only need to show that A(x) is independent of x ri (1)). If 1) is the
polyhedron (2.5) and x and x are in ri (1)), then by definition, Xl x: is in lin { T(Xl)}.
Thus (2.6) implies that if i A(x) then (ci, x-x2) =0. Hence, A(x) is a subset of
A(x:). Since the argument is symmetric in x and x:, the result holds. [3

The characterization result of Corollary 3.6 extends and generalizes the result of
Calamai and Mor6 1987] which states that if {Xk} is any sequence in 1) which converges
to a point x*, which is nondegenerate stationary in the standard sense, then A(Xk)=
A(x*) for all k sufficiently large provided {Vf(Xk)} converges to zero.

4. Algorithms. We have established that if the stationary point is nondegenerate
and lies in the relative interior of a quasi-polyhedral face, then any algorithm that
forces the projected gradient Vf to zero attains the optimal face in a finite number
of iterations. In particular, if 1) is a polyhedron, then any such algorithm identifies
the optimal active constraints in a finite number of iterations, and if the Kuhn-Tucker
point x* is an extreme point of 1), then x* is attained in a finite number of iterations.
In this section we show how these results apply to the sequential quadratic programming
algorithm and to the gradient projection algorithm.

We first examine the sequential quadratic programming algorithm. Let f: R - Rbe a continuously differentiable mapping over a nonempty closed set 1)c R n, and
consider the subproblem

(4.1) min {qk(W): Xk + W 1)}

where Xk 1) and qk R - R is the quadratic

q(w)=(Vf(x), w)+1/2(w, Bw),
for some symmetric matrix B R"". If pk is a solution of subproblem (4.1) then the
next iterate is defined by setting X+l x + cp where ak > 0 is the step.

For a general convex set 1) and B =0, the algorithm outlined above is the
conditional gradient algorithm, while ifB V2f(x), this algorithm is Newton’s method
for the constrained problem (1.1). If 1) is a polyhedron then subproblem (4.1) reduces
to the standard sequential quadratic programming algorithm for linearly constrained
problems. Indeed, x + w belongs to the polyhedron (2.5) if and only if (c, xk + w) _-> 6
for <=j<=m.

It is worthwhile noting that an algorithm based on (4.1) can be implemented
efficiently for certain kinds of nonpolyhedral convex sets. For example, if

1)={x R’: (x, Dx) <-_ 6}

for some positive definite matrix De R and scalar 6>0, then the algorithm
developed by Mor6 and Sorensen [1983] determines the global minimizer of (4.1) for
a general matrix B.
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1208 J.v. BURKE AND J. J. MORI

We do not elaborate on the choice of Bk and ak since it is not our purpose to
establish the convergence of this method. Convergence results for the conditional
gradient method and for Newton’s method can be found, for example, in the works
of Daniel [1971], Pshenichny and Danilin [1978], and Dunn [1980]. For linearly
constrained problems, Garcia-Palomares 1975] established convergence ofthe sequen-
tial quadratic programming algorithm. Other convergence results can be obtained by
specializing the results for nonlinear programming problems. See, for example, Burke
and Han [1986], Powell [1983], and Hart [1977].

In our analysis we restrict our attention to those cases in which {Bk} is bounded
and the above algorithm returns a convergent sequence {Xk} whose limit x* is a
stationary point for problem (1.1). We also assume that {Pk} converges to zero. This
assumption is satisfied for the standard choices of Ok if, for example, Bk is uniformly
positive definite for all k sufficiently large.

THEOREM 4.1. Let f: R R be continuously differentiable over a nonempty closed
convex set 11, and assume that {Xk} is a bounded sequence in f and that Pk is a stationary
point of (4.1). If {Bk} is bounded and {Pk} converges to zero, then {Vnf(xk +Pk)}
converges to zero.

Proof. Let N(F, x) be the normal cone of the convex set F at x. Since Pk is a
stationary point of subproblem (4.1), the first order conditions for this subproblem
imply that

(4.2) --Vqk(Pk) S(f- Xk, Pk) S(f, xk q-Pk).

The relationship N(--Xk, Pk) N(-, xk q-Pk) follows from the definition of a normal
cone. We now claim that

(4.3) Vaf(Xk + Pk)ll -< Vf(Xk +Pk) V qk Pk

This claim is verified by noting that the Moreau decomposition implies that for any
x a and any , N(x),

IlVa/(x)ll ]]V/(x) + Prv(x[-Vf(x)]l
Since Xk +Pk is in f, inequality (4.3) is a direct consequence of condition (4.2). Thus

Vaf(Xk + Pk)[] <---- Vf(Xk + Pk) Vf(Xk) BkPk
and the result follows by appealing to the uniform continuity of Vf on bounded sets,
the convergence of {Pk} to zero and the boundedness of {Bk}.

If 1) is a polyhedron, Theorem 4.1 and Corollary 3.6 imply that if the sequence
{Xk} generated by the sequential quadratic programming method converges to a non-
degenerate stationary point x*, then A(Xk+Pk)=A(x*) for all k sufficiently large.
Note that there is no need to assume linear independence of the active constraint
normals; the strict complementarity condition in the sense of Definition 3.1 is all that
is needed.

If f is a general convex set, Theorem 3.4 and 4.1 show that if x* is in the relative
interior of a quasi-polyhedral face fF then Xk + Pk belongs to ri (f) for all k sufficiently
large. Thus, the subproblem (4.1) identifies the optimal face in a finite number of
iterations.

We now turn to the application of the results of 3 to the gradient projection
method (1.3). The step Ok is defined is terms of positive constants Yl, 3’2, and Y3, and
constants/x and r/ in (0, 1) with/x < r/. Define

,k+l P(Xk .kVf(Xk))
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1209

where dk > 0 satisfies

f(2k+,) >f(Xk)+ r/(Vf(Xk), 2k+1-

We assume that the step a satisfies

(4.4) f(x+) <=f(x)+/x (Vf(xk), Xk+,- X),

and

(4.5) 73 Ok ’)tl or 73 ak ’)/2k

Condition (4.4) on Ck forces a sufficient decrease of the function while condition (4.5)
guarantees that ck is not too small. Under these conditions Calamai and Mor6 [1987]
established the following convergence result for the gradient projection method.

THEOREM 4.2. Let f: R"- R be continuously differentiable on 12, and let {Xk} be
the sequence generated by the gradient projection method. Iff is bounded below on 1
and Vf is uniformly continuous on 12 then

lim V f(x )ll 0,
kcx

Theorems 4.2 and Corollary 3.6 imply that if 12 is a polyhedron, and if the sequence
{x} generated by the gradient projection method converges to a nondegenerate station-
ary point x*, then A(xk)= A(x*) for all k sufficiently large. This result had been
obtained by Calamai and Mor6 1987] under the additional assumption that the active
constraint normals are linearly independent.

Theorem 4.2 can also be combined with Theorem 3.4 to show that the gradient
projection method forces Xkri (l)v) for all k sufficiently large. Dunn [1987] had
obtained this result under the additional assumption that the steps {ak} are bounded
away from zero; we note that the steps are bounded away from zero if Vf is Lipschitz
continuous and ak satisfies (4.4) and (4.5). We also note that the approach followed
by Dunn to establish identification results is direct, and does not show that {Vaf(Xk)}
converges to zero.

There are other results that show that the optimal face is identified in a finite
number of iterations, but these results require standard linear independence and strict
complementarity conditions at the stationary point. For example, this is the case for
the generalization of the gradient projection algorithm considered by Gawande and
Dunn 1988].

5. Subdifferentials and projected gradients. Let f" Rn-* R be a continuously
differentiable mapping over the closed convex set 12 c R n, and let P:R" f be the
projection into 12. The differentiable constrained problem (1.1) can be transformed
into the nonditterentiable unconstrained problem

min {(x): x R},

where the composite mapping :R"- R is defined by

(5.1) oh(x) f(P(x)).

The mapping is locally Lipschitz on R", and thus has a Clarke subdifferential O(x)
at each point in R n. In this section we establish an interesting relationship between
Vaf and 0. We show that if {llVaf(Xk)l[} converges to zero, then {gist (0, O(Xk))}
also converges to zero.
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1210 J.v. BURKE AND J. J. MORt

This result is remarkable because in nonditterentiable optimization
{dist (0, 0b(xk))} almost always stays bounded away from zero. We have shown that
projected gradient and sequential quadratic programming algorithms force
to zero, so this result shows that {dist (0, 0&(xk))} converges to zero for these algorithms.

We begin our analysis by obtaining an expression for the directional derivative
of &. Lemma 4.6 of Zarantonello [1971] shows that if xeO and ,e R then

P(x + cu)- P(x)
lim P(u).
c0

Another proof of this result can be found in the paper of McCormick and Tapia 1972].
From this result we immediately obtain that the directional derivative of & is

(5.2) b’(x; u) (Vf(x), PT(x)(U)).
We now relate the directional derivative of b to the projected gradient off We claim
that

min {b’(x; u)" ,11 _<- 1} =min {(Vf(x), u)" u T(x), I1,11 <- 1}.

The proof of this claim follows from (5.2) and the observation that projections are
nonexpansive mappings so that

IIPT<x)()ll- IIPT<x)() PT(x>(O)II -< ll-
Since Lemma 3.1 of Calamai and Mor6 [1987] guarantees that

min {(Vf(x), u)" u T(x), ull _-< 1} -IlVaf(x)]],
we obtain that

(5.3) min {&’(x; u): ull _-< 1}

The validity of (5.3) depends on the relationship (5.1) between & and f. The following
result, which can be found in Burke [1983], only assumes that &" Rn R is a locally
Lipschitz function.

LEMMA 5.1. Let qb" Rn-> R be a locally Lipschitz function of R n, and let b(x;
be the generalized directional derivative at x R n. Then

(5.4) min {&(x; v)" ]]vll-< 1} -dist (0, och(x)).

Proof The proof uses two standard results about the subdifferential. They are that

&(x; v) max {(sc, v)" ( 0&(x)},

and that Och(x) is a nonempty compact convex set. Clarke [1983] proves these results.
We establish (5.4) by showing that for any closed convex set F

(5.5) min {max {(sc, v)" eF}" I1 11-< 1} =-dist (0, F).

Choose sc* Pr(O). For any vii <- we have ((*, v) -> -I1:*11, and hence

max {((, u)" sc F} => -I1*11-- -dist (0, F).

Since this holds for all I111--< 1,

min {max {((, u)" : F}" I1 11 -< 1}=>-dist (0, F).

A similar argument yields the reverse inequality. Choose sc* Pr(0). Then (sc*,
0 for all sCF, and if when sc* #0 and u*=0 otherwise, then

max {(sc, u*)" sc F} -< -II II- -dist (0, F).

Since I1 *1 -< 1, this yields the reverse inequality and establishes (5.5).
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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS 1211

We now have all the ingredients needed to prove the main result of this section.
THEOREM 5.2. Let f: R - R be continuously differentiable over a nonempty closed

convex set 1), and define ch by (5.1). Then

(5.6) dist (0, Ob(x)) [[vf(x)ll.

Proof Since 4’(x; v)-< 4,(x; v), the proof is an immediate consequence of (5.3)
and (5.4).

Inequality (5.6) can be strict. For example, if 1) is the positive orthant R_, then
7f(0) =0 if and only if Vf(0) R_ but 0 04,(0) for any function f The last part of
this claim follows from (5.4) if we show that 4(0; v)=> 0. Recall that

b(x; v) lim sup
y X, 0

(y + 7"p) d(y)

If we consider sequences yk and zk such that P(y + zv) P(y) P(0), it is clear that
(o; ) 0.
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