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The sequential quadratic programming method developed by Wilson, Han and Powell may fail 
if the quadratic programming subproblems become infeasible, or if the associated sequence of 
search directions is unbounded. This paper considers techniques which circumvent these difficulties 
by modifying the structure of the constraint region in the quadratic programming subproblems. 
Furthermore, questions concerning the occurrence of an unbounded sequence of multipliers and 
problem feasibility are also addressed. 
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1. Introduction 

In this paper the sequential quadratic programming (SQP) method, developed by 
Wilson [29], Han [14, 15], and Powell [20, 21] (also see [1, 11, 23]), for solving 
nonlinear programming problems is extended to problems in which the quadratic 
programming sub-problems may be infeasible. Our approach is based on the method 
developed in [3]. Recall that the SQP method iteratively approximates the nonlinear 
program 

min f(x) 

subject to g(x)~O, h(x)=O 

by quadratic programs (QP) of the form 

min Vf(x)V d + ½dVHd 
d~N" 

subject to g(x) + g'(x)d <~ O, 

(1.1) 

(1.2) 

h ( x )  + h ' ( x ) d  = O, 
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where f :  N" ~ N, g : Nn _~ ~,~,, and h : N" -+ N~2 are all continuously differentiable on 
N", and H ~ R "×n is symmetric positive definite. The iteration then has the form 

g:=x+Ad 

where d solves (1.2) and A is a step length chosen to reduce the value of a merit 

function for (1.1) (e.g. see [14, 20, 21]). 
A serious limitation of  the SQP approach is the requisite consistency of  the QP 

subproblems (l.2). The goal of  this paper  is to describe a modification to this method 
wherein the QP subproblem (1.2) is altered in a way which guarantees that the 
associated constraint region is nonempty for each x ~ ~" and for which a reasonably 
robust convergence theory can be established. 

Within the framework of the SQP method, Powell [21] suggests an approach that 
is similar to the one that we will describe. The modification that Powell considers 
is designed to guarantee the nonemptiness of  the constraint region associated with 
the QP subproblem at each x c N". This modification also produces search directions 
that are descent directions for the associated l~ merit function. In [25,26], 
Schittkowski provides an in-depth investigation into the computational behavior of 
these methods. His work indicates that in practice these methods work quite well. 

However, there does not yet exist a satisfactory convergence theory for these 

algorithms. 
Another, quite different, QP-based approach to solving Problem (1.1) has been 

developed by Fletcher [8, 9, 10]. It is known as the QL method or the SI~QP method. 
In Fletcher's approach one employs a trust region strategy to locate stationary points 

of  the Ii merit function that are feasible to (1.1). Fletcher has shown that, under 
certain local hypotheses, his method and the SQP method generate identical iterates 

[9]. 
Our method is similar to the methods of  Powell [21] and Fletcher [8, 9, 10] in 

that it can overcome some difficulties associated with the infeasibility of the QP 
subproblems (1.2). A feature which is uncommon to the other methods is that even 
when Problem (1.1) is itself infeasible our method can sometimes extract useful 
information about the problem from our calculated points. This is because the intent 

of the method is to search for stationary points of (1.1) in a broader  sense. A point 
will be called a stationary point for (1.1) if it is either a Kuhn-Tucker  point, a Fritz 
John point (see the discussion after Corollary 5.1), or is a stationary point of  the 
distance function 

• g ( x )  
4)(x) := d'st[ ( h(x) ) 

which is not feasible for (1.1) 

1 

(the distance function ~b is defined in Section 2). The 
motivation for our approach is based on the point of  view that problem (1.1) is 
composed of two problems. The first is the feasibility problem and the second is 

the problem of  minimizing f In this paper,  the goal of  primary importance is the 
attainment of  feasibility. The consequences of  this perspective are developed in the 
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next two sections wherein we discuss the modified SQP subproblems and a rule for 
updating the penalty parameter  of the merit function used in choosing a step length• 

In Section 4 the proposed model algorithm is stated. In Section 5 we study properties 
of  the updating rule for the penalty parameter  in order to ascertain the causes of  
its potential unboundedness.  The convergence theory for the method is presented 
in Section 6. Section 7 contains a brief discussion on questions concerning 

implementation• The paper  is concluded in Section 8 by studying two examples. 
The examples are included in order to demonstrate situations in which the algorithm 
proposed in this paper  succeeds while either the QL algorithm or the methods 
proposed by Powell [21] can fail• Moreover, the examples are interesting in their 
own right since they are constructed to illustrate dramatically certain deficiencies 

in the techniques described in [8, 21]. 
The notation that we employ is standard• However,  a partial list of  definitions is 

provided for the reader 's  convenience• 
-f'(x; d):= l im~0( f (x  + hd) - f ( x )  )/ h. 
- g'(x) is the Fr6chet derivative of g at x. 
- For g : N n ~ N , ,  we define Ran(g) c ~ n to be the range o fg .  

- For C ~ A m, co C is closed convex hull of  C, int C is the interior of  C, and 

N ( x  I C) := {x*: (x*, y - x) <~ 0 for all y c C} is the normal cone to C at a point 

x ~ C .  
- Let ]]. I] denote the norm on ~"; then B denotes the associated closed unit ball, 

I1" Iio denotes the associated dual norm, i.e. Ilxllo:= sup{(x, y): Ilyll <~ 1}, and B ° 

denotes the closed unit ball of  the dual norm. 
Y r 0  • ~ r ~  ~ m  2 - K : = ~ x { 0 } ~ , 2  and K .=t~+ xt~ . 

- I f  C c ~", then 

dist(x I C ) := inf{ II x - y I1: Y ~ C }, 

and 

disto( x ] C) := inf{//x - y It o: Y ~ C }. 

- F o r f : ~ " ~  and C c ~ " ,  set 

argmin{f(x):  x ~ C} := {~ ~ C: f (~ )  = inf{f(x):  x c C}}. 

- For f :  Rn-~ R locally Lipschitzian, let a f  denote its Clarke subdifferential. 
- The vector e 6 N" is the vector of  ones, e := (1, 1 , . . . ,  1) T. 

2 .  T h e  m o d i f i e d  S Q P  s u b p r o b l e m s  

The modification to (1.2) that we consider is based upon the point of  view that the 
attainment of feasibility is the objective of primary importance, whereas the minimiz- 

ation o f f  is secondary• With this perspective in mind, we associate with every point 
in ~" a set of  search directions that reflects the desire to attain feasibility• Specifically, 
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for  each x ~ N" we associate a set o f  directions, D(x, or, [3), where D(x, o', t8) c 13B 
and each d c D(x, o', ~) is a descent direction for the distance function 

g ( x )  . 
05(x):=--dist[ ( h ( x ) ) , ~  ] (2.1) 

with 

K := ~8 ,  x {0}~2. 

Here the mapping  dist((~)lK) is defined by 

with I}" ]J being any given norm on ~ m'+"2. The parameter  cr is required in the 
designat ion o f  the set D(x, o', tO) in order  to assure the existence o f  Kuhn-Tucke r  

multipliers for  the modified subproblem (see Lemma 2.2). The parameters cr and 

fl have the relation 0 < o- < ft. In Section 7 we derive the following practical formulas 

for  05(x) in the case where the norm on ~,~,+,,,2 is chosen to be the I a, l ~ or  l °° norm:  

m I m 2 

/1-norm: 05,(x) = • gg(x)++ ~ Ihj(x)], 
i = 1  j - - 1  

/2-norm: 052(x) = (gi(x)+)2+ ~ (hi(x)) 2 , 
l.. i =  1 j = l  

/°%norm: 05~o(x) = max{g,(x)+, ]hj(x)]: i --- 1 , . . . ,  m, ,  j = 1 , . . . ,  m2}, 

where ¢+ := max{0, ~'} for all ¢ c ~. The mapp ing  05 is an example of  a convex 

composi te  funct ion [2] since the distance function,  dist(y I K) ,  is convex [4, Theorem 

3.1]. Moreover,  due to its nature, the distance funct ion for a cone such as K has a 
very rich geometric structure. This structure was explored in [4], to which we make 

frequent reference. 

Let us now turn to the construct ion o f  the sets D(x, or, 13). We begin by associating 
with each x c ~" and ~r > 0 a set o f  residuals R(x, ~r) c ~ m, x ~ m2, where (z~) c R(x,  o-) 
if and only if there exists d c ~n and z c ~ ,  such that 

zl = g(x) + g ' ( x ) d -  z, 

z2 = h(x)+h ' (x )d ,  

Ilall-< 

and (~) satisfies the equat ion 
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and 

is consistent. 
Next, let the mappings  r ~ : ~ " ~  m~ and r 2 : N " o N  m-" be such that 

n(x, o-) 
r2(x)] 

gr,(x).~ for  every x c N'. That  is, t 4 ( ~  is a selection f rom the point-to-set map R(x, o-). 
Practically speaking, one can choose the norms on N'~' x W ~ and N~ so that  (2.2) 

is either a linear or quadrat ic  program. If  one  were to choose a specific algori thm 

to solve this program,  then, given x ~ ~" and o- > 0, a residual (~I~) ~ R(x, or) would  

be identified at the solution. In this way, the choice of  algori thm to solve (2.2) can 
determine a selection ( ;~ I ) .  Finally, we define D(x, o', ~) to be the set 

P(x, u, ¢1):= {d ~ R" I IId II <~ ~, g(x) + g'(x)d <~ r,(x), h(x) + h'(x)d = r2(x)} 

where/3  > o-. Clearly D(x, ~r,/3) is nonempty ,  since, in particular, 

• [ . .  [g(x)+g'(x)d K]  
D(x,~r,/3)o argmm~a,StLh(x)+h,(x)d I J I"' 4"0- 

By definition, each element (z~) in R(x, or) is an optimal residual for  the problem 

Note  that the in t roduct ion of  the constraint  lid IJ ~< u ensures that the set R(x, or) is 

always well defined and nonempty.  Moreover ,  R(x, o') always contains exactly one 
element whenever  the norm employed in N",  x N  m2 is strictly convex (cf. Vlasov 

[28] or [13]). An alternative way of  viewing the residual set R(x, er) is that  R(x, o') 
consists o f  those vectors (~) in ~'~, x R '~. o f  least norm for which the system 

(2.2) 

which is itself equivalent to the problem 
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In the analysis to follow the parameters cr and 13 will play a central role. The 
relationship o- </3 is required in the proof  of existence of Kuhn-Tucker  multipliers 
for our modified QP subproblems (Lemma 2.2). In particular, the condition ~ </3 
insures that the constraint IId]l ~</3 satisfies the Slater constraint qualification [18, 
page 78]. 

We now provide two examples illustrating these concepts. The first of these 
examples demonstrates the need for the parameter ~r. 

Examples. (1) Let g:~_+~2 be given by 

for all x c ~, and m2 = 0. Let N2 be equipped with the 2-norm. In order to illustrate 
the purpose of the parameters cr and/3, we first consider the case in which the norm 
constraint in the definition of both R(x, o') and D(x, or, t9) is absent. In this case, 
we have 

inf{dist(g(x) + g'(x)dlK)ld c N} = inf{I I(g(x) + g'(x)d)+ll: d ~ ~} 

1) - 2 x ( l - x  2) ' 
= I(4x2 + -1 l - x 2  i f _ l  ~<x<0,  

/ 
[0 ,  otherwise, 

with 

and 

{(4x2 _1[ 1 - x  2 \ ]  if - l~<x~<0, 

otherwise, 

(x2+ 1) - x ]  

2x ' ' 

4x2+ 1 ] '  

D(x, oo, oo) = (-oo, 0], 

(-oe,  - x ] ,  if 1 < x. 

if x <~ - l ,  

if - l ~ < x < 0 ,  

if x = 0, 

i f 0 < x ~ < l ,  

Note that the feasible region for (1.1) with this choice of g is empty. However, the 
set of search directions D(x, oo, oo) always points towards the origin. This makes 
sense since the image of the origin under g is the closest point in the range of g to 
K with respect to the 2-norm. 
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The most  significant feature  of  the example  is the local behav io r  of  D(x, oo, oo) 
aear x = 0. Observe that  

lira dist(0]D(x, oo, co)) = +ec. 
x$0 

This behav ior  is unaccep tab le  within the f r a m e w o r k  of the convergence  theory  
provided  in Section 6. In part icular ,  it necessi tates the p lacement  o f  explicit  bounds  
on the choice of  search direction. In our  setting this is done  by in t roducing the 
paramete rs  o- and 13. I f  we now set o- = 1 and  take 13 >~ o- we find that  

"[1, min{-x , /3}]  i f x < ~ - l ,  

2x~+3x ~ 
4 - - ~  i- J i f  - l ~ x < 0 ,  

D(x ,  ~,/3) = 
[-]3,  0] if x = 0, 

[ - / 3 , - 1 ]  if  0 < x .  

Observe that,  in general,  D(x, ~r,/31) D D(x,  ~, ~2) whenever /31  >/32- However ,  as 
occurs in this example  when  - 1  <~ x < 0, it is possible  that  D(x, o% oo) = D(x, or,/3) = 
D(x, o-, o'). 

(2) Let h : R ~ R 2 be the mapp ing  

) 
and ml = 0. Let N2 be equ ipped  with the 2-norm. Again, as in example  1, it is 

instructive to begin with the case in which the bound  constraint  is absent.  In this 
case we have 

inf{dist(h(x)  + h'(x)dIK): d < ~} = inf{ll(h(x) + h'(x)d)I1: d ~ ~} 

= i n f {  ( 1-( l+d)ex)x+d : d e N }  

l + ( x - 1 ) e  ~ { 1 ' ~  
- ~-~e2X \ e  ~ ] 

with 

and  

R(x, 

D(x, oo, oo) = {(1 + e2X)-l(e x - e 2x - x)}. (2.3) 

Here  the feasible region for  (1.1) is the singleton {0}. Fur thermore ,  the constraints  
in (1.2) are inconsistent  for  every x c ~\{0}, and the m a p p i n g  h does not  satisfy the 
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Mangasarian-Fromowitz constraint qualification [18, Definition 5.1] at any poinl 
in R. Now, given o- and/3 satisfying 0 < o- ~</3, one can employ (2.3) to show that 

{{" f eX-e2~-x/] 
m,nt  o', - -  ~ - ~ l ,  if x~<O, 

{ e t }  D(x, o 5 / 3 ) =  max -o-, - i ~ -  £ - , i f  0 < x .  

This example is particularly pertinent to the discussion since all of  the modified 
subproblems considered by Powell [21] and Schittkowski [25, 26] return a search 
direction d = 0 at every point x E ~, regardless of the choice of C 1 objective function 
f. On the other hand, the method described in this paper converges to the solution 
x =0  from any starting point. [] 

We now show that the directions in D(x, o-,/3) are indeed descent directions for 
@. 

Lemma 2.1. Let 0 < o - 4 / 3  and choose dc  D(x, o-,/3). Then 

4,'(x; d) ~<,~(x, o-) ~< o, 

where 

" ~f'" " r fg (x )+g ' (x )d \  K]  o-} 
A(x,o'):=mt~aiStLkh(x)+h,(x)d] I IiidI[<<- -¢ ( x ) .  

Moreover, A (x, o-) = 0 if and only if x is a stationary point of 4~ in the sense that 
Oc c)¢(x), where O&(x) is the Clarke subdifferential of ¢ at x. 

Proof. Let d c  D(x, o-,/3). Then 

d "rf  g(x)+g' (x)d '  K]  K]  

L\h(x)  + h'(x)d - r2(x)/ 

r,(x) 

_. ff...rig(x)+g'(x)al I1~o-} (2.4) 

where the first inequality is a consequence of  the sublinearity of the distance function 
dist(ylK) (cf. [4, Theorem 3.1]); a mapping 1:~"~-->~ is sublinear if and only if 
l(x+y)<~l(x)+l(y) and l(ax)=od(x) for all x, y c ~  ~ and cry>0. Also, by [4, 
Lemma 4.1 ], 

. . . r { g ( x ) + g , ( x ) c t \  K ] 
4,'(x; d)<~aistLkh(x)+h,(x)d}l J -4,(x)  (2.5) 
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'or all d e R". By combining (2.4) and (2.5) we have 

~b'(x; d)<~a(x, cr)<~O. 

If Zl(x, o-) = 0 t h e n  d = 0 is an element of the set 

• [ . .  f [ g ( x ) + g , ( x ) d ' ~  o-}. 
argmln~a'StLkh(x) + h , (x )d}  l K ]  : Jld[[ <~ 

J 

Consequently, the constraint Ildll <~ o- is superfluous: Therefore, the last satement 
of the lemma follows from [4, Theorem 4.2]. [] 

Having defined the sets D(x, or, [3), we now describe our proposed modification 
to the subproblem (1.2). The subproblem (1.2) is simply replaced by the convex 
program 

Q(x, H, cr, fl): min Vf(x)Td+½dXHd 
d ~  n 

subject to g ( x ) +  g ' (x )d  ~ r~(x), 

h(x)  + h ' (x)d  = r2(x), 

14dll  . 
These convex programs have the following properties. 

Lemma 2.2. Let x ~ R ~, 0 < cr < [3, and H ~ R ....  be symmetric and positive definite. 
(1) The convex program Q(x, H, ~,/3 ) has a unique solution d where d satisfies the 
following Kuhn-  Tucker conditions: There exist vectors u E ~'~' and v ~ ~"2 such that 

(a) g(x)  + g ' (x )d  ~ rl(x), h(x)  + h ' (x)d  = r2(x), and II d II <~ [3, 
(b) u>~0, 
(c) O e V f ( x ) + H d + g ' ( x ) V u + h ' ( x ) T v +  N(dl/3B) where N(dl/3B ) (2.6) 

= {z*c Rn: (z*, d )=  [3 IIz*llo} is the normal cone to/3B at d, and 
(d) uV(g(x) + g'(x)d - r,(x)) = O. 

'(2) I f  d =0 is the solution to Q(x, H, m/3),  then x is a stationary point of  rb. 
(3) l f  x is such that g(x) ~<0, h ( x ) = 0 ,  and d =0 solves O(x, H, o',/3), then x is a 

Kuhn-  Tucker point for (1.1). 

P r o o f .  (1) Since H is symmetric and positive definite, this follows from the elemen- 
tary theory of convex programming (cf. Rockafellar [24, Theorem 28.2]). 

(2) Substituting d =0  into (2.6a) we find that g ( x ) ~  q ( x )  and h ( x ) =  r2(x). 
Hence, as in (2.4), 

. of . . ,  [ [ g(x)  + g'(x)d   (x) mq.a'S'Lkh(x)+ h,(x)d] l K]: d ] 
Therefore, A(x, or) = 0 and the result follows from Lemma (2.1). 

(3) The hypotheses imply that r l ( x )=0  and ra(x)=0. Also, since d = 0 ,  
N(dl/3B) = {0}. Plugging this information into (2.6) yields the result. [] 
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We conclude this section with a result concerning the continuity properties o 
the mapping A : R" x N+ ~ ~. 

Proposition 2.1. Let A :N~ x~+-+R be as defined in Lemma 2.1. Then A is continuou, 
on ~n x ~+. 

Proof. It is sufficient to show that the mapping ~ : ~" x ~+-+ N defined by 

" °[di t [" { g(x) + g ' (x)d]  ~}, / S kkh(x>+h,(x>.)]K]: 
is continuous on ~ ,  since, by [4, Theorem 5.3], ~b is continuous on ~ .  Moreover, 
since for each x ~ N" the mapping ~b(x, .):N+-~ ~ is convex, finite valued, and 
continuous at o-= 0, we need only show that ~b(., ~r):N" ~N is continuous on N~ 
for every cr • N+. To this end, note that for every x • ~" there is a d, • N" such that 

,. f {g(x)+g'(x)dx~ 

and H d~ II <~ c~. Thus, for x, y • N", we have 

4~(x, t r)~< dist [ (h lXl  + h;IXld]) I K ] 

( , (x))  + /g'<y  ll 
\h (x)]  - \h (y ) ] l l  \h  (x) / -~h ' (y) )[ I  or" 

Hence, by symmetry, 

for every x and y in ~", whereby the continuity of ~b(., o-) is established. [] 

3. Updating the penalty parameter 

As in [14], the procedure that will be described generates iterates of the form 

Xi+I := Xi + Aidl, 

where di is the solution to Q(xi, Hi, oi, ~i) for an appropriate choice of Hi • ~n×n. 
The step length Ai is determined by a line search routine applied to the exact penalty 
function 

• g(x) 
P~(x) := f (x )  + c~ d'st[ (h (x ) )  l K ] 

for a suitable choice of penalty parameter a = ai. The procedure for choosing ai is 
crucial to the success of the method. In particular, ai must be chosen so that di 
solving Q(xi, Hi, o-~fli) is a descent direction for P~, at xi. 
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Lemma 3.1. Let d E ~ be the solution to Q(x, H, o-, 13) for some x c ~" and some 
symmetric and positive definite matrix H 6Nn×~. Then the directional derivative 
P" (x; d)  satisfies the inequality 

P" (x; d) <~ V f ( x ) T  d + aa(x ,  o') 

<~-dTHd+l l (u )[] l l (  o h(x))-(rl(x)~kr2(x)]]l +c~A(x,~r) (3.1) 

where z is any element from the set of residuals 

No(x) := {z z = g(x)  - y for some y <~ 0 such that] 

( h ; ) ) l  = d i s t [ (g lxX) ) )K]  I 
k 

and (~) is any element from the set of  multipliers 

e V f (x )  + Hd + g'(x)Vu + h'(x)Xv + N(d[/3B)J" 

Remark. In Section 7 it is shown that g(x)+ ~ Ro(x) whenever the norm on ~ m,+m2 
is any one of the/p-norms. In particular, if the/2-norm is used, then Ro(x) = {g(x)+}. 
However, since we wish to develop the theory without identifying a specific norm 
structure, the above definition of Ro(x) is required. 

Proof. The set M(x,  H, or,/3) is nonempty by part 1 of Lemma 2.2. Moreover, if 
d = 0, the result holds, trivially. Thus, suppose that d ¢ 0 and let (~) ~ M(x,  H, o-,/3). 
First observe that 

e2(x ;  d) <~ V f ( x ) T  d + aa(x ,  ~) 

by Lemma 2.1. Hence we need only establish the second inequality in (3.1). By part 
(c) in (2.6), there is a z e  N(d l /3B)  such that 

Vf(x) = - [  Hd + g'(x)X u + h'(x)X v + z]. 

This, along with part (d) of (2.6), allows us to rewrite Vf(x)Xd + aA(x,  o') as 

\ v ]  \ h (x )  r2(x)] 

Finally, note that if z e Ro(x), then z = g ( x ) -  y for some y ~< 0. Hence uVg(x) <~ 
uV(g(x)-y) .  The result now follows from the definition of I1" Iio. [] 

Our objective in the choice of a is to ensure the validity of the inequality 

P'~(x; d)  <~ Vf (x)V d + c~A (x, ~r) <~ -dTHd.  (3.2) 
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As was noted in the p roo f  of  the above lemma, the first of  these inequalities is vali  
for  any d ~ D(x, o', fl). For  the second inequali ty we first observe that if A (x, or) = ( 

then 

• [ , . . [ g ( x ) + g ' ( x ) d  d i l l / 3 } .  argmm~ mSt[ h(x) + h,(x)d l K ] :11 Oc 

[rl(x)~ Consequently,  the selection ~,~)~ can be chosen so that rl(x)c Ro(x) and r2(x)= 
h (x). I f  the selection is so defined, then (3.2) follows from (3.1) whenever  A (x, or) = 0. 
On the other  hand,  when A(x, o-) ~ 0, the second inequali ty in (3.2) is valid as long 

a s  

Vf(x)T d + dTHd 
~< ol. (3.3) 

- a  (x, ¢) 

Thus, by redefining the selection (~I~I) if necessary, it is always possible to choose 
a so that (3.2) holds• Obviously there is a danger  in choosing cr in this way, since 
a (x,/30) can be arbitrarily close to zero. Section 5 is devoted to a study of  conditions 
that assure the boundedness  of  the expression on the left o f  inequali ty (3.3). 

Remark. It is interesting to note that when (~I;~)=0,  inequali ty (3.2) is valid 
whenever  a >~ dist0(0 [ M(x, Hi o-,/3)). If, moreover ,  the constraint  II d 11 <~/3 is inactive, 
then Q(x, H, o', fl) reduces to (1.2) and we have recovered the well known condit ion 
given in [14]. 

4. The model algorithm 

Initialization: Choose  x o c ~  ", a 0 > 0 ,  0 < o ' l < ~ r  <f i ,  fl0e [o'l, or], o-c (or0, fi], Y( a 
compact  set of  positive definite matrices, /4o c Y(, yl > 0, 1 > "Y2 > 0, and 0 < /z l  ~< 
p~2< 1. 

Having (xi, cq, Hi, ~i, /3i), obtain (Xi+l, c~i+l, Hi+l, o'i+1, /3i+0 as follows: 
(1) If  A(xi, o-i)~ 0 let (~I~)  be any element of  R(xl, ~ri); otherwise let rl(xi)c 

Ro(x~) and ra(x~)= h(xO. 
(2) Let di be the solut ion to the convex program Q(xi, Hi, ~ri, ~i). If  d i=  0, stop; 

x~ is either a nonfeasible stat ionary point  for  ~b, or x~ is a K u h n - T u c k e r  point  for  
(1.1) (see Lemma 2.2). 

(3) I f  Vf(xi)Td~ + c~iA(xi, crl) <~ -d~Hidi, set a;+~ := ai ; otherwise set 

[V f(xi)T di + aTI4di 
~'i+l :=  m a x ~  - - -  - -  2ol i j •  

t - a ( x ~ ,  o-,) ' 

(4) Set x~+~ := xi+A~d~ where Ai is any scalar such that f 

P~,,+,(xi+l) <~ P,~,+,(xi) + I,a, l A i [ V f ( x i ) T  di + oZi+l A" (xi ,  o-i)]  
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and either Ai t> Yl or there is a Ai > 0 such that At >~ y2Ai > 0 and 

P~;+,(xt + Ld;) > P~,+,(x~) + tx2~.i[V f ( x i )T  di + ai+,A (xt, o-;)]. 

(5) Choose Hi+l c Y(, o'i+l e [o-;, o-r], and/3i+l c (o-i+,,/~]- 

Remarks. (1) The procedure for choosing the step length in step (4) of the algorithm 
was introduced by Calamai and Mor6 in [5]. This procedure can be viewed as a 
generalization of the Armijo method. Since, by Lemma 3.1 and the observations of 
the previous section, steps (1), (2) and (3) of  the algorithm assure us that 

P',+,(xi; di) <~ V f ( x t )T  di + aia (xi, o-i) 

<~ - d T Hidi 

<0,  

it is not difficult to verify (see [5]) that the criteria for specifying At in step (4) are 
consistent. 

(2) At the end of step (3) of the algorithm, one could choose to rescale the 
objective function f That is, replace f by s [ l f  and reset a; to so. 

(3) In step (5) one is allowed to adjust the parameters o'i and fit iteratively. 
Therefore it is possible to incorporate a trust region like strategy. However, our 
proof  theory does not allow the radius of these trust regions to either decrease to 
zero or become unbounded. 

5. The boundedness of the penalty parameter 

Given the procedure for updating the penalty parameter described in the previous 
section, it is clear that the sequence of  penalty parameters may well become 
unbounded, especially since the primary goal of the algorithm is to force the term 
A(x, o-) to zero. The unboundedness of the penalty parameters is clearly a great 
concern, since it may be the cause of serious numerical instability in the choice of  
step length. Moreover, it could ultimately lead to the breakdown of the convergence 
theory. Thus, it is essential for us to identify those situations in which the sequence 
of penalty parameters may become unbounded. For this analysis, we need only 
consider the quotient 

V f ( x ) T d  + dTHd  
-a (x ,  o-) (5.1) 

where d solves Q(x , /4 ,  o-,/3), since if (5.1) remains bounded, then so do the penalty 
parameters. In the study of boundedness conditions for (5.1) we make use of the 
inequality 

+ ~ r 2 ( x ) / I I  
disto(01M(x, H, o-, fl)), (5.2) 

- a ( x ,  o-) - a ( x ,  or) 
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where z c  Ro(x). Inequal i ty  (5.2) follows f rom (3.1). Our  approach  is to obta in  
condit ions under  which the r ight-hand side of  (5.2) is bounded .  Inequal i ty  (5.2) 
then assures us that  these condi t ions induce the boundedness  of  (5.1). The following 
propos i t ion  is the first step in this development .  

Proposit ion 5.1. Let xo ~ ~" and let o- > O. I f  the quantity 

(r,(% -1 Z -- 
\ r (x)/it' 

where z is any element o f  Ro(x), is locally unbounded at (xo, o-), then Xo is a stationary 
point for d?, i.e. O6 Od)(Xo). 

Proof.  Since II(h~(~))- (;~{~I)11 ~< 2[[(~I~,I)11 for  all z c R0(x),  and since g is cont inuous,  
the term (5.3) can be locally unbounded  at xo only if there is a sequence {xi, o-i} 
with (xi, o-~) ~ (Xo, o-) and  A (xi, o-~) ~ 0. But then A (Xo, o-) = 0 by Proposi t ion 2.1. 
Consequent ly ,  0 ~ ; & ( x )  by L e m m a  2.1. []  

The fol lowing example  illustrates a s i tuat ion in which (5.3) is locally unbounded .  

Example.  Let h : ~ 2  be defined as g was in example  (1) o f  Section 2, that  is 

h ( x ) : = ( x 2 ;  1)  

for all x e ~, and let m~ = 0. Next ,  set cr = 10, and equip ~2 with the /<,-norm. Then 

and, for  x e [ -  1, 1 ], 

"[ 1 - x  2 

'1 - x  2 

Hence,  for  x c [ - 1 ,  1]\{0}, 

if - l < ~ x < 0 ,  

if x = 0 ,  

i f 0 < x ~ < l .  

1 {(2x3+2x2+2x'~'~ 

x2-x+l 1)' 
1 ({2x3+2x2+2x'~'~,  

x +x+l /]  

if  - l ~ < x < 0 ,  

i f 0 < x < ~ l .  
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Therefore, 

( X 2 ;  1) r2(x ) (A(x, lira - IO))-' = -oo. 

Also note that 

o E a ~ ( o ) = { o :  o c [ - 1 ,  1]}. 

291 

Proposition 5.1 sheds some light on one of the factors in the right-hand side of  
(5.2). Results concerning the local boundedness of the other factor, 

dist0(0[ M(x, H, o-, fl)), (5.4) 

are not as easily obtained. In this regard though, Gauvin [12] has shown that if o- 
is taken to be +oo and m(~)x - 0, then the set M ( x ,  H, o-, 13) is compact if and only ~ r 2 ( x )  / - -  

if g satisfies the Mangasarian-Fromowitz constraint qualification at x. Nguyen, 
Strodiot and Mifflin [19] have extended this result to cover more general types of 
constraint regions, subject to a natural modification of the Mangasarian-Fromowitz 
constraint qualification. Using these facts, one can derive results concerning the 
local boundedness of (5.3) in the case where o- = oo and (~{~I)= 0. However, these 
results are not sufficiently general for our purposes, since we need to consider the 
case where (;~I~I) ¢ 0 and o '<  oo. Nonetheless, the Mangasarian-Fromowitz con- 
straint qualification is still the key to the analysis. Thus we will need to review its 
definition. 

Definition 5.1 [18]. The Mangasarian-Fromowitz constraint qualification (MFCQ) 
is said to be satisfied at a point x e ~", with respect to the underlying constraint 
system g(x)<~O, h ( x ) = 0 ,  if 

(1) there is a z c N "  such that 

V&(x)Xz<O for ic{ i :g~(x)>~0,  i = l , . . . , m l } ,  

Vhj(x)Tz=O f o r j = l , 2 , . . . ,  me, 

(2) the gradients {Vhj(x): j = I , . . . ,  m2} are linearly independent. 

Theorem 5.1. Suppose that the M F C Q  is satisfied at Xo~ ~n. Let o-z> 0 and set 

F:  = (x: g ( x ) ~  0, h ( x ) =  0}. Then there is a neighborhood N(xo) of  xo such that 

(1) the M F C Q  is satisfied at every point in N(xo),  

(2) i f  xo~ F, then O~ a~b(x) for  every x ~ N(xo), 
(3) i f  xoc F, then R(x,  o-) = {0} for all x ~ N(xo)  and o-~ o'1, and so 

(--A(x, o')) h(x)  \r2(x)/[I  

for all z ~ Ro(x), x c N(xo) \F ,  and o- >~ o'i and 

(4) i fxo~ F, then 

sup{dist o(0lM(x, /4 ,  o', ~ ) ) :  H c ~ ,  x c N(xo) ,  o" ~ [m, o'r],/3 ~ (o-,/~]} < +oo 
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where Y( c ~" × ~ is any compact set of symmetric positive definite matrices and 0 < ¢r~ < 

Proof.  (1) This result is established in Robinson [22, Theorem 3]. 
(2) Let N(xo) be the ne ighborhood  obtained in (1) with N(xo)c~ F= f J, and let 

x E N(xo). From [4, Theorem 4.2] we know that  

I : 04)(x) = \h  (x)] 

:o 1 ~<1, u~>0 

\ h  ( X ) l  [ \ v /  c [ ~ " ' X ~ " 2  u T g ( x ) + v T h ( x ) = q g ( X )  " 

Hence,  if x ~  F and OcOch(x), then there are vectors ti clR~', and ~ I R " 2  such that 

• g ( x )  
ffT g ( x ) + v T h ( x ) = d ' s t [ ( h ( x ) )  l K ]  ~ 0, 

g'(x)T~ + h'(x)T~ = 0, 

~W g(x )+vVh(x )=max{uV g(x)+vTh(x):  uv o } ~<l ,u>~0 . 

Hence ( ~ ) ¢ 0  and (u )~=0  if g i ( x ) < 0  for each i =  1 , . . . ,  m~. But the existence of  
such a pair  (~), in conjunct ion with the hypothesis  that the M F C Q  is satisfied at x, 
contradicts Motzkin 's  theorem of  the alternative [27]. Hence  0~ a4~(x). 

(3) It easily follows from (1) and the continuity of  both g and g' that there is a 
ne ighborhood of  xo on which the set 

{d: g(x)+ g'(x)d <~ O, h(x)+ h'(x)d = O, Ildll <~ o-i} 

is nonempty  for each x in this ne ighborhood (cf. Robinson [22, Theorem 3]). Hence 
R(x, o-) = {0} on this ne ighborhood.  

(4) Suppose to the contrary  that the supremum is not finite• Then, f rom (2.6) and 
part  (3) above, there exist sequences {xi} c ~ ' ,  {di} c ~", {u~} c ~2",  {v~} c ~-'2, {/3i}, 

{zi} c ~n, and {Hi} c 9(, such that x~ - Xo, II ~":lloT °o, <z,, 4)  = / ~ i  [[ Zi [[0 for  all i = 1, 2 , . . . ,  
and 

(a) 0 = Vf(xi)  + H, di + g'(x,)Tu, + h'(X,)T V~ + Zi, 
(b) g(x,) + g'(x~)d~ <~ O, h(xi) + h'(xi)4 = 0, lid, l] <~/3,, and 
(c) (u~)j(g(xi)+g'(xi)di)j =0 ,  f o r j  = 1 , . . . ,  m~, 

for  all i =  1, 2 , . . . .  Moreover ,  by compactness,  we can assume, with no loss of  
m 1 generality, that there exist down ", u o ~ N + ,  VoC~ ~2, /3o, and Hoe  Y( such that 

u u.  u o u Hi ~ Ho, di-~ do,/3i ~/30 > 0, and (~,)/IMI0-' (oo). Dividing (a) through by IMIo and 
Z u taking the limit as i ~ o o  we see that ~/11~;11o necessarily converges to some limit, 

say zo. Then Uo, vo, and Zo necessarily satisfy 

(a)' 0 = g'(xo)VUo + h'(xo)Tvo+ Zo, and 

(b)' (Zo, do) =/3ollZotlo. 



J. V. Burke, S-P. Han/  A robust SQP method 293 

We now show that Zo--0. From (c) and (b), we have that 

(c)' uTog(Xo) + v[h(xo) = -[u~g ' (xo)do+ v~h'(xo)do]. 

Hence, if we multiply (a)' through by do and use (b)' and (c)', we find that 

u-[g(xo) + v~h (Xo) =/3oll Zollo. 

But h(xo) =0,  g(xo)<~O and Uo~>0. Hence O>~/3ollzollo, and so Zo--0. 
Now, since Zo = 0, (a)' implies that 

(c)" g'(Xo)TUo + h'(xo)VVo = O. 

Combining this with (c)', we find that 

uTog(XO) + v Th(xo) = O, 

and since h(xo) = O, this reduces to 

u~g(xo)  = o. 

Now, since Uo>~0 and g(xo)<~O, it must be the case that (uo);gj(xo)=O for j =  
u 0 1 , . . . ,  m,.  But the existence of such a Uo and Vo, with II ~oHO = 1, in conjunction with 

(c)" violates Motzkin's theorem of the alternative [27]. Hence the supremum in part 
(4) above is indeed bounded. [] 

By combining parts (3) and (4) of the above theorem, we obtain the following 
corollary. 

Corollary 5.1. Let XoCN ~ be such that g(xo)<~O and h(xo)=O, and the M F C Q  is 

satisfied at xo. Also let 0 < o-1 < err < fi and let ~( be a nonempty compact set o f  n x n 
symmetric positive definite matrices. Then there is a neighborhood U of  xo and a 
constant K >~ 0 such that 

,( 
O~ - A ( x ,  o-) h (x)  \r2(x)]]l  

for all (x, tr, fl, H )  c U x F(o-z, o-r, fi) x 9( where F(o-t, o-r, fl) := {(o-,/3): o- c [o-t, o-r], 
/3 c (~, B]}. [] 

In the case where g(x)~< 0, h ( x ) =  0 and x satisfies the MFCQ, Corollary 5.1 and 
inequality (5.2) assure us that (5.1) remains locally bounded. In the absence of the 
MFCQ, it is well known that (5.4) can be locally unbounded. Thus, in a sense, 
Corollary 5.1 is the best one can expect concerning the local boundedness of the 
right-hand side of (5.2). 

Points that are feasible for (1.1) and at which the MFCQ is not satisfied will be 
called Fritz John points in deference to the foundational work of Fritz John [17]. 
The significance of Fritz John points, with regard to first-order necessary conditions 
for (1.1), is illustrated in the following result. 
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Theorem 5.2. (Clarke [7, Theorem 6.1.1]). Let x solve (1.1). 
Kuhn-  Tucker point or a Fritz John point, or both. 

Then x is either a 

Remark. In the above theorem it is indeed possible that x is not a Kuhn-Tucker  
point. This is essentially the reason why one requires the MFCQ in establishing the 
boundedness of (5.4). 

Given the results of this section, we can now state the goal of the convergence 
theory of the next section. The goal is to show that every cluster point of the sequence 
of iterates generated by the algorithm of Section 4 is either a Kuhn-Tucker  point 
for (l.1), or a Fritz John point for (1.1), or a stationary point for ~b that is not 
feasible for (1.1). 

6. Convergence 

Theorem 6.1. Let {x/} be a sequence generated by the algorithm of  Section 4, and 

suppose that the mappings V f g', and h' are bounded on {xi} and uniformly continuous 

on co{xi}. 
(1) I f  cei'~oo, then lim/~s A(x/,  o5) = 0 where S is the subsequence of  indices {i: c~i < 

O ~ i + l }  

(2) i f  supi o~/=: a < co, then either 

(a) infi P~(xi) = -oo for all 6 c [0, a ] ,  or 
(b) {x/} is finitely terminating at 2, where ~ is either a nonfeasible stationary point 

o f  fb, or ~ is a Kuhn-  Tucker point for (1.1), or 

(c) Ild, tl-~ 0, A(xi, o'i)"~O , and VxL(xi, ui, v i )~O where L ( x , u , v ) =  
f ( x )  + uTg(x) + vTh(x)  and (~) is any element of  M(xi ,  Hi, o'i, fii) for each 

i=0 ,  1 , 2 , . . . .  

Remark. The hypotheses on Vf  g', and h' allow us to avoid specifying that the 
iterates {xi} remain bounded. 

Proof. (1) If c~/~'co, then by step (3) of the algorithm the sequence 

V f (x , )T  d, + d~Hfl/~ 

diverges to +oo. Now, since all of the sequences {Vf(x/)}, {d/}, and {Hi} are bounded, 
it must be the case that lim/~s A(xi, ~ri)= 0. 

(2) If the sequence {x~} terminates finitely then (b) follows from step (2) of the 
algorithm and Lemma 2.2. Thus we will assume that neither (a) nor (b) occur, and 
establish (c). By step (3) of the algorithm, there is no loss of generality in assuming 
that a / =  a for all i = 1, 2 . . . . .  Hence, since P~(xi) is bounded below, we have from 
step (4) that 

[P.  (Xi+l) - -  P~ (x/)] -~ O. 
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"hus, by steps (3) and (4), 

AidT Hdi ~ O. 

f dTHfli  ~ O, then II dill ~ 0 due to the compactness  of  2(. Also, 

/'(xi, ~)->0, 

;ince, by Lemma 2.1, 

0<~ -z~(x. 03 

I] , . . J i g ( x , )  g (x , )dA 
~ ( X i )  --  O I S t  Ll~h(x,)+h(x,)d, K 

~ ~. f f g ' (x , )d , \  

I g (x,)d, 
i I h (xD4 I' 

where both {g'(x~)} and {h'(xi)} are bounded.  Moreover ,  by equat ion (2.6(c)), for  
any sequence {Q)}, with (~;)e M(x , ,  H ,  o-, ~ )  for  each i=O,  1, 2 , . . . ,  there is a 
sequence {z,}, with z~ e N(d i  IfisB) for each i = O, 1, 2 , . . . ,  such that  

VxL(xi,  ui, vi) = - [  Hidi + zi]. 

Now, since di ~ O, eventually N(dilf l~B ) = {0}. Therefore ,  VxL(xi ,  u~, v,) ~ O. Thus,  
we need only consider the possibility that  d i ~  0. In this case, there must exist a 
subsequence {x~: i e T} such that 

lim )t~ = 0, 
i c T  

with As < 71 for all i e T, and 

inf{dTHfl i}  =: ~ > 0. 
T 

Step (4) then yields the existence of  a sequence {,~: i c T} for which a~ 7> 727~ > 0 
and 

tx2£,[Vf(x,)T ds + aA(xs,  o-,)] < P,~(x~ + 2id,) - P , (x , )  (6.1) 

for  all i e T. We assume, with no loss of  generality, that  2~ < 1 for all i e T. Next ,  
observe that  

d"-r fg(xi+>~fl i ) '~  K] ""-r[g(xi)'~ K] 

< 

\ h ( x i +  2id,)] h (x , )+  X~h'(x,)dff 

. . .  [ [ g(xi)  + Z-ig'(x,)d,~ 
°'S'L t h(x,) + ;,h'(x,)<U] K ] _<,,S, Lt h(x,)] ] K ] . . .  r [ g(.,)x 
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\ h (xO]  

<- LIId~ll~o,( Ld,) + L ~ ( x .  ~) .  

where w~(2fl~) is the modulus of continuity for (~;). Hence, from (6.1), we obtair~ 

iz2.~[V f(x,)V d, + e~A (x,, o-i)] 

L[  V f (x , )  V d, + ~A (x,, ~ ) ]  + IIf(x, + Ld,) - ( f(x,)  + L V f (x , )  T d,)ll 

+ Llld, l l~<(Ld,)  

<. L [ V f ( x j r d ,  + aA (x~, o~)] + ,~ [[ di II[aw,(Ldi) + we(L4)], 

where w2(~fl~) is the modulus of continuity for Vf  Therefore, in view of Step (3), 

0 -< (1 - t .2)[Vf(x.)~d~ + ~ ( x .  ~i ) ]  + II d, II o, (LdO 

~'~ (/~2 -- 1 ) ¢ ~ - I l d i l l o , ( L d , )  

where oJ := aw~ + ~o 2. Taking the limit in i, for i E T, we obtain the contradiction 

0~< ( ~ 2 - 1 ) ~ < 0 .  

Hence it is necessarily the case that IIdgll ~ 0. [] 

The above theorem provides a fairly general picture of the convergence properties 
Of the algorithm. It is important to note that the procedure can fail even though the 
penalty parameters remain bounded. This problem is generic to methods that are 
dependent upon exact penalization. We will return to this issue again in the 
concluding section. Let us now proceed to investigate the nature of the cluster points 
of the algorithm when they exist. 

Corollary 6.1. Let the hypotheses of  Theorem 6.1 hold, and let {&} be a sequence 
generated by the algorithm of Section 4. I f  az "too, then every cluster point of the 
subsequence {x~: ai < ai+l} is either a Fritz John point for (1.l), or a stationary point 
of  4~ that is not feasible for (1.1). 

Proof. By part (1) of Theorem 6.1, we know that the subsequence {A(x/, Gi): c~i < 
a~+l} converges to zero. Let ~ be a cluster point of the subsequence {i: a i <  a~+l} 
and let T o { i :  a~<a~+~} be such that X~-~T£ and ~r~ r ~  for some ~c[crl ,  o-~]. 

Then, by Proposition 2.1, d(ff, ~) =0. Hence, by Lemma 2.1, ff is a stationary point 
of 4'. If  ~ is feasible, then, by step (3) of the algorithm, inequality (5.2), and Part 
(4) of Theorem 5.1, ff cannot satisfy the MFCQ and so is a Fritz John point. D 
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2orollary 6.2. Let the hypotheses of Theorem 6.1 hold, and let {x/} be a sequence 
generated by the algorithm of Section 4. I f  supi a / <  co, then every cluster point of  {x/} 

is a stationary point of 49. Moreover, any cluster point that is also feasible for (1.1) is 
either a Kuhn-Tucker point for (I .1) or a Fritz John point for (1.1). 

Proof. Since supiai< o0, the sequence {ai} is eventual ly  constant.  Deno te  this 
constant  value by a, and  suppose  that  a / =  o~ for  all i >t io. Then  for  all i t> i0 the 
sequence  {P,(xi)} is decreasing.  I f  the sequence  {xi} has a cluster po in t  97, then  
P,(x/)$P,(97). Thus the sequence  {P~(xi)} is b o u n d e d  below. Hence,  by par t  (2) o f  

Theo rem 6.1 we know that  either the sequence {xi} is finitely terminat ing at ff where  
97 is either a K u h n - T u c k e r  point  or a nonfeas ib le  s ta t ionary point  for 49, or 
A (xe, o'i) -~/~ r 0 and VxL(xi, ui, vi) ~ i~ r 0 where o-i -~ r 6" with ~ c [o-t, o'~], xi + i~ r 97 

and {(~)} is any sequence  of  multipliers such that  (~i) ~ M(x/ ,  H~, or~, ¢i) for each 

i e T for  some subsequence  T. I f  the sequence  is finitely te rminat ing  we are done.  
Thus,  we will assume that  {x/} is infinite. By Proposi t ion  2.1, A(97, ~ ) =  0. Hence ,  
by L e m m a  2.1, 06049(~).  If, moreover ,  97 is feasible for  (1.1) and the sequence  

{dist 0(01M(x/, Hi, o-/,/3/)): i< T} is bounded ,  then,  by passing to a fur ther  sub- 
sequence if necessary,  one can choose (~j) c M(xi ,  Hi, ~ri,/3i) such that  (~j) -* i~r (2) 

for  some vectors (~). Due  to continuity,  we have that  VxL(97, u, v) = 0, u ~> 0, and 
urg(97) = 0. Hence  97 is a K u h n - T u c k e r  poin t  for  (1.1). On the other  hand,  if 97 is 

feasible for  (1.1) and the sequence {dist 0(0 1M(x/, Hi, ~/, fl/)): i c T} is u n b o u n d e d ,  
then,  by par t  (4) of  T h e o r e m  5.1, 97 is a Fritz John  point  for  (1.1). 

The next corol lary follows immedia te ly  f rom Corol lar ies  6.1 and 6.2. 

Corollary 6.3. Let {x/} be a sequence generated by the algorithm of Section 4. I f  the 
sequence {xi} is bounded, then there is a cluster point that is either a Kuhn-Tucker 
point for (1.1), a Fritz John point for (1.1), or a stationary point for 49 that is not 

feasible for (1.1). 

We conclude this sect ion by discussing the convergence  of  the me thod  when  it 

is appl ied to the p rob lem 

rain f ( x )  
X E ~  

subject  to 1 - e  x = 0 ,  x = 0  

where f is any cont inuously  differentiable funct ion on N. The relevant  in format ion  
on this p rob lem can be found  in example  (2) of  Sect ion 2. I f  ~2 is equ ipped  with 

the /2-norm, then it is not  difficult to show that  0 < - d x  < x for  all x > 0 where  dx 
solves Q(x, H, o-, fl), regardless of  the choice of  0 < ~ r < / 3 ,  and H e  Y(. Hence ,  
eventually,  the sequence genera ted by the a lgor i thm of  Sect ion 4 is either increasing 

with uppe r  b o u n d  zero, or decreasing with lower  b o u n d  zero. Consequent ly ,  the 
sequence is b o u n d e d  and so Corol lary  6.3 applies.  Therefore ,  the sequence  mus t  
converge to 97 = 0 since 97 = 0 is the only s ta t ionary po in t  for  this p roblem.  
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7. Computation with monotone norms 

In this section we describe a few examples for which the computations required in 
the algorithm of  Section 4 reduce to either linear or quadratic programs• 

Definition 7.1. A norm H" I/on E "  is said to be monotone with respect to the closed 
convex cone ~+ if 

I lx l l~  Ilyll whenever O<~x<~y. 

Moreover, the norm I1" I1 is said to be orthogonally monotone with respect to the 
- - r ~  m X I( l l .  cone - K - o . +  t,.,~ ....... if II~(l~llfll whenever x, ye~'~ ' ,  with O<~x<~y and z~  

~rn tttl 

Lemma 7.1. I f  I1" II is a norm on Nm with m = m, + m2 that is orthogonally monotone 
with respect to the cone - K  = N~" x {0}~-,-~, then 

dist[(~') IK]= Yz + forall (Y) c~'. 

Proof. Note that if c o N + ,  then 0<~y+~ < ( y + c ) ÷  for every y ~ N ' , .  Hence 

[y ;{~>di s t [ (Y)  l K ] > ~  inf  ' ( y + c )  

c e ~ 1  2 c c ~ q  

/> Y+ . [5] 

Thus for norms orthogonally monotone with respect to K we obtain the following 
identities for all x c ~ :  

h(x) J ~ Ro(X), 

and 

• . f l I ( g ( x )  + g'(x)a)+]{ 
II,(x>ll =,n,ll t h<x)+ h' x d II = IIdlr 

From these norms, the 1, 2 and oo-norms will be of  special interest, since for these 
norms the computation of  a residual vector r(x)  ~ R (x, ~r) reduces to solving a linear 
or quadratic program. We briefly list a sampling of these programs. 
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Example 7.1. (~", I{" II~), ( I~m, H" 11,). 
Solve 

min eXz~+eT22 
(d~Zl,Z2) 

subject to g ( x )  + g ' ( x ) d  <~ z~, 

0<~zl, 

- z 2  <~ h ( x ) +  h ' ( x ) d  <~ Z2, 

o-e <~ d <~ oe. 

Then  set r ( x )  := [(g(x)+g'(x)d*)+q d* , t ~(~)+h,(~)a* J where is optimal for  the above program. 
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Example 7.2. (~", I1"" II,), ( W~, II" 112). 
Solve 

min ~ T _ zTz2)  ~(Zl Zl + 
(d,z~,zz,y) 

subject to g(x)  + g ' ( x ) d  <~ zl 

h ( x )  + h ' ( x ) d  = z 2 

- y < ~ d < ~ y  

e'ry <~ cr 

Then set r(x)'-r(g(x)+g'(x)d*)+l d* • - t h(x)+h'(x)a* J where is opt imal  for the above program.  

Example 7.3. (W', II" I1~), (~'~, [[" H v). 
Solve 

min 3, 
(d,~) 

subject to g ( x ) + g ' ( x ) d  <~ ye, 

- ye  <- h ( x )  + h ' ( x ) d  <~ 3"e, 

- o - e < ~ d  <~o-e. 

Then set r ( x ) =  r(g(x)+g'(x)a*)+l where d* t h(x)~h'(x)d* J is opt imal  for the above program.  No te  

that if m2 = 0, then one must  add the constraint  0 ~< 3' to the above program.  
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The two examples considered in this section have been included in order to indicat( 
why the algorithm of this paper,  or a similar method, should be included in 
standard repertoire of  mathematical programming techniques. The examples are 

such that the algorithm of  Section 4 has no difficulty locating a solution for them. 
However, the SQP method of Wilson, Hart and Powell fails to solve the first example, 
while the QL method of Fletcher fails to solve the second. In general, this type of 
comparison is of course quite unfair since the examples are specifically constructed 
to make the SQP and QL algorithms fail while the algorithm of Section 4 succeeds. 
However, the examples are instructive since they illustrate how the proposed method 

overcomes some of the drawbacks of  the SQP and QL methods. 
The example that we consider in conjunction with the SQP method has already 

been studied in example (2) of  Section 2. Recall that all of the modifications to the 
SQP method considered by Powell [21] are defeated by this example regardless of  
the objective function f as long as the initial point x0 is not chosen to be the solution 
x = 0. On the other hand, it was shown at the end of Section 6 that the method of 
Section 4 converges monotonically to the solution x = 0 regardless of  the initial 

point x0 and the choice of  the C ~ objective function f 
Let us now consider the QL method. Recall that the QL method is a trust region 

algorithm for the global minimization of an exact penalty function for (1.1). The 
key element in the overall success of  the method is the initial choice of  the penalty 
parameter  and a method for iteratively adjusting its value. For example, if one 

employs the 11 penalty function (as in Fletcher [9]), 

P~ (x) :--f(x) + ~ [JJ g+ (x)Jl, + IJ h (x)II,], 

then locally the choice of the penalty parameter  depends upon the following well 
known results. 

Theorem 8.1. Let f :  ~ + ~, g :~n  ~ Nm,, and h :Nn ~ ~-,2 be as given in (1.1). 
(1) Let (x, u, v ) C ~ n x N m ' x N  'n~ be a Kuhn-Tuc k e r  triple for  (1.1), then x is a 

stationary point for  P~ for  all a >~ II(~)l[~. 
(2) I f  x ~ "  is such that g(x)<~O and h (x )  = 0  and x is a stationary point for  P~ 

for  some c~ > 0 ,  then x is a K u h n -  Tucker point for  (1.1). 

(3) I f  (1.1) satisfies the second-order sufficiency condition at (x, u, v), then x is a 

strict local minimum o f  P~ whenever c~ > II(~)ll~. 

Remark. The proof  of  this result can be found in [6], [9], or [16]. 
Consequently, one should choose the penalty parameter  to be greater than the 

/w-norm of  one of the optimal vectors of  Kuhn-Tucker  multipliers. Of  course, it 
may be possible that no such vector of  Kuhn-Tucker  multipliers exists, as is the 

case in the problem 

rain{x1: x2 ~< x 3, - x  3 ~< x2}, 
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in which case the QL algor i thm does not apply.  But, even if a vector  o f  K u h n - T u c k e r  
multipliers exists, this choice of  the penal ty  pa rame te r  may  still be  insufficient to 
assure the convergence of  the QL me thod  f rom points  arbitrari ly close to a solut ion 
point  g. In order  to illustrate this possibility, we consider  p rob lems  o f  the form 

rain - w ( x ) x  
(8.1) 

subject  to x = 0 

where  w :R-~ R is C 3 and satisfies w(0) >~ 0, w'(x) >~ O, w"(x) >~ O, and w'"(x) >! 0 for  

all x >~ 0. The solution to (8.1) is obviously x = 0, and  the associated K u h n - T u c k e r  
mult ipl ier  is w(0). Suppose  xo>  0. I f  ai is the value of  the penal ty  p a r a m e t e r  at the 

ith iteration, then in the first step of  the ith i teration of  the QL algor i thm one solves 
the p rog ram 

min  - [  (x~w'(x~) + w(x~) )d + ½(x~w"(x~) + 2w'(x~) )d 2] + a~ IIxg + d II 

subject  to lid II ~< 6i. (8.2) 

Hence,  if 

w(x3 + w'(x,)x~ > ~ ,  

then the solut ion to (8.2) is d~ = 6~. Given  the hypotheses  on the funct ion w, it is 
easy to show that  the QL algori thm will accept  this step since the ratio o f  actual  to 
predic ted  reduct ion in the penal ty  funct ion,  q~, is greater  than  or equal  to unity. 
Consequent ly ,  given Xo, 6o, and {a~} it is possible  to construct  a funct ion w so that  
x~ = Xo+~j2~ 6j and qil'oo. For example ,  if 60 = 1, we could set 

w(x)=c~o+,~+x+ Z wk(x) 
k=l  

where for  each k = 1, 2 , . . .  

0 if x<~k, 

Wk(X) = OZk+l(X - -  k )  4 otherwise.  

Next,  suppose  the a lgori thm of  Section 4 is appl ied  to (8.1) using the Armijo- l ike 
line search procedure  

1i := max  y ~ 

subject to v E {0, 1, 2 , . . . } ,  

P,~,.,(xi + y~di) - P,~.,(xi) <~ 6y"[V f(xi)T di + ai+l A (Xi, cri)], 

where  7 c (0, 1) and 6 E (0, 1) are chosen during the init ialization stage. Then,  if the 
initial poin t  xo is such that  xo > 0, it is s t ra ightforward to show that  the p rocedure  
must  terminate  after a finite number  of  i terations at a solut ion to (8.1). In  order  to 
see this, first verify that  

0 ~ Xi+ 1 ~ Xi 
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for all i =  0, 1 , . . . .  Hence P~i+,(xi) is bounded below and so by Theorem 6.1 ther( 
is at least a subsequence S =  {1, 2, . . . }  for which A(xi, ~r~) _~s O. Consequently, aftel 
a finite number of iterations, one reaches a point x~o for which -x~0 = d~0. Since 
w'(x~) >~ O, the procedure for updating the a~'s implies that x~o+~ = 0 and the algorithm 
terminates. 

Though Fletcher's SllQP method works satisfactorily for most well-posed prob- 
lems, the above example shows that there are still rooms for improvement in how 
it adjusts the sizes of trust regions and updates penalty parameter in dealing with 
some very difficult situations. However, our algorithm seems very effective for those 
irregular cases and provides a reasonable alternative for handling such ill-posed 
problems. Because all these opinions are based on purely theoretical viewpoint, no 
conclusion can be made without further computational testing. 
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