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The paper describes a modilication to the Wilson-Han-Powell sequential 
quadratic programming technique that is applicable to potentially infeasible 
nonlinear programs. The method is designed to locate stationary points of a 
nonlinear program in a generalized sense (Definition 2.8). These stationary points 
include the familiar Kuhn-Tucker and Fritz John points, but also include what we 
call external and strong-external stationary points. The external and strong external 
stationary points are not feasible. Thus the problem may be infeasible and yet have 
stationary points. Loosely speaking, an external stationary point is one that satisfies 
a certain first-order necessary optimality condition for being as close to feasibility 
as possible. The proposed technique is similar to those described by J. V. Burke and 
S-P. Han (“A Modified Sequential Quadratic Programming Method,” manuscript) 
and M. Sahba (J. Optim. Theory Appl. 52 (1987), 291-309); however, it is shown 
to possess substantially enhanced stability properties. The global convergence 
properties of the method are described along with some continuity results for the 
quadratic programming subproblems. IT’ 1989 Academic Press, lot 

1. INTRODUCTION 

We consider the constrained optimization problem 

NLP: minimizef(x) 

subject to g(x) E C and x E A’, 

where it is assumed that the functionsf: R” -+ R! and g: R” + KY” are C’ and 
the sets Cc R”’ and Xc R” are nonempty closed and convex. Throughout 
the remainder of the paper it is assumed that the model NLP satisfies the 
conditions posited in the above statement. However, it is not assumed that 
NLP has a solution or is even feasible. The reason for not imposing these 
restrictions is that it is often the case, when one attempts to model a large 

* This work was supported in part by the National Science Foundation under Grant DMS- 
8602399 and by the Air Force Oftice of Scientific Research under Grant AFOSR-860080. 

319 
0022-247X/89 g3.00 

Copyright h“ 1989 by Academsc Press. Inc 
All rights of reproductmn tn any lorm reserved. 



320 J. V. BURKE 

nonlinear system via a nonlinear program, that the consistency of the non- 
linear program is not known beforehand. In this situation, one would 
greatly appreciate some information as to why the system is inconsistent 
or, subject to infeasibility, what is the best one can do in the sense of (1.1). 
Consequently, our goal is to present an iterative method for locating 
“stationary” points of NLP in a generalized sense. Loosely speaking, we 
say that a point is a stationary point for NLP if it is a stationary point for 
the problem 

minimizef(x) 

subject toxEargmin{dist(g(x)IC)lxEX}, 

(1.1) 

where dist(yIC):=inf{ly-zl:zEC} and 1.1 is a given norm on R”. 
A precise meaning is given to this statement in Section 2. 

The algorithm that we propose is quite similar to the one presented in 
[3], which is turn is based upon the work in [2]. Recall that our motiva- 
tion in [3] was to develop a robust extension to the well-known sequential 
quadratic programming (SQP) method of Wilson [22], Han [9], and 
Powell [12]. By robust we mean that the method is designed to overcome 
the difficulties associated with infeasible quadratic programming sub- 
problems and the possible occurrence of a divergent sequence of search 
directions. Furthermore, we were interested in developing a modification to 
the standard SQP technique that was amenable to a trust region-like 
methodology. The objective of this paper is similar. However, we now 
consider the more general problem NLP. The approach that we take is 
quite different and allows a more complete analysis of the stability and 
continuity properties of the method. 

A straightforward application of the SQP technique to the problem NLP 
requires that one iteratively solve a direction-finding subproblem of the 
form 

minimize Vf(x)*d+ Id’Hd 

subject tog(x)+g’(x)dECandx+dEX. 
(1.2) 

The primary difficulty with these subproblems is their potential 
infeasibility. Moreover, this difficulty is exacerbated if one wishes to imple- 
ment a trust region-like variation of the procedure. One way to alleviate 
this problem and yet maintain the flavor of the SQP approach would be 
to modify the constraints appearing in (1.2). Two such modifications are 

g(x)+g’(x)deC+s, 

x+dEX, 

de W’, 

(1.3) 
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and 
g(x)+g’(x)dEC+KB”, 

x+dEx, 

d E BEI”, 

(1.4) 

where IE!” and B” are the closed unit balls in R” and KY’, respectively, 
associated with given norms. Given x E 68” and fl> 0, the shift s E R” and 
the collar radius K 20 are chosen so as to make the modified constraint 
regions described by (1.3) and (1.4) nonempty. Clearly the choice of s and 
K determines the usefulness of these modifications. The modification (1.3) 
was carefully studied in [3], where the sets C and X were taken to be the 
sets WY’ x { 0} Rm2 and R”, respectively. Due to the choice of the shift s in 
[3] we call (1.3) the residual method. In this paper we study the modifica- 
tion (1.4) which we call the collaring method. Our procedure for determin- 
ing the collar radius K will ensure that any solution d E R” to the system 
(1.4) is a descent direction for the distance function 

q(x) := dist( g(x) I C) + $(x I X), (1.5) 

where $(. IX) is the convex indicator of X and is given by 

l)(xlX) := 
i 
0’” if x$X 

if xEX. 

A precise description of how K is chosen is given in Section 3. 
As in [3] the algorithm of this paper generates iterates of the form 

xi+1 :=xi+r,di, (1.6) 

where di is the search direction computed as the solution of a convex 
programming subproblem whose constraint region takes the form (1.4). 
The subproblem may be solved for various choices of the parameter fi in 
order to determine an appropriate trust region radius. Then, if required, a 
stepsize is chosen in order to guarantee a sufficient reduction in the value 
of the exact penalty function 

P,(x) :=f(x) + acp(x). (1.7) 

As is usual, a great deal of effort is devoted to an appropriate selection of 
the penalty parameter a. Our choice of a guarantees that the direction di 
is a descent direction for P,. The details of this iteration scheme are care- 
fully developed in Sections 3, 4, 5, and 6. 
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Some of the key ideas for this method can be found in a recent article 
by Sahba [19]. Sahba considers the case in which C= R’!!’ x {O)um2, 
X= [w”, both [w” and R” are endowed with the I,-norm, and the mapping 
g satisfies the Mangasarian-Fromowitz constraint qualification at every x 
in R”. In this case Sahba’s algorithm [ 19, Algorithm 5.11 differs very little 
from ours. The differences are, however, essential. In particular, they allow 
us to derive a valid convergence theory. Although Sahba’s article is 
important for its numerical experiments, the application of second-order 
correction techniques, and the introduction of a procedure for reducing the 
value of the penalty parameter, the theoretical claims stated in Section 6 of 
[19] concerning the convergence properties of his algorithm remain 
unsubstantiated. The primary causes of the difficulties in [19] are the 
invalid use of Han [9, Theorem 31 in the proof of [ 19, Proposition 6.2, 
part (iii)] and of Robinson [14, Theorem 2.11 in the proof of 
[19, Proposition 6.41. The results of Han and Robinson do not apply to 
the situation that Sahba is considering. The issues that Sahba is able to 
overlook in this way consume the majority of the effort in this paper. 

The paper proceeds as follows. In Section 2 the stationarity conditions 
that we employ for NLP are precisely described. In Sections 3, 4, and 5 the 
modified constraint region, the modified subproblem, and the rule for 
updating the penalty parameter, respectively, are discussed. In Section 6, 
the local boundedness of the multiplier set associated with our sub- 
problems is addressed. The purpose of this section is to identify the condi- 
tions under which the updating rule for the penalty parameter can produce 
an unbounded sequence of penalty parameters. In Section 7, the algorithm 
is described, and, in Section 8, its convergence properties are described. We 
conclude the paper in Section 9 with a discussion of some continuity 
properties associated with our approach. 

The notation that we employ is for the most part standard; however, a 
partial list is provided for the reader’s convenience. 

l For CclY, w  C is the closed convex hull of C, cl C is the 
closure of C, int C is the interior of C, ret C is the recession cone of C, 
ri C is the relative interior of C, bdry C is the boundary of C, 
co := {x*: (x*, x) G 1 VXE C} is the polar of C, $(. 1 C) is the convex 
indicator function for C, and $*(. IC) is the support function for C. If C is 
moreover convex, then N(xl C) and T(x 1 C) are respectively the normal 
and tangent cones to C at x E C. 

l For f: Iw” + IF!, aJ(x) is the Clarke subdifferential [7] for f at x, 

argmin{f(x):xEC}= {x~C:f(X)=min{f(x):xEC}}, 



A MODIFIED SQP METHOD 323 

and 

f’(x; d) := ti stx + 14 -f(x) II 

when this limit exists. 

l For g: II?? -+ IV, Ran(g) and Nul(g) are respectively the range and 
nullity of g, and g’(x) is the Frechet derivative of g at x. 

l The symbol ( . (denotes a given norm on [w” and B denotes the 
associated closed unit ball. The symbol 1 . IO denotes the associated dual 
norm, i.e., (xl0 := $*(x1 [Eg), whose closed unit ball is B”. For Cc KY, define 

and 

dist(x(C):=inf{Jx-yJ:yEC) 

dist,(xIC) :=inf{)x-y\,,:y~C}. 

2. STATIONARITY CONDITIONS FOR' NLP 

As stated in the Introduction, we say that a point X E [w” is a stationary 
point for NLP if it is a stationary point for the problem (1.1). By this we 
mean that X satisfies first-order necessary conditions for optimality for both 
of the problems 

minimize q(x), x E IF!” (2.1) 

and 

minimizef( x) 

subject to g(x) E C + q(X) B and x E X. 
(2.2) 

Regarding (2.2), we employ the first-order conditions derived in [4]. 

PROPOSITION 2.3.[4, Theorem 3.31. Let 1 be a local solution to NLP. 
Then there exist I* >, 0, y* E N( g(x) 1 C), and z* E N(x 1 X) with 

A* + 1y*1,+ Iz*Jo= 1 

such that 

0 = n*vf(x*) -t g’(x*)Ty* + z*. 
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Observe that one can easily derive stationary conditions for (2.2) from 
Proposition 2.3 by simply replacing the set C with the set C+ q(X) Et. For 
this reason, we define the sets 

and 

M,(x) := I: i( ) 

M,(x) := ;; i( > 

y* E Ng(x)l c+ dx) B), z* E Nx I X) 
o+vf(x)+g’(x)Ty*+z* I 

y* E m(x)l c + cp(x) B), z* E WI m 
O=g’(x)Ty* +z* I 

for each point x E X. Then, by Proposition 2.3, if the point X is a local solu- 
tion to (2.2), then either M,(x) #a, or M,(x) # {0}, or both. Following 
Clarke [7, Chap. 63, the sets M,(x) and MO(x) are called the set of normal 
multipliers and the set of abnormal multipliers for (2.2) at X, respectively. 
These sets are well-defined for each XE X. Moreover, they are related by 
the equation 

MO(x) = recW,(x)) (2.4) 

whenever x E X and M,(x) # 0 (see [4, Proposition 3.71). 
We will say that the point X satisties the stationary conditions for (2.1) 

if 0 E &&X), where @(x) is the Clarke subdifferential [7] of cp at x. 

PROPOSITION 2.5. For each x E X, the Clarke subdifferential of cp at x is 
given by 

acp(x) :=g’(x)‘[adist(.IC)(g(x))] +N(x)X), (2.6) 

where 8 dist( -1 C) is the usual subdiff erential of the convex function dist( -IC) 
and is given by the expression 

B0 n NYIC), if yet 

(bdryB’)nN(y)C+dist(y)C)B), if Y # c. 
(2.7) 

Proof. Formula (2.6) follows from [ 5, Sect. 6; 7, Theorem 2.9.81, while 
formula (2.7) was established in [4, Sect. 21. 1 

From representations (2.6) and (2.7), observe that when x E X is such 
that g(x) $ C the condition OE acp(x) is equivalent to the statement 
M,(x) # (01. Thus our stationarity criteria for NLP can be entirely 
specified by the sets M,(x) and M,(x). In order to fix these concepts and 
to be able to identify the various types of stationary points, we provide the 
following definition. 
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DEFINITION 2.8. We say that the point x E X is 

(i) a Kuhn-Tucker point for NLP if g(x) E C and M,(x) # (21, 

(ii) a Fritz John point for NLP if g(x) E C and M,(x) # (O}, 

(iii) an external stationary (ES) point for NLP if g(x) 4 C and 
M,(x) # {0}, and 

(iv) a strong external stationary (s-ES) point for NLP if x is an ES 
point and M,(x) # a. 

If x E X is any one of the above types of points, we say that x is a 
stationary point for NLP. 

Remark. Due to the structure of the sets M,(x) and M,(x) and the 
natural relationships between the various types of stationary points, one is 
tempted to call ES points external Fritz John points, and s-ES points 
external Kuhn-Tucker points. Nonetheless, we do not use this terminology, 
since it may lead to unnecessary confusion. 

Because of the way we approach the study of NLP, certain elementary 
facts concerning the distance function dist(y(C), the support function 
Il/*(r*lC), and normal cones are of fundamental importance. One of these 
facts has already appeared as formula (2.7). We state these results in the 
following lemma; for their proof, we refer the reader to [4, 7, 163. 

LEMMA 2.9, Let Kc [w” be a nonempty closed convex set. 

( 1) Q” x E K, then x* E N(x 1 K) if and only if 

(x*, x) =1,5*(x* 1 K). 

(2) For XE Iw” we have 

dist(xlK) = sup{ (x*, x> -ti*(x*lK)I Ix*10 d 1) 

and 

S dist(xlK) = 
5’ n N(xl K), if XCK 

(bdry 5”) n N(x( K + dist(xlK)), if XE K. 

(3) For any x E W and x* E W’, it is always the case that 

(x*, x) - tj*(x*lK) < Ix*JO dist(xlK). 
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3. THE MODIFIED CONSTRAINT REGION 

As stated in the Introduction, we consider iterates of the form (1.6) 
where the search direction di is the solution to a certain convex program- 
ming subproblem whose constraint region is of the form (1.4). The 
parameter K in (1.4) is identified by the mapping 

Jc: xx R, x L-0, l] -+ R 

defined by the relation 

X(X, p, 2) := (1 -A) cp(x)+J. min{dist(g(x)+g’(x)dJC): dE [X-x] npB} 

(3.1) 

for all (x, p, 1)~Xx R, x [0, 11. Observe that X(X, 0, n) = p(x) for all 
(x, A) E Xx [O, 11. Also, if we were to set K := X(X, p, 1) for some 
(x, p) E Xx R + , then the system (1.4) would be consistent for all choices of 
/la p. However, as we will see, this choice of K is unsatisfactory. In 
particular, it leads to problems concerning the existence of Kuhn-Tucker 
multipliers for the convex programming subproblems that we employ (see 
Theorem 4.4). It is for this reason that we require the parameter A in the 
definition of the mapping rc. 

An essential feature of the mapping IC is its Lipschitz continuity. 

PROPOSITION 3.2. The mapping K is locally Lipschitz on Xx R + x [O, 11. 

Proof It is sufficient to show that the mapping rc( ., ., 1): Xx R + + R, 
is locally Lipschitz on Xx R + since p: X + [w + is locally Lipschitzian on X. 
First we show that IC( ., ., 1) is locally Lipschitz on Xx (0, co). By 
Rockafellar [ 17, Theorem 3.11, IC( ., ., 1) is locally Lipschitz on Xx (0, co) 
if 

N(x+dJX)n(-N(dlpB))= (0) 

for every p > 0, x E X, and 

dEargmin{dist(g(x)+g’(x) d(C): dEp) =: S(x, p). 

Let XEX,/?>O, deS(x,p), and 

z*EN(x+dlX)n(-N(d(pB)). 

Then, by Lemma 2.9, 

(z*, x + d) = $*(z*lX) 
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and 

Therefore, 

-(z*, d) = I(/*(z* I pB) = plz*lo 

Plz*l, = <z*, x> - $*(z*lw 

< lz*10 dist(x)X) 

= 0. 

Hence z* = 0 since p > 0. 
Finally, it is clear that K( ., ., 1) is locally Lipschitz at points of the form 

(x, 0) where x E X, since, for (X, p) E Xx 88 + , we have 

I@, 0, 1) - 4% P? 111 d I&+) -A3 + Ig’Wl B. I 

Remark. Examples illustrating how the mapping K can be evaluated in 
various situations are provided in [3]. 

The constraint regions that will be used in our modified subproblems are 
described by the multifunction D: Xx cl TX [0, l] 3 R” defined as 

g(x) +g’(x) de C + K(X, P, 1) R 
dE [X-x] n pE! 

=[g’(X)]-‘CC+K(X,P,~)B-g(X)]n [x-Xln@, 

where r =: (p, fi) and T is the parameter set 

T := (r := (p, b)lO < p d 8). 

Here the multifunction [g’(x)] -I: R” =+ R” is the multivalued inverse of 
g’(x), i.e., 

[g’(x)] -ly := (z E ET: g’(x) z = y}. 

Since the mapping K is locally Lipschitz on Xx R, x [0, l] it is trivial to 
verify that the multifunction D is upper semi-continuous on Xx cl T x 
[0, 11, that is, the set 

graph D:={(x,r,A,d):(x,r,A)EXxclTx[O, l],dED(x,r,i)j 

is closed. Since this fact is used in later sections, we record it now in the 
following proposition. 

PROPOSITION 3.3. The multifunction D is upper semi-continuous on 
Xxcl TX [0, 11. 
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We close this section by showing that for each (x, r, A) E TX Cl TX 
[O, l] the set D(x, r, A) is a subset of the set of descent directions for cp 
at x. 

PROPOSITION 3.4. Zf d E D(x, r, A) for some (x, r, A) E Xx cl T x [O, 11, 
then 

cp’(x; d) < dist(g(x) + g’(x) 4 C) - dx) 

d 0, P, 2) - dx). (3.5) 

Moreover, if 1 and p are nonzero, then X(X, p, A) = q(x) if and only if 
0 E &p(x). 

Proof: Since x E X and x + dc X, we have x + zd E X for z E [0, 11. 
Consequently, cp(x + Td) = dist(g(x + zd)lC) for T E [O, 11, and so 

cp’(x; d) = (dist(g( .)lC))‘(x; d). 

Hence, by [S, Sect. 23, 

cp’(x; d) 6 dist(g(x) +g’(x) d[C) - dist(g(x)lC). 

Now since dist(zlC) 6 K if and only if z E C + I&, inequality (3.5) follows 
from the preceding inequality and the definition of D(x, r, A). 

Next suppose that 1 and p are nonzero so that 0 <p d /? and 0 <R < 1. 
Then X(X, p, A) = q(x) if and only if d= 0 solves the convex program 
min{dist(g(x) +g’(x) dlC): de [X-x]}. The proof is concluded by obser- 
ving that the Kuhn-Tucker conditions for this convex program, when the 
solution is known to be d = 0, are equivalent to the statement 0 E &&x). 1 

4. THE MODIFIED SUBPROBLEMS 

The modification to the standard Wilson-Han-Powell convex program- 
ming subproblem (1.2) that we study is given by 

Q(x, r, 1, H): min Vf(x)=d + fdrHd 

subject to dE [X- x] n /lIEI 

g(x) +g’(x) de C+ x(x, P, 2) B, 

where (x, r, 1, H) E cl IR with 

f2:=XxTx(O,l]x~ 
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and 

r := {HE wxn: H is symmetric and positive definite}. 

For each o = (x, r, J., H) E cl G the feasible region for Q(w), namely 
D(x, r, A), is a non-empty compact convex subset of the set of directions of 
nonascent for cp at x. Hence the convex program Q(o) is guaranteed to 
have a unique solution whenever o E s2. Henceforth we denote this solution 
by d(o) so that d is a mapping from 52 to IF!“. 

In the analysis that follows, an understanding of the continuity and 
stability properties of the convex programs Q(w) is essential. In particular, 
the multiplier set associated with the solution to Q(o) plays a key role. 
Thus we must be able to characterize this multiplier set for various choices 
of o E cl G! In preparation for this study we have the following lemmas. 

LEMMA 4.1. Let S be a subspace of W” and let z E U, where U c W” is a 
nonempty closed convex set. If ri( U) n S= 0 while U n S # 0, then for 
each ZE UnS 

N(z.1 U) n sL # (0). 

Proof. Let z E S n U. If N(zl U) n S’ = { 0}, then, by [ 16, Corollary 
16.4.2-J we have S+ T(z1 U) = W. It is straightforward to show that 
S + r(zl U) = R” if and only if 

S+ IJ A-‘(ri U-z) = IR”. 
120 

Hence there is a A>O, yips, and y,Eri U such that yZ+IP’(y,-z)=O. 
But then y, = z - A.yi ES, contradicting the hypothesis that ri( U) n 
s=Qr. 1 

LEMMA 4.2. Let xEX,O<p,1E(O,l), and let rc:W’xR+x[O,l]-+ 
[w, be as defined in (3.1). 

(1) If q(x) > 0 and K(X, p, A) < q(x), then for all E > 0 there is a 
dE (p + E)IB such that 

and 

;s + d E ri(X). 

(2) If q(x) > 0 and X(X, p, A) = q(x), then x is an ES point for NLP. 
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(3) Zf q(x) = 0, then either x is a Fritz John point for NLP or for all 
E > 0 there is a d E EB such that 

g(x) +g’(x) dE ri C 

and 

x+dgriX. 

Proof: By definition there is always a depB such that x + dE X and 
g(x) +g’(x) dE C + K(X, p, A) B. 

(1) Since X(X, p, 2) #q(x) and 0 < 3, < 1, there is a de pB such that 

g(x)+g’(x)dEint[C+Ic(x,p,1)B] 

and 

The result now follows by continuity. 

(2) By Proposition 3.4, OE acp(x). Also, by hypothesis, q(x) #O. 
Thus x is an ES point for NLP by Definition 2.8. 

(3) Since K(X, p, A) = 0, we have g(x) E C and x E X Hence, if there is 
a vector de R” such that g(x) + g’(x) de ri C and x + dE ri X, then 
g(x)+g’(x)(rd)Eri C and x+ rdEri X for all TV (0, 11, thereby estab- 
lishing the result. Thus we suppose that no such vector d exists and show 
that x is a Fritz John point for NLP. If no such d exists, then 

Ran g’(x) [ 1 I nri[(C-g(x))x(X-x)1=@ 

while 

Ran g’(x) [ 1 I n [(C-g(x)) x V-x)1 +0. 

Therefore, by Lemma 4.1, 

N((g(x*))1CxX)nNul[g’(x)‘llf{O}. 

But this set is exactly M,(x). Hence the result is established. [ 

In the next two results, we describe the types of multiplier sets one can 
obtain for the convex programs Q(o). 
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THEOREM 4.3. Let w= (x, r, 1, H)~52 be such that q(x) =O. Zfd~ R” is 
a Fritz John point for Q(o), then x is a Fritz John point for NLP. 

Proof Since d is a Fritz John point for Q(w), there are vectors 
y*~N(g(x)+g’(x)dlC), z:~N(dlX-x), and x:~N(dl/lEK) such that 

o=g’(x)Ty* +zT +z:, 

and 

l.ao+ Iz:lo+ Mo= 1. 

Hence, by Lemma 2.9, 

and 

- <Y*, g’(x) 4 = (2: + z:, & 

Therefore, again by Lemma 2.9, 

(z:+z:,d)=(y*,g(x))-~*(y*lC) 

6 IY*I, distk(xIlC) 
= 0. 

Moreover, by Lemma 2.9, 

<z: +z2*, 4 = (z:, d) + (z:, d) 

= $*(z: I X-x) + l+b*(z; I/m) 

=~*~~l*I~~-~~1*~~~+PI~2*Io 

b - lzz* l,dist(xlX) + 81~: I,, 

=Blz:lo. 

Hence, 

02 <Y*,g(x))-+*(Y*Ic) 
= (z: + z:, d) 

a$*@:, IJf-<z:,x)+Plz:lo 

~Blz:lo. 

Consequently, z; = 0, and so 

<z:, x) = l+b*(z*pc) 

4C9/139/2-3 
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and 

<Y*Y g(x)> = Ic/*(Y*Ic). 

Therefore, by Lemma 2.9, z? E N(xlX), y* E N(g(x)lC), and 0 = 
‘(xyy* +z:. 

Hence (y*, z:)~M,,(x) with Iy*l,+ lz: I,,= 1, so that x is a Fritz John 
point for NLP. 1 

Remarks. A result similar to Lemma 4.3 for the case q(x) >O is, in 
general, not available. The absence of such a result will be the cause of 
some technical difficulty in later sections. Specifically, it forces us to onsider 
the two cases q(x) = 0 and q(x) > 0 separately. 

In the next theorem, one should pay particular attention to the essential 
role played by the parameters (p, /I, A) in establishing the existence of a 
Kuhn-Tucker solution to Q(x, I, A, H). 

THEOREM 4.4. Let o = (x, r, 2, H) E l2. 

(1) lf the sets and X are polyhedral, and the norms chosen for Iw” and 
Iw” are also polyhedral, then d(w) is a Kuhn-Tucker point for Q(o). 

(2) Zf (r, A) l int( TX [0, l]), then either 

(a) x is an ES point for NLP, or 

(b) x is a Fritz John point for NLP, or 

(c) d(o) is a Kuhn-Tucker point for Q(o), or 

(d) some combination of (a), (b), and (c) holds. 

Proof: Since a(o) solves Q(w) we have 

- Pf (x) + Hd(o)) E Nd(o)lWx, r, 1)). 

Thus, if we can show that 

N(d(o)lW, r, A)) =g’(x)TNMx)+g’(x) 4o)lC+ 4x, P, J-J B) 

+ N(x + 4w)lX) + N(4o)lSe), (4.5) 

then a(m) is a Kuhn-Tucker point for Q(o). Recall that 

D(x, r, A) := [g’(x)]-‘[C+K(x, p, 1) B-g(x)] n [X-x] n [j?B]. 

Hence, by [ 16, Corollary 23.8.11, 

N(d(oW(x, r, 2)) = N4w)l Cg’(x)l-‘CC+ 4~ P, 2) B -g(x)l) 

+ N(x + d(o)lX) + N(d(o)lS~) (4.6) 
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if either the intersection 

ri([g’(x)]-‘[C+rc(x,p,I) B-g(x)])nri[X-x]nri[I?lB] (4.7) 

is nonempty, or the sets C and X are polyhedral, the norms on both Iw”’ 
and R” are polyhedral, and the intersection 

Cg’(x)l-‘(C++, P, 1) B)n [X-,~l n CBBI 

is nonempty. Hence (4.6) holds under the hypotheses of part (1). Also, 
since in part (2) (I, A)~int(Tx (0, l]), Lemma 4.2 implies that either (4.7) 
holds, or one of (a) and (b) is true. 

It remains to show that 

~(d(w)l[g’(x)]~‘[C+K(x,p,~)5-g(x)]) 

=g’(x)Wg’(x) 4u)lC+ 4% P, A) 5 -g(x)). 

Observe that for all de KY, 

ICI*(dlCg’(x)l~‘CC+K(X, PY 1) ~-&)I) 

= IcI*(g’(x) 4 c+ 4x, P, 1) 5 -g(x)). 

Consequently, for d E D(x, Y, A), 

N(dlCg’(x)l-‘CC+rc(x,p,~)IEg-g(x)l) 

=~rCl(dlCg’(x)l-‘CC+~(x,p,~)~-g(x)l) 

= Wk’(x)(.)lC+ 4x, P, i) 5 -g(x))(d). 

By [16, Theorem 23.91, the last term in this expression equals 

d(x)=%“(x) dlC+ K(X, P, A) 5 -g(x)) 

if either the intersection 

Ran[g’(x)] nri[C+ K(X, p,l,)B--g(x)] (4.8) 

is nonempty, or the set C is polyhedral, the norm on [w” is polyhedral, and 
the intersection 

RanCg’(x)l n CC+ K(X, P, A) B-g(x)] 

is nonempty. These conditions are satisfied bpart (1) of the theorem, and 
are also satisfied by part (2) as long as K(X, p, 1) # q(x). If K(X, p, A) = q(x) 
and q(x) > 0, then x is an ES point for NLP, as was noted in part (2) of 
Lemma 4.2. On the other hand, if q(x) = 0, then, by part (3) of Lemma 4.2, 
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either x is a Fritz John point for NLP or the intersection (4.8) is non- 
empty, whereby the result is established. i 

COROLLARY 4.9. Let CIJ = (x, r, A, H) E 52 be such that A# 1. 

(1) If the hypotheses of Theorem 4.4, part (l), are satis@ed and 
d(w) = 0, then x is either a Kuhn-Tucker point for NLP or an s-ES point for 
NLP. 

(2) If the hypotheses of Theorem 4.4, part (2), are satisfied and 
d(o) = 0, then x is a stationary point for NLP. 

Proof If a(o) = 0, then g(x) E C+ IC(X, p, 1) B and x E X. Since 
A E (0, I), this implies that JC(X, p, A) = q(x). Hence 0 E acp(x). 

(1) By part (1) of Theorem 4.4, d = 0 is a Kuhn-Tucker point for 
Q(U), that is, 

-Vf (xl Eg’(x)TWdx)IC+ cpb) B) + NxlJ3, 

since 0 E int fllE8 and q(x) = IC(X, p, A). Hence x is a Kuhn-Tucker point for 
NLP if q(x) = 0, and x is an s-ES point for NLP if q(x) > 0. 

(2) From the hypotheses, we know that some combination of (a), 
(b), and (c) in part (2) of Theorem 4.4 must hold. If d= 0 is a 
Kuhn-Tucker point for Q(o), then, as in part (l), x is either a 
Kuhn-Tucker point or an s-ES point for NLP. 1 

5. ADJUSTING THE PENALTY PARAMETER 

The convergence theory that we develop is similar to that given in 
[2, 33. At each iteration one determines the parameters riE T, lli~ (0, 11, 
hi E r, and zi > 0 so that the update, 

xi+l := xi + sidi, (5.1) 

where di = d(Oi) is the solution to Q(oj), induces a sufficient decrease in the 
penalty function 

pa,+l(x) :=f tx) + c(i+ 1 cPtx) 

for an “appropriate” choice of the penalty parameter cli+ , . In this context, 
the key to the analysis is the rule for adjusting the penalty parameter c(. 
The rule that we consider is based upon the insight obtained in the 
following lemma. 
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LEMMA 5.2. Let w=(x,r,A, H)E~ anddED(x,r,A). Then 

P:(x; d) <Vf(x)Td+a[dist(g(x) +g’(x) dlC) -dist(g(x)IC)] 

<Vf(x)=d+ ~CK(X, P, 2) - cp(x)l. (5.3) 

Moreover, if d((o) is a Kuhn-Tucker point for Q(o), then 

Vf(x)‘d(co) d -d(oJTHd((o) - ly*l,[~(x, p, 1) - dx)l, (5.4) 

where y* is any element from the set of multipliers 

Y* E NW) + g’(x) dlC + 4x, P, i) B), 
y* OEVf(x)+Hd+g’(x)Ty*+N(dI[X-x]nPU3) . 

for some dE D(x, r, %) 1 

Remark. The multifunction M,(w) defined above is well-defined on all 
of cl Sz even though it may happen that M,(o) is empty for a particular 
choice of o = (x, r, 1, H) E cl 0. Also, observe that if HE r, then the vector 
d6 D(x, r, 2) in the definition of M,(o) is the same for each element of 
M,(u), by [16, Corollary 28.1.11. However, if HE (cl T)\T, this may not 
be the case. 

Proof: The inequalities (5.3) follow directly from Proposition 3.4. For 
(5.4), note that M,(w) is nonempty since d((o) is assumed to be a 
Kuhn-Tucker point for Q(o). Since 

N(d(u)I [X-x] n pl5) = N(x+ d(w)lX) + N(d(o)l@3) 

[ 16, Corollary 23.8.11, for any y* E M,(u) there exist x* E N(x + d(o)lX) 
and z* E N(a(o)lj?E!) such that 

Vf(x)= -Hd(w)-g’(x)‘y*-x*-z*. 

Inequality (5.3) will be established once the inequalities 

(a) - <Y*, g’(x) 4~)) G -ly*I,Cd~ P, A)- cp(x)l, 
(b) - (x*, d(a)) ~0, and 

(c) cz*, 40)) = Plz*lo, 

have been verified. To see (a), observe that 

- ( y*, g’(x) 40) > = ( y*, g(x) > - < y*, &T(X) + g’(x) d(o) > 

= <y*, g(x)> - rl/*ty* I c+ 4x5 P, A) B) 

< I y*l,, distk(x)lC- K(X, P, A) B) 

d ly*lddisMx)lc) - K(X, P, A)1 

= -lY*I,L-~(x, P, 1) -&x)1 



336 J.V.BURKE 

by Lemma 2.9. For (b), note that 

-(x*, d(o)) = (x*, x) - <x*, x+2((0)) 
= <x*, x> - Il/*(x*Iw 
d 1x*1,, dist(xlX) 

=o 

again by Lemma 2.9. Finally, for (c), observe that 

(z*, a> = ~*(z*IpE!) = plz*lo. 1 

At each of the iterations described by (5.1), we wish to adjust the 
parameter a, to ai+ L so as to guarantee the validity of the inequality 

Pa,+,(x;; dJ 6 -dTH,d,. (5.5) 

According to Lemma 5.2, inequality (5.5) is satisfied whenever 

V’(Xi)=di + ai+ 1 [Ic(Xip pi, Ai) - c~(x,)] < -d’Hidi. 

The adjustment rule that we employ is based upon this last inequality 
and is defined as a mapping Cr: D x R + + R + . 

5.6. THE PARAMETER ADJUSTMENT RULE. Given o=(x,r,1, H) EQ with 
r =: (p, p) and a > 0, define c((w, a) as follows: 

(i) if 

K(X, p, A) = q(x) and V’(x)‘a(o) > -d(~)~Hd(w), 

set &(o, a) = 0; 

(ii) if 

(5.7) 

VfCx)‘~(o) + a[+, P, A) - dx)l6 -dC~)~Hd(w), (5.8) 

set cL(w, a) = a; 

(iii) if neither (5.7) nor (5.8) holds, set 

E(0, a) := max 
{ 

V-(x)=4w) + d(4=Hd(o), 2a 
P(X) - 4x3 P> 1) I- 

Observe that, as long as (5.7) does not occur, the adjustment rule 
described in (5.6) guarantees the inequalities (5.8) and a < ~((0, a). The 
exceptional case, when (5.7) occurs, provides a stopping rule for our 
algorithm. Note that if (5.7) occurs, then, by Lemma 5.2, J(W) cannot be 
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a Kuhn-Tucker point for Q(w). Hence, if (Y, A) E int( T x [0, 1 I), then, by 
Theorem 4.4, the point x is necessarily either a Fritz John point or an ES 
point for NLP. Since these are stationary points for NLP, it is appropriate 
that the algorithm should terminate. 

In the convergence analysis of Section 8, the local behavior of the 
mapping Cc: G! x R, -+ 58 + plays a key role. Specifically, we are interested in 
characterizing those points w  E Sz at which the mapping Cc is locally 
unbounded. In this regard, it is clear that we need only analyze the 
quotient 

vf(x)Td(o) + d(o)THd(w) 

dx) - Jdx, P, i) 

From inequality (5.4) in Lemma 5.2, we obtain the inequality 

(5.9) 

v-w d(o) + 44T fJ44 < dist (O,M 

4$x)-K(X,P,A) ’ O c 
(u)). (5.10) 

Thus we can study the local boundedness of (5.9) by studying the local 
boundedness of dist,(OlM,(o)). 

6. THE LOCAL BOUNDEDNESS OF dist,(OlM,(o)) 

In order to understand the distance function dist,(O)M,(o)) one must 
first carefully study the multifunction MC. For this reason we introduce the 
multifunctions 

1 

Y* EN(dX) +&T’(X) dlC+ K(X, P, 1) B%) 

QM,(x, r, 4 J-0 := (Y*, z*) 
z* E N(dl(X- x) n @3) 

0 = Vf(x) + Hd+ g’(x)%* + z* 

\ for some de D(x, r, A) 

and 

I 

Y*EN(g(x)+g’(x)dlC+K(x,p,~)B) 

QMO(x, r, 1, W := (Y*, z*) 
z* E N(dl(X- x) n jB) 

o=g’(x)‘y* +z* 

for some d E D(x, r, 2) 

for each (x, r, A, H) E s1. These multifunctions describe the normal and 
abnormal multipliers for Q(w), respectively. Also, 

M,(o) = {Y*: ty*, z*) E QM,(w) for some z*}. 
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As with the multifunction M,, one should note that QM,(o) may be 
empty for some values of o E cl Sz (see Theorem 4.4). Moreover, if HE r, 
then the vector d~D(x, r, 1) in the definition of QM,(x, r, I, H) and 
QM,(x, r, A, H) is just a(w), where o := (x, r, 1, H), by [16, Corollary 
28.1.11. However, if HE (cl f)\I’, there may be different vectors 
dED(x, r, J,) for different multipliers (y*, z*) in either QM,(o) or 
QM,(o). Also note that 

rec(QMA4) = QMd4 

by [4, Proposition 3.71, whenever QM,(w) # 0. 
The most fundamental property of these multifunctions is their upper 

semi-continuity on cl 0. 

PROPOSITION 6.1. The multijiinctions QM, , QM,, and M, are all upper 
semi-continuous on cl 0, i.e., they all have closed graphs over cl 0. 

ProoJ Since the upper semi-continuity of MC follows from the upper 
semi-continuity of QM1, and the proof of the upper semi-continuity of 
QM,, is almost identical to that for QM,, we only establish the upper semi- 
continuity of QM, on cl 52. 

Let ((wi, y:, z:)} c cl 52 x R” x R” be a sequence such that 
(oi, y:, 2:) + (w, y*, z*) and (y,*, Z*)E QM,(o,) for each i= 1, 2, . . . We 
need to show that (y*, z*) E QM,(o). First note that, since the sequence 
{d(oJ} is bounded, we may assume, with no loss of generality, that there 
is a dE R” such that a(~,) -+ d with dE D(x, r, A), by Proposition 3.3, where 
wi =: (xi, ri, li, Hi) and w  =: (x, r, J., H). Now, let y E C+ x(x, p, 1) B, and 
z E /?I& where r =: (p, /I). Then, since cp is continuous on X and, by 
Proposition 3.2, K is continuous on Xx R! + x [0, 11, there are sequences 

pjy2 
m and {zi} c R” such that yip C+ x(xi, pi, &) IEJ and zj~BilE8, for 

- 3 7 ---, and yi + y and zi + z, where r,=: (pi, pi). Hence 

(Y*9Yi-(dxi)+g’(xi) aCmi))> Go3 

and 

for each i= 1, 2, . . . . Taking limits, we find that 

(r*,~-(g(x)+g’(x)d))~‘0, 

(z*,z-d)<O, 
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and 

o=vf(x)+Hd+g’(x)=y*+z*. 

Now, since y and z were chosen arbitrarily from C+ K(X, p, A) 5 and /?I$ 
respectively, we have that y* E N(g(x) + g’(x) d 1 C+ K(X, p, A) B), 
Zion /%I), and O=Vf(x)+Hd+g’(~)~y*+z*. Therefore (y*, Z*)E 
QM,(o). I 

We now address the local boundedness of the multifunction QMr. We 
say that the multifunction QM, is locally bounded at a point o E Sz if there 
is a neighborhood U of w  and a constant r] >O such that QM,(U)c ~$8, 
where 

QM,(W:= u PM,(w). wcunc2 

PROPOSITION 6.2. Let w  = (x, r, 1, H) E cl Sz. If the multifunction 
QM,:c~QG-R~xIW” is not locally bounded at o, then there exists 
(y*, z*) E QM,(o) such that y* # 0. 

Proof: If QMr is not locally bounded at o, then there exist sequences 
{wi}cQ and {(y~,z~)}c5Px[w” such that w,-+w, max{Iy:l,, 
jz~lO} 7 00, and (y:, z,?)E QM,(o,) for all i= 1, 2, . . . If {y,?> is bounded, 
then IzTjO t co and we can assume that z,+ I zp 1; ’ + z*. But, since 

where oi= (xi, r,, Hi) for all i= 1,2, . . . . we have that z* =O, due to the 
boundedness of {Oi, d((oi)}. This contradicts the fact that lz*lO= 1. Hence 
the sequence {y,?} is unbounded and we can assume that y,+ 1 y,+ 1;’ -+ y* 
for some y* E [w” x (0). Dividing the relation 

through by ) y,+ I,, and taking the limit as i + co yields the existence of a 
Z*E R” such that z,?lyTl;’ -+ z*. Now, due to the continuity of g, g’, and 
K, and the upper semi-continuity of the multifunction D, it is 
straightforward to show that (y*, z*) E QM,(o). 1 

THEOREM 6.3. Let w  = (x, r, 1, If) EQ be such that (r, A) E int(T x 
[0, 11). Then either M,(x)# (0) or the multifunction QA4, is locally 
bounded at o. 
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Proof First suppose that q(x) = 0. If QMi is not locally bounded at w, 
then, by Proposition 6.2, QM,,(o) # (0). Hence, by Theorem 4.3, 
M,(x) # (0). Next, if q(x) > 0 and K(X, p, A) = q(x), then x is an ES point 
for NLP and so M,(x) # (0). Thus, for the remainder of the proof, we will 
assume that q(x) > 0 and K(X, r, A) # q(x). The result will then follow from 
Proposition 6.2 once we have shown that QM,(w) = (0). 

By part (1) of Lemma 4.2, there is a vector d, E Iw” such that 

g’(x) 4 E WC + 4x, P, 1) B - &)I, 
d, E (ri[X- x]) n int(fllB). 

(6.4) 

Setting d2 := i(d, -d(u)), we have that d(o) + d, also satisfies (6.4). Let 
y E Iw” and z E R” be given. Then there is a ji > 0 such that 

~~+g’(x)(d(w)+d,-~z)EintCC+K(x, p, 2) B-g(x)1 

and 

for all p E [O, ,G]. Set d3 :=pA1dz -z for some 11~ [0, fi]. Then 

w +s’b)(d(o) + w&) E WC + 4x, P, A) B -&)I 

p.z + d(m) + pd3 E (ri[X- x]) n int(/?lB). 

Therefore, 

E T g(x) + g’(x) 40) 
( d(o) (C+~(x,~,~)~)x((X--X)nge) . > 

Now since (;) E Iw” x Iw” was arbitrary, we have 

g’(x) Iw”x [W”=Ran I [ 1 

Thus, by duality, QMO(w) = {O}. 1 
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We now conclude this section with our main result concerning the local 
boundedness of the distance function dist,(OlM,(o)). 

THEOREM 6.5. Let U2 x r’ be a compact subset of int(Tx [0, 11) x r 
and let X E X. Then either M,(x) # { 0} or there is a neighborhood U, of .L 
such that 

sw{max{ly*l,, Iz*lo} I (Y*, Z*)E QM,(w), ~EQ’} < a (6.6) 

and 

sup{dist,(O(M,(o)): w  E Q’} < cc, (6.7 1 

ProoJ Clearly (6.7) follows from (6.6). Thus, we only establish (6.6). 
If (6.6) does not hold, then there is a sequence {oj} c O’, with 
wi=: (xi, ri, Hi) for all i= 1, 2, . . . . such that oi -+ 0 = (X, r;, 1, i7) with 
(r; 2, R)~int[Tx [0, l]] xrand distO(OIQMl(o,))-+ 00. But then QM, is 
not locally bounded at 6. Hence, by Theorem 6.3, we know that 
M,(Jf) z (0). I 

From inequality (5.10) we have the following corollary. 

COROLLARY 6.8. Let Uz x r’ be a compact subset of int(rx [0, 11) x I- 
and let X E X. Then either M,(x) # (0) or there is a neighborhood U, of .it 
such that 

sup vf(x)Td(co) + d(o)T Hd(0) 
dx) - 4% P3 1) I I 

o.lEl-2’ <aI, 

where f2’ := (U, n X) x U2 x r’ and w =: (x, r, 2, H) and r =: (p, /?) for each 
COEQ. 

7. THE ALGORITHM 

Initialization: Choose X,,E X, ~1~ > 0, and a compact subset, IT, of 
int( T x [0, 11) x I’. Select step length parameters y, > 0, 1 > y2 > 0, and 
o<p, <pclz< 1. 

The Iteration: Let xi E X and cli > 0 be given. If xi is a stationary point 
of NLP stop; otherwise choose parameters (r,, ;li, Hi) E 17 and the step 
length ri so that the update 

Xi+, := xj + T,d(o;) 
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satisfies the inequality 

P,,+,(xi+l)QP,,+,(xi) 

+~~~iC?f(xi)~~(~i) +ai+~(distk(x~) +g’(Xi) J(~i)IC)-cP(xi))I 

and either ri<y, there is a Zi>O such that ti>yzti> 0, xi+ ?,d(o,)eX, 
and Xi+, := xi + fid(wi) satisfies the inequality 

p,,+,(xi+*)‘p,,+,(xi) 

+ PI fiCVf(Xi)‘d(Wi) + ai+ ,(dist(g(x,) +g’(x,) d(wi)lC) - q(xi))], 

where Wi := (Xi, ri, Ai, Hi), Ti =: (p,, pi), and ai+, := &(wi, ai) is defined in 
(5.6). 

Remarks. (1) The step length criteria employed by the algorithm was 
introduced in Calamai and More [6]. It follows from the results of Section 
5 that for each (ri, li, Hi) E I7 there is a ri>O for which the update xi+ i 
satisfies the requirements of the step length choice as long as xi is not a 
stationary point for NLP. In this regard, it is important to note that if 
a(~,) is not a Kuhn-Tucker point of Q(oi) for some choice of 
(ri, &, Hi) in, then it is not a Kuhn-Tucker point for any choice of 
(ri, ii, Hi)e17 and consequently is a stationary point for NLP. Thus the 
stopping criteria can be checked in the process of implementing the update. 
In particular, the procedure must stop if at any point one finds that 
ii(coi, cq) = 0. 

(2) As noted in the previous remark, the stopping criteria for the 
algorithm can be checked in the process of implementing the update. In 
this regard, it can happen that a nontrivial update is computed even 
though xi is an ES point for NLP. This is not a drawback, since in this case 
it may be possible to continue progress toward either a feasible stationary 
point for NLP or an s-ES point for NLP. But, as noted at the end of 
Section 5, if one proceeds in this way, then one must terminate the 
algorithm if it is ever the case that &(w,, ai) = 0. 

(3) Although in this paper we are only concerned with the global 
convergence properties of the alorithm, for reasons associated with its local 
convergence properties it is desirable to allow the parameter ,$ to converge 
to 1 as [X(X,, pi, 1) -q(x)] + 0. A straightforward modification to the 
analysis that we provide allows one to incorporate such a modification. 
Specifically, this can be done by replacing 2 with a locally Lipschitz 
function 1: R” x R, + [A,,, l] for some &E (0, l), where the mapping A 
satisfies the property that x(x, p) = 1 only if IC(X, p, 1) = q(x). Then at each 
iteration one sets Ai = 1(x,, pi). An example of such a function 2 is given by 
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(4) The algorithm is general enough to allow at least a partial 
implementation of a trust region-like strategy with second-order correc- 
tions, as is done in Sahba [19]. The limitations are that the matrices H, 
remain uniformly symmetric positive definite and bounded, and that the 
trust region radii neither converge to zero nor become unbounded. 

(5) In the implementation of the algorithm described above, the 
sequence of penalty parameters (ai ) is necessarily nondecreasing. 
However, one may employ a clever device proposed by Sahba [19] for 
reducing the penalty parameter on certain iterations. Specifically, at the 
end of the kth iteration one evaluates 

qk := min{ 4$xk), Gk , ), 
thus keeping track of the minimum value of the cp(xi)‘s. If Gk < @jk ~ 1 - t: 
for some prespecified E > 0, then one resets cli+, to CI~. Clearly, this 
re-initialization of c( can only occur a finite number of times. Hence the 
convergence analysis remains unaltered. 

(6) When implementing the above procedure, it appears as though 
one must accurately compute the value K(X, p, 1). This can be a drawback 
to the method, particularly if one intends to implement the procedure using 
a trust region approach. Fortunately, it is possible to avoid much of this 
work. The key observation is that it is sufficient to compute a direction 
dE [X-x] n pB such that 

diNAx) +g’(x) dlc) - dx) 6 X4x, P, 1) - v(x)1 (7.1) 

and then replace the term A[K(x, p, 1) - q(x)] in the definition of X(X, p, E.) 

with the term [dist(g(x) + g’(x) dlC) - q(x)]. It is straightforward, 
although tedious, to show that this modification to the algorithm does not 
alter its convergence characteristics. We now briefly describe one way to 
take advantage of this variation. Suppose one employs a method for 
evaluating K(X, p, 1) that produces a sequence { (lj, d,)) c [w x ([X- x] n 

pB) such that 

disk +g'(x) 4lC)l~k P, I), 
(7.2) 

litK(X, PT 1). 

If one terminates this procedure when 

dist(g(x) +g’(x) dij C) - V(X) < A[/{- V(X)] 

(which must occur after a finite number of iterations), then inequality (7.1) 
is satisfied with die [X-x] n pB, and the value K(X, p, 1) was never com- 
puted. Observe that if the sets C and X are polyhedral, and the norms on 
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R” and R” are polyhedral, then the computation of IC(X, p, 1) is a linear 
program. One can then use either the Anstreicher [l], the Gay [8], or the 
Todd-Burrell [21] variation of Karmarkar’s algorithm [lo] to solve this 
linear program, thereby producing vectors di E [X- x] n pB and scalars li 
satisfying (7.2). Since Karmarkar’s algorithm computes good approximate 
solutions to linear programs very rapidly, this modification to the algo- 
rithm is quite attractive. 

8. CONVERGENCE 

THEOREM 8.1. Let {xi} be a sequence generated by the algorithm of 
Section 7 and suppose that the mappings Vf and g’ are bounded on (xi } and 
uniformly continuous on W{x,}. 

(1) Zf ait a, then 

vf(xi)rd(Oi) + d(“i)r Hid(oi) ?I o. 

dxi) - K(Xi9 Pi, ni) 

and 

where /:= {i: ai<ai+l}. 

(2) Zf supi ai =: a, then either 

(a) infiPo,(xi) = --oo for all & < a, or 

(b) (xi } is finitely terminating at a stationary point NLP, or 

(C) Id( + 0, Cq(xi)-K(xi,pi, Ai)] + 0, and V,L(xi, y?, ZT) 

+ 0, where L(x, y*, z*) =f (x) +g(x)‘y* + z* and (y,?, zr) is any element 
of QMi(wi) for each i= 1, 2, . . . . 

ProoJ For the remainder of the proof we denote a(Wi) by di. 

(1) This follows immediately from the statement of the algorithm, 
rule (5.6), and the hypotheses. 

(2) Statement (b) is obvious from the statement of the algorithm. 
Thus we assume that neither (a) nor (b) occurs, and show that (c) must 
occur. Clearly there is no loss of generality by assuming that ai= a for 
all i < 1, 2, ,... Now, since P,(x,) is bounded below, we have that 
[P,(xi+ ,) - P,(xj)] -+ 0. Therefore z,dTH,d, + 0. If d:Hidi 4 0, then 
ldiJ + 0. Also, [K(x~, pi, &) - cp(xi)] + 0 since 



A MODIFIED SQP METHOD 345 

O 6 CVtxi) - Ictxi, Pi, ni)l 

d cp(x,) - dist(g(xi) +g’(x,) dilC) 

G ldtxi) di It 

where Ig’(xi) dil + 0 due to the boundedness of {g/(x,)}. Moreover, for 
each (Y?, z?) E QM,(w), 

V,J(x,, v,+, z*) = -Hid, 

so that V,L(x,, y*, z*) + 0. Hence the result is established if dTH,d, -+ 0. 
Thus let us suppose that d’H,d, % 0. Then there is a subsequence Zc N 
such that t, +‘O with ri < yi for all i E Z, and 

inf {d,THidi} =: 8>0. 
I 

Consequently, the associated subsequence {Z;}, satisfies ri > yzZi > 0 and 

f’,(f, + 1) - J’x(Xi) > P2iiCVf(xi)T di + a(distk(x,) + g’(x;) dilc) - c~(xi))I 
(8.2) 

for all iE I. We assume, with no loss of generality, that fi < 1 for all in I. 
Now observe that 

(P(‘(+ l)-~p(Xi) G Ig(Xi+ I)- (g(xi) + fig’(Xj) di)l 

+ [dist(g(xi) + Sig’(xi) dilC) - cp(x,)] 

< fildi I Wz(iidi) + ii[dist(g(xi) + i,g’(x,) d,) C) - b(xi)], 

where w2 is the modulus of continuity for g’. Hence, by expanding on (8.2) 
we obtain 

~2 iiCVf(xi)‘di+a(dist(g(xi) +g’(X<) d;lC)-V(x:))l 
< ij[Vf(xi)T di + a(dist(g(x,) + g’(xi) dij C) - q(xi))] 

+ If(zi + I) - (f(xi) + f;Vf(xi)Tdi)l + ii I4 I wAf;di) 

d fi[Vf(Xi)T di + a(distk(x,) + g’(x,) d, I 0 - dx,))] 

+ ii1 dil Cw,(fidi) + W2(fzdi)l, 

where w1 is the modulus of continuity for Vf: Therefore, 

06 (1 -~2)CVf(~i)~di+a(dist(g(xi) +g’(xi) dil Cl- cP(xi))l 
+ ldil w(iidi) 

< (~2 - 1) 0 + ldil w(iidi) 



346 J.V.BURKE 

for all ie Z, where w  := w1 + w2. Taking the limit as i+‘co yields the 
contradiction 0 < (pZ - 1) 8. Hence d’Z-Z,d, -+ 0. 1 

COROLLARY 8.3. Let {xn},f, and g satisfy the hypotheses of Theorem 
8.1. 

(1) If %f% then every cluster point of the subsequence 
{xi: ai c cli+ 1 } is either an ES point or a Fritz John point for NLP. 

(2) v supiai < CO, then every cluster point of {xi } is a stationary point 
for NLP. 

Proof: (1) By part (1) of Theorem 8.1 and Corollary 6.6, we know that 
M,(X) #O for any cluster point X of {xi: ai < a,, i}. Hence X is either an ES 
point or a Fritz John point for NLP. 

(2) By part (2) of Theorem 8.1, any cluster point X of the sequence 
{ ai } must satisfy IC(X, p, X) = q(X) for some p > 0 and X E (0, 1 ), due to the 
compactness of l7 and the continuity of IC and cp. 

If rp(.%) > 0, then 2 is an ES point for NLP. 
If p(X) = 0 and X is not a Fritz John pont for NLP, then, by Theorem 

6.3 and the compactness of I7, there is a subsequence (xi: ie I} of {xi} for 
which xi +‘X and there exist (y:, z*) E QA4r(‘mi) for each iEZ such that 
(y:, 27) +‘(y*, z*) for some (y*, z*) in R” x R”. By Proposition 6.1, 
(Y*, z*) E QM,(o). 

Moreover, by part (2) of Theorem 8.1, 

0 = V,L(X, y*, z*). 

Hence X is a Kuhn-Tucker point for NLP. 1 

The next corollary follows immediately from Corollary 8.3. 

COROLLARY 8.4. Let (xn},f, and g satisfy the hypotheses of Theorem 
8.1. Zf the sequence {x,,} is bounded, then the sequence (x,,} has a cluster 
point that is a stationary point for NLP. ZS, moreover, the sequence {ai} is 
also bounded, then every cluster point of the sequence {xi} is a stationary 
point for NLP. 

The convergence results that are stated above are almost identical to 
those obtained for the algorithm presented in [3]. Thus it is reasonable to 
ask which of these algorithms is better. Ultimately, the answer to this ques- 
tion can only be given after extensive numerical testing. Nonetheless, there 
is theoretical evidence indicating that the procedure proposed in this paper 
is superior. Specifically, one can establish certain continuity results for the 
programs Q(o) that are not a.vailable for the modified subproblems 
employed in [3]. 
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9. SOME CONTINUITY PROPERTIES OF Q(o) 

In this section we provide some continuity results for the convex 
programs Q(o). These results indicate that the algorithm of Section 7 
which is based upon the programs Q(u) possesses better stability and 
continuity properties than the procedure proposed in [3]. 

In order to more fully appreciate these results in the context of the 
existing literature we introduce the following constraint qualification. 

DEFINITION 9.1. Let g: [w” + W’, C c R”, and Xc IF!” be as posited in 
the statement of NLP. Then g is said to satisfy the CQ condition at a point 
x E X if and only if M,(x) = (0). 

Remarks. (1) It is important to note that, since 

M,(x) = Nul[g’(x)T, Z] n N [c+rp(x)5lxx); 

the statement M,(x) = (0) is equivalent to the statement 

R” x R” = (Mo(x))O 

This latter condition was used in the definition of the CQ condition given 
in [4, Definition 6.11. For a definition that generalizes Definition 9.1 to 
more general situations see Rockafellar [18]. 

(2) If C= R’+ x {O},, and X= W, then the CQ condition is equiv- 
alent to the Mangasarian-Fromowitz constraint qualification. 

Observe, from Definition 2.8, that a point x E Iw” is either an ES point or 
a Fritz John point for NLP if and only if g does not satisfy the CQ condi- 
tion at x. In [4], it is shown that the CQ condition is equivalent to the 
regularity condition of Maguregui [ 111. Consequently, the CQ condition 
is a powerful tool for the local analysis of the constrained system g(x) E: C 
and x E X. In this regard, we need the following result which is essentially 
due to Maguregui [ 111. 

PROPOSITION 9.2. Zf g satisfies the CQ condition at a point x E X, then 
there is a neighborhood U of x such that g satisfies the CQ condition at every 
point of U n X. 

Proof. By [4, Proposition 6.53, g satisfies the CQ condition at XE X if 
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and only if x is a regular point (in the sense of Maguregui [ 11, Chap. 21) 
of the system 

g(x) E C + dist( g(x) I C) B, 

x E x. 

Therefore the result follows from Maguregui [l 1, Chap. 2, Theorem 23. 1 

We now employ the CQ condition in the description of certain con- 
tinuity properties of the convex programs Q(o). The key result in this con- 
text concerns the continuity of the multifunction D: Xx cl T x [O, 1 ] =F- R” 
defined in Section 3. Recall that in Proposition 3.3 it was shown that D is 
upper semi-continuous on Xx cl T x [0, 11. We now show that D is also 
lower semi-continuous at a point (x, r, A) if g satisfies the CQ condition at 
x. Hence at such points D is continuous. This result extends some of the 
work in Robinson and Meyer [13], Robinson [15], and Rockafellar [17]. 

THEOREM 9.3. Let (2, i;, A)EXX TX [0, l] be such that (F, X)~int(Tx 
[0, 11) and g satisfies the CQ condition at X. Then the multifunction D is 
continuous at (2, r, 2) with respect to Xx TX [0, 11. More specrfi’cally, we 
have the following: 

(1) If q(Z) = 0, then the multifunction D is sub-Lipschitzian at (2, F, A) 
with respect to Xx T x [0, 11, that is, for every compact set Kc W + 3 there 
is a neighborhood U of (2, r, 2) and a constant 8 2 0 such that 

D(x, r, l)nKcD(x2, r2, ;2,)+@(x,, rl, &)-(x2, r2, 12)llE% 

for all (xi, ri, Ai)~ Un (Xx TX [0, 1 J), i= 1, 2. 

(2) If q(x) >O, then the multifunction D is both upper and lower 
semi-continuous at (X, F, 1) with respect to Xx TX [0, 11. 

Remarks. (1) Recall that D is said to be lower semi-continuous at (i, f, X) 
if for every d E D(X, Y, A) and E > 0 there is a 6 > 0 such that D(x, r, A) n 
(d+&)#O whenever (x,r,l)~((X, ?,@+&B)n(Xx TX [0, 11). 

(2) Lipschitzian properties of multifunctions were extensively studied 
in Rockafellar [ 173, wherein the term “sup-Lipschitzian” first appears. We 
make strong use of these results in part (1) of Theorem 9.3. In some sense, 
part (1) of the theorem is the classical result in this area; it represents a 
modest generalization of Robinson and Meyer [13, Theorem 3) and 
Robinson [15, Theorem 23 and, due to Theorem 4.3, is a direct conse- 
quence of Rockafellar [17, Corollary 3.31. On the other hand, part (2) of 
the theorem is of a somewhat different nature and so requires a different 
approach. 
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ProoJ: Clearly, the result will be established once (1) and (2) have been 
verified. 

(1) Since g satisfies the CQ condition at X, we know that X is not a 
Fritz John point for NLP. Hence, by Theorem 4.3, if d~D(x, f, A), then d 
cannot be a Fritz John point for Q(x, ?, X, H) regardless of the choice of 
HE ZY Therefore the result follows from Rockafellar [ 17, Corollary 3.31. 

(2) We assume, with no loss of generality, that the norm of KY+ 3 is 
given by 

for each (x, p, /I, ;1) E KY+ 3. The fact that D is upper semi-continuous at 
every point in Xx cl TX [0, l] was verified in Proposition 3.3. Thus we 
only verify the lower semi-continuity of D of (X, ?, A). Let E > 0 and 
dE D(X, Y, i) be given. Since g satisfies the CQ condition at X, we know, 
from Proposition 3.4 and Lemma 4.2, that K(X, p, ;i) # q(X). Hence, by 
Lemma 4.2, there is a d, E [w” such that Id, I <g/2 and 

g(x)+g’(Z)(d+d,)Eint[C+K(X, p, d) E8], 

i+d+d, EriX, 

and 

Choose .q, > 0 so that 

E,, < dist(g(f) +g’(Z)(d+ d,)l bdry(C+ ~(2, r, X) IEB)) 

Ed < dist(d + d, ) bdry(bB)). 

Let 6 > 0 be such that min{ ~/2, s0/3} > 6, 

k(x) +g’(x)(d+ d, + 4) - M-3 +g’(x)(d+ d, + 4))l-c sd3, (9.4) 

w, p, 2) - 4% P, A-r)1 < &cl/3 (9.5) 

whenever max{Jx-21, lp--pI, IA-XI, ld2/}<6 and (x,p,I)~XxjW+ x 
[0, 11. (Recall that K is locally Lipschitzian on Xx [w + x [0, l] by 
Proposition 3.2.) Now, if 1(x, r, A) - (2, ?, A)/ < 6 and (x, r, A) E Xx T x 
[O, 11, then dist(x+d+ d, IX) < 6. Hence there is a d,E R” such that 
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x+d+d,+d,~X and Id,)<& We have that Jd,+d,I<s and d+d,+ 
d,E@. Hence (9.4) and (9.5) hold so that 

g(x)+g’(x)(d+ d, +dJ + f .@~int[C+ rc(Z, p, X) IB] 

and 

C+IC(X,~,X)5CC+IC(X,p,~)5+fEgB. 

Hence, by Radstrom’s cancelation lemma, 

g(x) + g’(x)(d+ 4 + 4) = C + 4x, P, A) 5, 

whereby D is lower semi-continuous at (2, 7, A). m 

Theorem 9.3 admits the following simple corollary concerning the 
continuity of the value function for Q(o), 

q(0) :=Vf(x)Td(o) + fd(o) Hd(o), 

where o =: (x, r, A., H), and the optimal solution vector d(o). 

COROLLARY 9.6. Let oo= (x0, ro, lo, H,),ES~ be such that (ro, lo)~ 
int[Tx [0, l]] and g satisfies the CQ condition at x0. Then there is a 
neighborhood U, of x0 such that the functions q and d are continuous on the 
set ( U1 x Uz x r) n D, where U2 is any neighborhood of (ro, 1,) satisfying 
U,cint[Tx [0, l]], 

ProojI From the definitions of q(o) and d(o) it is clear that we need 
only establish the result for d(o). To this end, let U, c R” be the 
neighborhood of x0 obtained in Proposition 9.2 and let U, c R3 be any 
neighborhood of (ro, A,). Set U := U, x U, x f and choose o E U n Sz. The 
result will be established once we have shown that d is continuous at w. 

Let {wi} c U n 52 be such that Wi -+ w. We need to show that 
a(o,) + d(o). By Theorem 9.3, there is a sequence { di} c Iw” with di + 2((o) 
and die D(x,, rir A,), where oi =: (xi, ri, Ai, Hi), for all i= 1, 2, . . . . Hence 

vf(x,)~a(wi)+;a(oi)Hia(oi) <Vf(.# di+;dTHidi (9.7) 

for all i = 1, 2, . . . . NOW, since (a+,)} is a bounded sequence, it admits a 
cluster point 2, where 2~ D(o) by Proposition 3.3. But then, taking the 
limit in (9.7) over the appropriate subsequence, we find that 

~f(~)a+ f i7 m6y-(X)=a(w) + +(w)=Ha(0). 
Thus, by uniqueness, a= z(m). Hence there is only one cluster point of the 
sequence (a(w,)} and it is d(w). Therefore a(w,) + a((~). 1 
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