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ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS II:
THE NONCONVEX CASE*

JIM BURKE

Abstract. In this paper the results of Burke and Mord [5] on the identification of active con-
straints are extended to the nonconvex constrained nonlinear programming problem. The approach is
motivated by the geometric structure of a certain polyhedral convex "linearization" of the constraint
region at each iteration. As in Burke and Mor [5] questions of constraint identification are couched
in terms of the faces of these polyhedra. The main result employs a nondegeneracy condition due
to Dunn [7] and the linear independence condition to obtain a characterization of those algorithms
that identify the optimal active constraints in a finite number of iterations. The role of the linear
independence condition is carefully examined and it is argued that it is required within the context of
a first-order theory of constraint identification. In conclusion, the characterization theorem is applied
to the Wilson-Han-Powell sequential quadratic programming algorithm [J. Optira. Theory Appl., 22
(1977), pp. 297-309], [Proceedings of the 1977 Dundee Conference on Numerical Analysis, Springer-
Verlag, Berlin, 1977], and [A simplicial algorithm for concave programming, Ph.D. thesis, Graduate
School of Business Administration, Harvard University, Boston, 1963] and Fletcher’s QL algorithm
[Practical Methods for Optimization, Vol. 2, John Wiley, New York, 1981], [Math. Programming
Study, 17 (1982), pp. 67-76].

Key words, active constraints, linear independence condition, Mangasarian-Fromowitz con-
straint qualification, nondegenercy, strict complementarity, constrained optimization
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1. Introduction. In this paper we examine the problem of active constraint
identification for the constrained nonlinear programming problem

NLP: minimize f(x)
subject to g(x) <_O i=l,2,...,s

gi(x) O s + l, m

where it is always assumed that the functions f IRn - IR and gi ]Rn --* IR for
1,...,m belong to Cl[lRn,lR] the set of functions mapping lRn into IR having

continuous Frdchet derivatives. Specifically, given a sequence (xk} C ]Rn converging
to a local solution E g/of NLP, where

:={x’gi(x)<_0, l,...,s, gi(x) O, i=s+l,...,m}

is the feasible region for NLP, we want to establish whether or not the iterates xk

identify the set of indices

I() {i e {1,...,s}’gi() 0}

of the active constraints at for all k sufficiently large. The ability to characterize
those sequences that possess this identification property has significant applications
in the design and analysis of algorithms for solving NLP. For example, we could

*Received by the editors July 18, 1988; accepted for publication (in revised form) September
20, 1989. This work was supported in part by the National Science Foundation under grant DMS-
8803206.

Department of Mathematics, GN-50, University of Washington, Seattle, Washington 98195.

1081

D
ow

nl
oa

de
d 

11
/1

4/
17

 to
 2

05
.1

75
.1

18
.1

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1082 JIM BURKE

apply these results toward the development of hybrid algorithms wherein a procedure
that does not possess this identification property can be augmented by occasionally
computing an iterate of a method that does possess the identification property. In [5],
Burke and Mor study this problem for the case in which t is polyhedral convex (or,
more generally, when f is convex and the solution lies on a face of gt (4) which is
"quasi-polyhedral" [5, Def. 2.5]) and the sequence {xk } lies entirely in . In this case
they show that if f/is a nondegenerate local solution to NLP in the sense of Dunn
[7] (see 3) with Ft polyhedral, then for any sequence {x} C converging to we
have I() I(xk) for ll k sufficiently large if and only if the projection of -Vf(x)
onto the tangent cone to Ft at xk (see 3 and 6) converges to the origin. In the present
paper it is not assumed that ft is convex, nor is it assumed that the sequence {x } lies
entirely in f/, consequently somewhat different approach is required. Nevertheless,
the results we obtain hve the same flavor as those of [5].

The key to the pproch tken in this paper is the notion of linearization of the
set f. The linearization for ft that we consider is well studied in the literature [1],
[14], [15], [17]. This linearization, denoted Lft(x, r), is defined in 2 s n multifunction
from ]Rn x lRm into IRn. For each (x, r) lRn IRm Lfl(x, r) is , possibly empty,
polyhedral convex subset of IRn. Moreover, for ech x IRn there is always choice
of r lRm such that Lt(x, r) # . In particular, if x Ft, then x Lfl(x, 0). Using
the linearization L(., .) we develop a theory of constraint identification paralleling
that given in [5]. Of particular note is Theorem 6.2. In this result we assume that

gt is a stationary point for NLP at which the strict complementary slckness
and linear independence conditions (see Definition 6.1) are satisfied. It is then shown
that if {(xk, rk, yk)} C ]Rn IRm x ]Rn is a sequence converging to (, 0,) with
yk L[(xk, rk) for all k 1, 2,..., then the constraints defining Lgt(xk, rk) that are
active at Yk will identify the constraints I() for all k sufficiently large if and only if
the projection of-Vf(xk) onto the tangent cone to Lgt(xk,rk) at yk converges to the
origin. Although this result is not surprising it does provide a simple unification of
the known theory on the identification of active constraints.

The outline of the paper is as follows. In 2 we introduce the linearization L(., .).
In 3 optimality and nondegeneracy conditions for NLP are given in terms of L(., .).
A theory paralleling that of [5] is then developed. The first step is to recall certain
facts concerning the geometry of convex polyhedra. This is done in 4. In 5 these
geometric concepts are related to various notions of identification for the faces of a
convex polyhedron and in 6 we prove our main results. In our analysis the linear
independence (LI) condition (Definition 6.1) plays a key role. This is unfortunate since
the LI condition is rather severe restriction in the presence of inequality constraints.
Nonetheless, we show that this condition is in a sense unavoidable in the context of the
first-order theory of constraint identification developed herein. However, it is hoped
that the present work will provide the basis for a second-order theory wherein the
LI condition is not required. The paper is concluded in 7 by applying the results
of the previous sections to generalizations of the sequential quadratic programming
algorithm of Wilson [19], nan [10], and Powell [13], and the Q.L. (or S QP) algorithm
of Fletcher [8], ]9]. In this regard our results complement the recent work of Wright
[20], [21] on the problem of active constraint identification for these algorithms.

The notation that we use is standard; however, a few words about our use of
norms is appropriate. The symbol I1" II always denotes a norm on lRn and lB denotes
the closed unit ball associated with this norm. The norm dual to I1" II is denoted I1" I1.
and is given by

Ilyll, sup{<x, y> x e
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1083

where (x,y) := in=lxiyi. The closed unit ball associated with II" I[. is given by
IB {y (x, y} < 1 Vx E ]B}. The 2 or Euclidean norm plays a special role in our
discussion. It is defined by

Ilxll := [(x, x}]/,
and its associated closed unit ball is denoted by IB2. For a given norm I1" and a given
set S C ]l:n we define the distance function for S by

dist (xlS) := inf(llx- sll s e S}.

If the norm employed is the 2 norm we specify this by writing dist 2(xlS).
The polar set of a set S c IRn is defined as

SO :-- {x*: (x*,x) <_ 1 for all x S}.

If S is a cone, we can show that

so := {x,: x) < 0 for

Given a convex subset C of IRn and a point x C the tangent cone to C at x is
defined as

T(xlC := cl{A(c- x): A > 0, c e C},
where cl(S) denotes the closure of the set S, and the normal cone to C at x is

N(xlC := {x*: (x*,c- x) < 0 for all c e C}.

We also have the identity
T(xlC)o N(xlC).

For a function f lRn --, IR and a set S c IRn, we write

argmin {f(x) x e S} := {2 e S: y() min{f(x) x e

where this set may be empty if no such Z exists. Finally we make use of the following
convention regarding finite sums. If I 0, then we define

for any choice of argument ai where 0 is the origin in the vector space of the appropriate
dimension.

2. The linearization of t. Since most algorithms for solving NLP do not
maintain feasibility, our approach to questions of constraint identification must be
able to obtain information about constraint activity from nonfeasible points. In order
to do this we make use of the notion of a linearization of the constraint region
and work with the linearizations of Ft rather than gt itself. The linearization that
we consider is well studied in the literature [1], [14], [15], [17] and is given by the
multifunction Lt ]Rn+m === ]Rn where

( gi(x)+Vgi(x)T(y--x)--ri, i=1,’", s }L(x,r) "= y gi(x) + Vgi(x)T(y-- x) ri, s + l,...,m
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1084 JIM BURKE

for each (x, r) E lRn lRm. Observe that for each (x, r) E lRn lRm the set L(x, r)
is a, possibly empty, convex polyhedron. Moreover, for each x lRn, r IRm can be
chosen so that Lf(x, r) is nonempty.

For each y L(x, r) we call the set

A(x, r, y) := (i e (1,2,...,s}: gi(x)

the set of active constraints of L(x, r) at y. The indices {s,..., m} are not included
in A(x, r, y) since they are always known to be active. For 5 E gt, the set of active
constraints of ft at 5 is just A(5, 0,5). The following lemma describes the local
relationship between A(x, r, y) and A(5, 0,5) at points

LEMMA 2.1. If5 gl, there exist neighborhoods U of (5, O) in IRn ]Rm and V
of 5 in lRn such that for all (x, r) in U and y in V we have

A(x, r, y) C A(5, 0, 5).

Proof. Since g- (gl,’" ,gin)T belongs to CI[IRn,IRm], there are neighborhoods
U of (5, 0) and V of 5 such that

a() + va(x)r(u- x) <

for A(5, 0,5) whenever (x, r) U and y V. The lemma clearly holds for this
choice of U and V. E!

Lemma 2.1 illustrates that any sequence { (xi, ri, yi) } converging to a point (5, 0, 5)
with 5 E identifies subsets of A(5, 0, 5) in a finite number of iterations. The question
is whether these subsets are meaningful in the context of NLP. In order to address this
issue we need to examine the geometry of the sets Lgt(x, r) vis-t-vis the optimality
conditions for NLP. Our first step in this direction is to review the basic results on
first-order optimality conditions for NLP.

3. Review of optimality conditions for NLP and nondegeneracy. Given
a nonempty closed set S contained in lRn and a point 5 in S, we denote by rs(5) the
set of all vectors v E ]Rn such that

11vl]2 dist 2(5 + vlS);

that is

The Clarke normal cone to S at 5 is then defined to be the set

> 0, {x } S, v s(), x , v 0N(lS)

(see [6]). This notation is consistent with that employed for the normal cone to a
convex set since the two notions of normality coincide in this case [6, Prop. 2.4.4]. In
[6], it is shown that the condition

(3.) -Vf() e
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1085

is a first-order necessary condition for optimality in NLP at points E 12. Thus we
say that is a stationary point for NLP if (3.1) holds. By contrast a point 5 E 12 is
said to be a Kuhn-Tucker point for NLP if

(3.2) -Vf() e N(-ZIL(, 0)).

The cones N(ll2 and N(-ZIL( 0)) are related by the containment

(3.3) N(l N(IL(, 0))

[6, p. 56]. This containment can be strict as is illustrated in the following example.
Example. Consider the set

:={zlx<0, 0<x}.

Since t2 {0}, we have N(01g/) IR. However, N(OILgI(O 0)) IR_. Consequently,

N(OIL(O, 0)) C int [N(0]I2)].

Hence, in general, (3.2) is not necessary for optimality. Conditions under which
(3.2) is necessary for optimality are called constraint qualifications. The most im-
portant of these constraint qualifications is the Mangasarian-Fromowitz constraint
qualification here after denoted by MFCQ.

DEFINITION 3.1. We say that the MFCQ is satisfied at a point 5 if the only
set of scalars ui for 1,..., m satisfying

m

0
i--1

0 ugi (),
i--1

0 <_ ui for 1,...,s,

is ui --0 for 1,...,m.
The above definition is known as the dual form of the Mangasarian-Fromowitz

constraint qualification and is equivalent to the form that is usually given in the
literature [12]. Clarke [6, Cor. 2, p. 56] establishes the following result.

THEOREM 3.1. If the MFCQ is satisfied at e ’1, then

N(lf g(]ngl(, 0)).

Hence the MFCQ yields the necessity of condition (3.2). We make strong use of
the MFCQ in the following section.

Another concept that we will find useful is that of nondegeneracy. Following
Dunn [7], we say that is a nondegenerate stationary point for NLP if

(3.4) -Vf() e ri (g(l))

where for any subset 5’ C ]l:n the relative interior of S, ri S, is the interior of S relative
to the affine hull of S,

{-- l, 2,..., }, c},=aft (S) aixi and =1 ai 1
i=1
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1086 JIM BURKE

If the MFCQ is also satisfied at 5, then (3.4) can be written as

-Vf() e ri(N(lLt(, 0))).

Now since Lt(, 0) is polyhedral we have
(3.6)

{ }N(ILEt(, 0)) E uiVgi() + E uiVgi() ui >_ o, e A(, 0,5)
iEA(’,O,’) i=s+l

and so by [5, Lem. 3.2]
(3.7)

ri(N(lLt(, 0)))
(

m }uiVgi() + E uiVgi() ui > o,i E A(,o,5)
i--s+l

Consequently the nondegeneracy condition (3.5) is closely related to the so-called strict
complementary slackness condition. This relationship is carefully examined in [5].

4. Faces of convex sets. As in [5], properties of faces of convex sets play
an important role in our analysis. In this section we briefly provide the necessary
background and notation.

Recall that a nonempty convex subset C of a closed convex set C in IRn is said to
be a face of C if every convex subset of C whose relative interior meets C is contained
in C (e.g., see [16, 18]). In fact, the relative interiors of the faces of C form a partition
of C [16, Thm. 18.2]. Thus every point x E C can be associated with a unique face
of C denoted by

F(x[C)

such that x ri (F(xlC)). A face C of C is said to be exposed if there is a vector
X* ]Rn such that C E(x*[C) where

E(x* IC) := arg max{(x*, y): y e C}.

The vector x* is said to expose the face E(x*IC). It is well known and elementary
to show that every face C of a polyhedron is exposed and that the exposing vectors
are precisely the elements of ri (N(xlC)) for any x ri C. Here N(xlC is the normal
cone to C at x defined in the previous section. Since C is convex the normal cone has
representation

N(xlC {x* e]Rn:(x*,y-x)<0 VyeC}.

THEOREM 4.1. Let C C IRn be a nonempty polyhedron and let x C. Then

E(x*lC) F(xlC)

if and only if x* e ri (N(x]C)).
The proof of Theorem 4.1 is contained in Appendix A wherein a complete char-

acterization of exposed faces and their exposing vectors is given for general convex
sets.

PROPOSITION 4.1. Let C be a nonempty closed convex subset ofIRn and let x C.

(1) If yl,y2 e ri (F(xlC)) then N(yIIC N(y21C).
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1087

(2) If y e F(xlC), then g(xlC) N(yIC).
(3) The following conditions are equivalent:

() x* e g(xlC).
(b) x e E(x*IC).
(c) (xlC) c E(x*IC).

(4) If C is polyhedral, then the condition

ri(N(x[C)) N N(z[C)

for some z E C implies that
F(zIC C F(xIC).

Remark. Part (1) above indicates that it makes sense to speak of the normal and
tangent cones to a face of C. Thus, as in [5, Def. 2.4], if C is a face of C, define

N(CIC "= N(x[C) and T(CIC "= T(x[C)

for any x E ri (C). For example,

T(C]C) aft (C) x

for any x C where aft (C) is the affine hull of C.
Proof. (1) See [5, Thm. 2.3].
(2) If y e F(xlC), then for all c > 0 there is a z e ri (F(x]C)) such that

Let x* g(xlC and so by (1) x* e g(z]C) also. Hence, for e C

<x,, y- > <x,,- z> + <x,, z- > < llx*ll,.

Letting e 0 we obtain the result.

(3) By definition x* e N(xlC if and only if (x*,z) <_ (x*,x) for all z e C.
Hence the equivalence of (a) and (b) is obvious. Now since x e F(xlC), (c) implies
(b). On the other hand, if x* N(xlC), then

(x*, y- x) < 0 for all y C,

and so
(x*,y- x) 0

since by [5, inclusion (2.4) and Lem. 2.7],

for all y F(x]C),

aft [F(xlC)]- x C lim(T(xlC)) N(xlC)+/-,

where N(xlC) +/- := {y (y,z) 0 for all z e N(xlC)}. Consequently, F(xlC C

E(x*IC).
(4) Let x* e ri (g(x[C))t3N(z[C). By Theorem 4.1, F(x]C) E(x*IC), and, by

Part (3), F(z[C) C E(x*[C). rq

Since the normal cone structure of polyhedral convex sets plays such a significant
role in our study we close this section with a characterization of this structure. The
verification of this result can be found in many places including [5].
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1088 JIM BURKE

PROPOSITION 4.2. Let C be a polyhedral convex subset of IRn with representation

(4.1) C:={xelRn:<ci,x> <_ ", l,...,s, <c,x> , s + l,...,m}.

Then for x E C we have

(4.2) }N(xlC) uici + uici ui >_ O, I(x)
i6I(x) i=s+l

and

(4.3) ri(N(xlC)) := { Eix() m

uc + uc u > O e I x
i--s-t-1

where
I(x) := (i e {1, ,}: (,,x)= }.

5. Identification of the faces of convex polyhedra. Let us now concentrate
on the case where C is assumed to be a nonempty polyhedron with representation (4.1)
and study some ways to identify the faces of C. In this regard, particular attention is
given to the role played by the set I(x) of active constraints at a point x C.

Given a subset I of {1, 2,..., s} we define the set

(5.1)

Cx is always a face of C, in particular it may be the empty face, and if x CI, then
I C I(x). If I I(x), then

C F(xlC)

and if I 0, then

It can happen that I c I(x) and yet Cx F(xlC). An example of this phenomenon
is given after Definition 5.1. In general, however, if I1 C I2 C {1,..., s} and CI2 is
not the empty face, then CI1 is also a nonempty face of C with

CI2 c CI1.

According to Proposition 4.2 the active constraints I(x) at a point x in C are
related to the normal cone to C at x via the representation

N(xiC) N() / S

where S := Span{ci s + 1,...,m}, and
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1089

Just as it is possible that CI F(xlC) for I c I(x), it may be the case that N(x]C)
NI + S for some I c I(x). Understanding and quantifying these redundancies in the
representation of the faces F(xlC and the normal cones N(xlC is important to our
development, for this reason we introduce the following terminology.

DEFINITION 5.1. Let C C IRn be as in (4.1), x E C, and I C {1,..., s}.
(1) Given (x, x*) ElR’ IRn we say that I identifies (x, x*) as a member of the

graph of N(.[C) if I C I(x) and x* NI + S.
(2) We say that I identifies F(xlC if I C I(x) and CI F(xlC).
(3) We say that I strongly identifies F(xlC if I C I(x) and g(xlC NI + S.
Note that if I C I(x) strongly identifies F(xlC), then it necessarily identifies

F(xlC). To see this, note that Ci is a face of C since I C I(x). Also, N(CIIC)
NI + S- N(xlC). Hence Ci F(xlC) by Part (4) of Proposition 4.1. On the other
hand, it is possible for the set I C I(x) to identify a face F(xlC but not strongly
identify it. For example, consider the set C defined by (4.1) with s m 3 where
Cl (), C2 (), 53 (11), and "71 "72 ")’3 0. Then I {3} identifies F(o)lC),
but does not strongly identify it. In the following result we relate these various notions
of identification.

THEOREM 5.1. Let C C IRn be as in (4.1); choose x C, and let I C I(x).
(1) The intersection NIN ri (N(xlC)) is nonempty if and only if I identifies the

face F(x[C).
(2) If I identifies (x,x*) as a member ofthe graph of g(.[C) andx* ri (N(xlC)),

then I identifies F(xlC).
(3) If I strongly identifies F(x[C), then C C where

C :-- (x (ci,x) <_ /i, I, (ci,x) /i, s / l,...,m}
with I := (1, 2,..., s}\(I(x)\I).

Proof. (1) (==) Let x* NI ri (N(xlC)). Then CI C F(xlC), by Part (4) of
Proposition 4.1. But I C I(x) so that F(xlC C CI. Hence CI F(xlC).

(==) Let ui > 0 for I and set x* uici. Then x* is in both N(xlC and
NI. Hence, by Part (3) of Proposition 4.1, CI F(xlC) C E(x*lC). Let z E(x*lC).
Then

iEI iEI

since x e E(x*]C). Hence (ci, z) "7i for each e I. Therefore z e CI F(x]C) so
that E(x*lC) c F(xIC). Consequently, x* e ri (g(xIC)) by Theorem 4.1.

(2) Since NxC ri (N(xlC)) is nonempty, Part (1) yields the result.

(3) Let io e I(x)\I. Then, since N(x]C) NI + S, there exist scalars ui for
I t3 {s + 1,...,m} with ui > 0 for I such that

n

I i--s-i-1

Also, since i0 I(x), we have
m

I i=s+l
m

I i=s+l

D
ow

nl
oa

de
d 

11
/1

4/
17

 to
 2

05
.1

75
.1

18
.1

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1090 JIM BURKE

Hence, if y E C, then

m

iEI i--s+l
m

iEI i=+1

,)%.

Therefore, C C C, hence C C since clearly C C C. [::l

6. Constraint identification theory. The identification results that we obtain
are similar to those given in [5]. In this regard, we make use of the projection into a
convex set. Given a nonempty closed convex set C C lRn, recall that the problem

min{lly- xll2 x e C}

has a unique solution in C for each y IRn. The solution is called the projection of y
into C and is denoted Pc(y). The mapping Pc IRn -* C defined in this way has a
long and rich history (e.g., see [22]).

The following lemma is the key to most of the results of this section.
LEMMA 6.1. Let 5 be such that the MFCQ is satisfied at 5. Suppose

that there are sequences {xi}, {ri}, {yi}, and {x*i} such that yi e Lf(xi, ri) and
x*i N(yilLft(xi, ri)) for all 1,2,..., with x 5, r - O, yi , and
x* --, x* for some x* N(ILft(, 0)). Then for all sufficiently large A(x
identifies (5, x*) as a member of the graph of N(.ILf(5,0)). If we further assume
that x* ri (N(51Lt(5 0))), then for all sufficiently large A(x, ri, yi) identifies the
face F(51ift( 0)).

Proof. We assume that the result does not hold and establish a contradiction.
First note that due to the finiteness of the index sets, there is a subsequence J C
IN such that A(xi,ri, y) A for all J where A does not identify (,x*) as a
member of the graph of N(.IL(,O)). By Lemma 2.1, A c A(5,0,5). Now since

>0forjAandu IRc, e N(ylLa(x r)) for , 2,..., there exist scalars uy
for j s + 1,...,m such that

m

(6.1) x*i Zu}Vgj(xi) + Z u}Vgj(xi)"
A j=s+l

Consider the vectors u IRm defined by

ujuj 0
if j E A U {s + 1,...,m}
otherwise

for j 1,..., m and 1, 2,.... We claim that the sequence {ui} c lRm is bounded.
Indeed, if this were not t..he case, there would be a subsequence J C J such that

Ilull T 5" , and ui/lluillJ-- for some lRm with I111 1, 0 for j A, and

u 0 for j A U {s + 1,..., m}. But then, by dividing (6.1) by lluill and taking the
limit over J we get

m

0 +
A j=s+l
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1091

while I111 1. This contradicts the fact that the MFCQ is satisfied at 5. Hence the
sequence (u is bounded and with no loss of generality u u for some u E lRm with
uj_>0forjEAanduj=0forjAU{s+l,...,m}. But then

m

A j=s+l

so that A identifies (,x*) as a member of the graph of N(.ILf( 0)). This contra-
diction establishes the result.

The last statement of the lemma now follows immediately from Part (2) of The-
orem 5.1 1::1

THEOREM 6.1. Let fl be a stationary point of NLP at which the MFCQ
is satisfied. Suppose that {(xi,ri,yi)} C ]Rn IRm IRn is a sequence such that
y e Lf(x, r) for all 1,2,..., and (x,r, y) (, 0,). Then A(x, r, y)
identifies (5,-Vf()) as a member of the graph of N(.Infl(-, 0)) for all sujficiently
large if and only if

(6.e) Pr, (-V(x))-0

where T := T(yilLf(x, ri)) for each i= 1, 2,....
Remark. Theorem 6.1 is quite similar to [5, Thm. 3.4] wherein the finite at-

tainment of the active constraint set was characterized in terms of the quantity
PT(xla)(--Vf(x)) referred to as the projected gradient.

Proof. Suppose that A(xi, r, yi) identifies (5,-Vf()) as a member of the graph
of N(.IL2(5 0)) for all sufficiently large. Due to the finiteness of the index set, there
are at most a finite number of index sets A C {1,..., s} which identify (5,-Vf())
as a member of the graph of N(.ILf(, 0)). Suppose there are q of them which we
denote by Ale 1,..., q. Then, for each k 1,..., q, there are vectors uk :m such
that

and

Vf() g,()Tu
k for j e {1,...,s}\Ak,O=uj

k for j AkO<_uj

where g’(N)’= [Vgl(),..., Vgm(’)]T. Hence, for all/sufficiently large

Thus (6.2) follows by continuity.
Conversely, suppose that (6.2) occurs and define x*i := PN,(--Vf(xi)) where

N := N(yilLf(xi, ri)) for each 1,2,.... Then the Moreau decomposition of
-Vy(x) is

(6.3) -Vf(xi) x*i + PT,(-Vf(xi)).
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1092 JIM BURKE

From (6.2) and (6.3) we get that x* - -Vf(-2) e N(-21Lgt(2, 0)). Hence Lemma 6.1
and Theorem 3.1 apply yielding the result.

COROLLARY 6.1.1. Let the assumptions of Theorem 6.1 hold and further suppose
that -2 is a nondegenerate stationary point for NLP. Then A(x, r, y) identifies the
face F(-21L(-2 0)) for all sujficiently large if and only if PT(--Vf(x)) --, O.

Proof. The result follows immediately from the theorem and the last sentence of
Lemma 6.1 with x* Pg(--Vf(x)) where g := N(ylnfl(x

In practice one of the primary applications of finite identification results is to-
ward the establishment of local rates of convergence. In this context we usually require
knowledge of the active set of indices at the solution, A(-2, 0,-2). To ensure this identi-
fication property the LI condition (linear independence condition) is usually invoked.

DEFINITION 6.1. Let -2 E gt. We say that the LI condition is satisfied at -2 if the
vectors

{Vg(-2) e A(-2, 0,-2)U {s + 1,...,m}}
are linearly independent.

The LI condition is a convenient tool for this purpose since it is a sufficient
condition under which every representation of an element of ri (N(-21L(x 0))) must
explicitly employ each of the active constraints.

LEMMA 6.2. Suppose that the LI condition is satisfied at the point-2 t. Then
the point

m

x, +
iEA(x,O,x) i--s+l

is an element of ri (N(-21L(x 0)) only if ui > 0 for each i
The proof of this lemma is straightforward and so is left as an exercise for the

reader. This observation and Theorem 6.1 combine to yield our main result on con-
straint identification.

THEOREM 6.2. Suppose -2 t is a nondegenerate stationary point of NLP at
which the LI condition is satisfied. If {(xi,r,yi)} C IRn ]Rm ]Rn is a sequence
such that yi Lt(xi, ri) for all 1, 2,..., and (xi, ri, yi) ._, (-2, 0,-2), then

A(x r yi) A(-2, 0, -2)

for all sufficiently large if and only if (6.2) occurs.

Proof. It is well known and easily established that the LI condition implies the
MFCQ [15], hence the assumptions of Theorem 6.1 are satisfied. Thus we need only
show that an index set A C A(-2, 0,-2) identifies (-2,-Vf(-2)) as a member of the graph
of N(.ILft(-2 0)) if and only if A A(-2, 0,-2). If A A(-2, 0,-2), then A trivially identi-
fies (-2,-Vf(-2)) as a member of the graph of N(.IL(-2 0)). The converse implication
follows immediately from Lemma 6.2 and Part (1) of Definition 5.1. E]

A natural question at this point is to ask whether we really require the LI con-
dition to establish a result similar to Theorem 6.2. Since the usefulness of the LI
condition is derived from its application in Lemma 6.2, one way to view this question
is to determine whether the LI condition is a necessary condition under which every
representation of an element of ri (N(-21L2(-2, 0))) must explicitly employ each of the
active constraints.

LEMMA 6.3. Let -2 t. If any point of the form
m

+
iEA(x,O,x) i=s+l
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1093

is an element of ri (N(51L(5 0))) only if ui > 0 for each e A(5, 0,5), then the
vectors (Vgi(5): e A(5, 0,5)} are linearly independent.

Proof. Let {vi E A(5, 0,5)} C ]R be such that 0 ieA(,0,)viVgi(5) and
consider u E lRm such that ui > 0 for each A(5, 0, 5). Then, by (3.7),

x*=

eA(,O,)
(Ui + tvi)Vgi(5) e ri (N(51La(5 0)))

for every t IR. If the gradients {Vgi(5) A(5, 0,5)} are not linearly indepen-
dent then with no loss of generality the set of indices {i v < 0, E A(5, 0, 5)} -: I_
is nonempty. Now choose t > 0 to make one of the ui /tvi zero while the others remain
nonnegative. But then, by hypothesis, x* ri (N(51L(5,0))) and this is a
contradiction.

Now, given that the MFCQ implies that the constraint gradients {Vgi(5)
s / 1,..., m} are linearly independent, Lemmas 6.2 and 6.3 and Theorem 6.2 seem
to imply that for general sequences (xi,ri,yi) (5,0,5) the LI condition is in a
sense required if we wish to establish a general finite identification result for the active
constraints. This leads us to the deeper question of whether knowledge of the active
constraint set is really required. For example, would it suffice to only identify a set
of constraints that strongly identify the optimal face of F(51L(5 0))? Part (3) of
Theorem 5.1 suggests that this may be the case. However, in order to use Corollary
6.1.1 to establish that F(51L/(5 0)) is strongly identified after a finite number of
iterations without further assumptions on the structure of the sequence {(x, r,y)}
we would need to know that every set of indices that identifies the face F(51L(5 0))
also strongly identifies it. Unfortunately, it can be shown that this condition on the
face F(51L2(5 0)) is virtually equivalent to the LI condition.

THEOREM 6.3. Let the MFCQ be satisfied at 5 . Then every index set
A C A(5, 0,5) that identifies the face F(51L2(5 0)) also strongly identifies the face
F(51L(5, 0)) if and only if there is a partition of the set of indices A(5, 0,5), say
{E k 1, } such that

(a) for each k 1,...,/ and each pair i, j of elements of Ek there is a > 0 for
which Ps+/-(Vgi(5)) Ps+/-(Vgj(5)) where S := Span {Vgi(5): s + 1,... ,m},
and

(b) for each selection from the partition, {ik k 1,... ,l} with ik e Ek, the
vectors {Vgik (5): k 1,..., l} ( {Vgi(5) s + 1,..., m} are linearly independent.

The proof of Theorem 6.3 is omitted here since it is far too lengthy and contributes
little insight into the problem at issue. This proof is provided in Appendix B.

Theorem 6.3 and Lemmas 6.2 and 6.3 seem to indicate that if we wish to employ
the techniques of this paper to demonstrate the finite identification of either the set
of active constraints or a set of indices that strongly identifies the optimal face of
L(5, 0), then the LI condition is in essence required to hold at 5 . From our
perspective this is a negative result when inequality constraints are present. Conse-
quently, more effort and perhaps more sophisticated techniques need to be applied to
this problem.

7. Application to existing algorithms. In this section we consider two algo-
rithmic frameworks for constrained optimization. The first framework is based upon
the SQP algorithm of Wilson [19], Han [10], and Powell [13], and the second is based
upon the QL (or S1 QP) algorithm of Fletcher [8],[9]. In each case we will assume
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1094 JIM BURKE

that the algorithm generates a triple (x, ri,y) with yi 6 Lt(x,r), r 0, and
x -YII 0, and show that

--+ 0.

The results are obtained without assuming that the x’s actually converge. Nonethe-
less, the two assumptions r 0 and IIx -YII 0 do imply that

dist (g(x)lK) - 0

where K := ]R {0}t Once (7.1) is established, the results of the previous
sections, in particular Theorem 6.1, Corollary 6.11, and Theorem 6.2, can be applied
to yield various statements concerning the identification of active constraints for these
algorithms.

7.1. The SQP Algorithm.
(0) Set 1-IsqP :-- ]l:n ]Rn ]Rm ]P+ (JR+\{0}) znn and choose

(X0, W0, r0, t0, 50, H0) 6 I-[SQp so that the program QsqP (defined in step 1) is feasible.
(1) If x is a stationary point of NLP stop; otherwise, let y be a stationary point

for the program

QQp "min(Vf(xi) + wi)T(y Xi) -- 1/2(y xi)THi(y xi)
subject to y x + 5IB and

g(x) + g’(x)(y x) r K + IB

where K lRL {0}R
(2) Compute the updates

(Xi+i wi+i ri+i, ;i+1 ,5i+1 Hi+i)e 1]SQp

f)i+lso that the convex program SQP is feasible. Set / 1 and return to Step 1.

Remarks. The parameters w and r can be used to represent inexact solution
techniques [21], the parameter a can be used to represent modified SQP Newton
iterates [3], [4], [18], and 5 can be used to represent a possible trust region variation

The following technical lemma will greatly facilitate our discussion.

LEMMA 7.1. Let (x, r, y) 6 Rn IRm IRa be such that

y e L(x,r) := {z" g(x) + g’(x)(z- x) r e K +

for some > O, where K lR5 x {0}R
If we define e ]Rm componentwise by

r "= (gj(x) + Vgj(x)T(y x))+ for j 1,..., s

where + "= max{0,} for all e lR, and

r := gj(x) + Vgj(x)T(y-- x) for j s + 1,...,m,

then
IIPT(ylL(x,))(--Vf(x))]I <_ dist [-Vf(x)IN(y]Lgl(x r))].
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1095

Proof. First observe that

L(x, ) C Lt2(x, r).

Indeed, since dist [g(x) + g’(x)(y x) r KI dist [" r K] and dist [g(x) + g’(x)(z
x) -rg] 0 for every z e L(x, ?), we have that

dist [g(x) + g’(x)(z x) rIK
<_ dist [g (x) + g’(x)(z x) ’IK] + dist [" r

gist [g(x) + g’(x)(y x) rig

for every z E Lt2(x, ’), which implies that z Ll2(x, r).
Now since Lt2(x, ) C L(x, r) where both of these sets are convex and contain

the point y, we have
T(yln2(x, )) C T(ylLt2(x, r)).

Hence
N(ylLfI(x, r)) C N(ylLI2(x, )).

Consequently,

IIPT(ylL(x,)) (--Vfi(X))II dist [--Vf(x)IN(ylL’I(x
_< dist [-Vf(x)lN(ylLti,(x, r))].

We now establish (7.1) for the SQP Algorithm 7.1 by demonstrating that

dist [-Vf(xi)lN(yiILt2 (x, ri))] 0.

THEOREM 7.1. Let {(xi,wi,ri,i,hi, Hi)} be a sequence generated by the SQP
Algorithm 7.1 and suppose that Ily -xill--. 0 with Ily -xill < i for all su]ficiently
large, w -- O, and {Hi} is bounded, then

PT(,Ira(,,)) (--Vj(X)) - 0

where

r := (gj(xi) + Vgj(xi)T(y xi))+ for j 1,..’,s

r" := (gj(xi) + Vgj(xi)T(y xi)) for j s + 1,..., m.

Proof. By Lemma 7.1 we need only show that

dist [-Vf(xi)IN(ylL (x, ri))] --* 0.

The hypotheses and Step (1) of the algorithm imply that

-[Vf(x) + w + H(y )] e N(yilLfl (x,
for all sufficiently large. Hence

dist [-Vf(x)lN(yi[Lfl, (xi, ri))] <_ Ilwill + IIHill Ily xil],
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1096 JIM BURKE

for all sufficiently large, whereby the result is established.
Observe that we require the eventual inactivity of the constraint

The reasonableness of this hypothesis depends upon algorithmic details and second-
order information at a cluster point of {xi}. For example, if Ily -xill 0, the
constraint Ily -xill _< 5i is eventually inactive for the algorithms described in [3], [4].

Let us now consider a model algorithm due to Fletcher [8], [9] which we refer to
as the QL algorithm. This proceedure is motivated by the fact that a point
Kuhn-Tucker point for NLP if and only if there is an > 0 such that is a stationary
point for the exact penalty function

P(x) "= f(x) + adist [g(x)lK

for all a _> where again K "= ]R {0}R,-8 and the distance function diEt (g(x)lK)
may be defined using any norm on lRm (e.g., see [11]).

A point E IRn is a stationary point of Pa(x) if 0 OPa() where OPa(x) is the
Clarke subdifferential of Pa at x (e.g., see [6]).

7.2. The QL Algorithm.
(0) Set HQL := lRn lRn lRm (lR+\{0}) JR+ lRnn and choose

(x0 w0 r0 (0, o0, H0) @ 1-IQL

with a0 _> for some > 0.
(1) If x is a stationary point of the exact penalty function P, stop; otherwise,

let yi be a stationary point of the convex program

QL min{i(y) y e x + 5iIB}

where

1--xi)T (y-xi)+aidist (xi)(y-x IK].:= (V

(2) Compute the updates

(Xi+1, Wi+1, ri+1, (i+1 oi+1 Hi+l)e IIQL

with i+i >_ . Set + 1 and return to Step (1).
Remark. The parameters wi, ri, and 6i play roles similar to those that they play

in the SQP algorithm.
THEOREM 7.2. Let {(xi, wi, ri, 5i, Hi)} be a sequence generated by the QL algo-

rithm and suppose that Ily -xill-- O, w -- O, the sequence {Hi} is bounded, and for
all sufficiently large Ily -xill < 5i. Then

where

PT(y,i(x,r)) (--Vf(xi)) --* 0

^i for 1 s,r := + ,...
r j gj(xi) / Vgj(xi)T(yi xi) for s / l,...,m.

Proof. Again by Lemma 7.1 we need only show that

diEt [-Vf(xi)lN(yilL (xi, ri))] 0
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1097

where
i := dist [g(xi) + g’(x)(y x)

is chosen to ensure that yi E Lgt (x, r).
Since y is a stationary point for QL and Ily -xill < 5 for sufficiently large,

we know that
-[Vf(xi) + w + Hi(y xi)]

is an element of the set

aig’(xi)TOdist [.]K](g(xi) + g’(xi)(y xi) ri)

for all sufficiently large by [6, Chap. 2]. Also, by [2, 2], we know that

(bdry]B N N(zlg + dist (zlg)B)0dist [.[g](z) :=
IBo N(z]g)

where bdry IB is the boundary of IB. Hence we have that

-[Vf(xi) + w + Hi(y xi)]

is an element of

ifzK
ifzEK.

Ni g’(xi)TN[g(x) + g’(xi)T(y Xi) rilK +aiIB]

for all sufficiently large. But by [16, Thm. 23.9],

Ni C N(yilLgt (xi, ri)).

Hence
dist [-Vf(x)]N(ylL (x, r))l

_dist [-Vf(x)lN]

for all sufficiently large, whereby the result is established. El
Again note the use of the hypothesis Ilyi-x < 5 for all sufficiently large. In the

context of a trust region algorithm the reasonableness of this hypothesis relies upon the
updating strategy employed in step (2) of the algorithm and the second-order behavior
at a cluster point of the sequence {x}. Furthermore, given such information it may
be possible to demonstrate that (7.1) occurs even though the constraint Ily-xill <_
remains active. However, such results are not within the scope of this paper.

Appendix A. The primary purpose of this appendix is to provide the back-
ground necessary to prove Theorem 4.1. This theorem appears as Corollary A.I.1. It
follows easily from the main theorem of the Appendix which characterizes when a face
of a nonempty closed convex set is exposed and identifies those vectors that expose it.
The main result is a consequence of the following technical lemma.

LEMMA A.1. Let K C IRn be a nonempty closed convex cone and let x*
[lin (g)] +/-. Then x* ri (g) if and only if there is an > 0 such that (x*, Y/-< -IlYll
for all y e g [lin (g)] +/- where lin (g):= g (-g).

Proof. From [5, Lem. 2.7] we know that aft (K) [lin (g)] +/-. Hence, if x* e ri
(K), then there is an e > 0 such that

x* + y* E ri(K)
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1098 JIM BURKE

for all y* e [lin.(K)] +/- n (IB). Consequently,

(A.1) 0 _> (x* + y*, y)
(x,, u) + (u,, u)

for all y* e [lin (K)] +/- n (IB) nd fle K. Now if y e K n [lin (K)] +/- then y* can be
chosen in (1) so that (x*, y) <

Conversely, let e > 0 be such that (x*, y) < -ellYll for all y e g (lin (g)] +/-.
From [16, p. 65], for each y e g there exist yl e lin (g) and y2 e g f [lin (g)] +/- such
that y yl + y2. Thus if y e g and y* e [lin (g)] +/- f (lB) [aft (go)] (IBo) (by
[5, Lem. 2.7]), then

(x, + ,,
"--0.

Therefore, x* + [(e]B) g aft (K)] C K so that x* e ri (K). D
THEOREM A.1. Let C be a nonempty closed convex subset of lRn and let x E C.

(1) x* e ri (g(xlC)) if and only if E(x*IC C f [x + lin (T(xlC))].
(2) F(xlC Ix + lin (T(xlC)) C if and only if there is an x* e lRn such that

E(x*lC F(xlC).
(3) /f F(xlC C Q Ix / lin(T(xlC))], then x* e riN(xlC if and only if

E(x*IC F(xlC).
Proof. (1) By Lemma A.1 we know that x* ri (N(xlC)) if and only if there is

an e > 0 such that (x*, y) _< -ellYll for all y e T(xlC [lin (T(x]C))] +/-. Also, for
each z e C, z- x e T(xlC and, by [16, p. 65], there is a z(x) e lin (T(xlC)) and
a z2(x) e T(xlC N [lin(T(xlC))] +/- such that z- x z(x)/ z2(x). Hence, since

T(xlC (J>oA-[C x], these observations imply that x* ri (g(xlC)) if and only
if there is an > 0 such that

(x,, ) (x,, x) + (x,, z x)
(,,x)+ (x,,z:(x))

< (x,,x) ll.(x)ll

for each z e C (observe that (x*,z(x)) 0 since, by [5, Lem. 2.7], aft (N(xlC))
[lin (T(xlC) )]+/- ). Therefore, x* e ri (N(xlC)) if and only if

E(x*IC) {z e C" z(x)= 0}
C Ix / lin (T(xlC))].

(2) (==) By (1) any x* e ri (N(x[C)) will do.

(==) By [5, 2],

(A.2) F(xlC aft (F(xlC)) f C C x + lin (T(xlC)).

Moreover,

(A.3) x + lin (T(xlC)) C E(x*]C).
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1099

To see this note that (x*,z <_ 0 for allz E T(xlC). Hence (x*,z} 0 for all
z e lin (T(xlC)). Therefore, (x*, z (x*, x for all z e x + lin (T(xlC)) yielding
(A.3). Now (A.2), (A.3), and the hypothesis E(x*IC F(xlC imply

F(x[C) (x / lin (T(xIC))) N C.

(3) This statement follows immediately from Parts (1) and (2). El

COROLLARY A.1.1. Let C ]1:n be a nonempty polyhedron and let x C. Then
E(x*[C) F(x[C) if and only if x* e ri (N(xIC)).

Proof. By [5, Th. 2.6] we know that aft (F(xIC)) x + lin (T(xlC)). Hence the
result follows from Part (3) of Theorem A.1. El

Appendix B. This appendix provides a proof of Theorem 6.3. Some prelimi-
nary results are first established.

DEFINITION B.1. Let K C lRn be a nonempty closed convex cone. A direction
d E lRn\{0} is said to be an extreme direction of g if the ray {Ad" A _> 0} is a face
of K.

LEMMA B.1. Let K C IRn be a nonempty polyhedral cone with representation

}K’= ua+ ua’u>_0, i=l,...,s
i--1 i--s+1

where {a" 1,...,m} C IRn.

(1) lin (K) Span {ai" aie lin (K)}.
(2) Every extreme direction of K is of the form ,ai for some , > 0 and

{1,... ,s}.
(3) Let I C {1,

for K. Then
.., s} be such that I if and only if ai is an extreme direction

K={Eua’u>-O’iI}+lin(K)’I
The proof of the above lemma is omitted as it easily follows from the results

in [16, 18]. The main technical lemma required for the proof of Theorem 6.3 now
follows.

LEMMA B.2. Let C C ]Rn be a nonempty polyhedral convex set with represen-
tation (4.1). For each e {1,...,m} let 5 be the orthogonal projection of c onto
[lin(N(xlC))] +/-. Let {di 1,...,} be distinct extreme directions for N(xlC
[lin (N(xlC))] +/- such that

cone{d" 1,...,l} N(xlC [lin(N(xlC))] +/-

and set
Ej := {i e {1,...,s}:-5i Adj for some > 0}.

Then the face F(xlC is such that the set of indices I C {1,...,m} that identify
F(xlC equals the set of indices that strongly identify F(xlC if and only if

(a) lin [N(xlC)] S,
(b) the extreme directions {dj j 1,... ,} are linearly independent, and
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1100 JIM BURKE

(c)
j=l

where S := Span{ci s + 1,...,m}.
Proof. (=:,) For each j 1,..., g choose ij E Ej and set I {i "j 1,

Let io e {1,... ,s} be such that % e lin (N(xlC)). Set

X* Cio - UiCi
I

where u/> 0, e I. Then x* e ri (N(xlC)) so that I {io} U I identifies F(xlC), by
Part (1) of Theorem 5.1. Thus, by hypothesis, I strongly identifies F(xlC). Therefore
lin (N(xlC)) Span {C/o, ci s + 1,...,m}. Now -C/o e lin (N(xlC)). Hence

nthere are scalars vi and A _> 0 such that -C/o Cio + /=8+1 v/cs. Consequently,
% e S, whereby lin (g(xlC))= S.

We now establish the linear independence of the vectors {cs I}. If l 0,
then the result follows trivially, thus we assume that l _> 1. Let J be any nonempty
subset of I and consider the cone Nx\j. If

NI\j g) ri (N(xlC)) O,

then CI\j F(xlC) by Part (1) of Theorem 5.1. In this case I\J strongly identifies
F(xlC). But

N(xlC) 7 NI\j + S

aS -di NI\J - S for E J. Therefore,

(B.1) NI\j C rbdry(N(xlC) ),

where rbdry (N(xlC))is the relative boundary of N(xlC).
Next let vs IR for I be such that 0 I vs-ds. Choose us > 0, I and set

x* YI ui-ds. Now x* ri (N(xlC)) and

for all # IR. Assuming I_ := {i’vs < 0} is nonempty, set

t min{
and let io I_ be such that t uo/(-VSo). Then

X (ui + tvi)c 
\{o}

with (us + tvi) >_ 0 for e I\{i0}. Hence x* e NI\{S0} N ri (N(xlC)), a contradiction
to (B.1). Therefore, I_ q} and similarly {i’vs > 0} 0. Consequently, the vectors
{s I} are linearly independent yielding the linear independence of the vectors
{c/" e I}.
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IDENTIFICATION OF ACTIVE CONSTRAINTS II 1101

It remains to show that (c) holds. Suppose that there is an io E {1,..., s} such
that io 7 0 and io Ej. If io e ri(N(xlC)) then {io} identifies F(xlC by
Part (1) of Theorem 5.1. In this case,

N(x[C) cone {o } + S.

But then cone {o } S+/-fqN(xlC) so that o is an extreme direction for S+/-fN(xlC),
a contradiction. Hence i0 t ri(N(xlC)). Therefore, there exists a subset J of I
containing at least two elements with J I such that

where ui > 0 for e J. But then the set J [I\J] t {i0} identifies F(xlC), by Part
(1) of Theorem 5.1, since

x* E-6 + "5 e ri(N(xlC)).
I\J

Consequently, J strongly identifies F(xlC). But N(xlC N,j,+ S since N2- for
J. Hence no such o exists.

(==) If/= 0, then the result follows trivially.
Thus assume that / > 1. Suppose I identifies F(xlC). Let J {j {1,..., t}"

dj Ai for some e I} and let K := cone {dj "j e J}. Then

(B.2) NI + S K + S.

By Part (1) of Theorem 5.1, NI f’l ri (N(xlC)) 7 O, so K fq ri(N(xlC)) 7 0 by
(B.2).

Let x* g fq ri (N(xlC)) and choose j > 0 j e J so that

Also, x* e ri (cone {dj" j 1, }), since

x* e ri(N(xlC)) fq S+/- ri(cone {dj "j 1,...,}).

Hence there are scalars uj > 0,j 1,..., such that x* ,_.,3-’j= ujdj. But then

0 +
J jEJ

The linear independence of the dj’s implies that uj 0 for j J. The choice of the
uj’s implies that J {1,..., }. Consequently, I strongly identifies F(xlC). D

The proof of Theorem 6.3 now follows immediately from the above lemma and
the MFCQ by taking C Lf(x, 0).
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