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CALMNESS AND EXACT PENALIZATION*

J. V. BURKE$

Abstract. The notion of calmness, which was introduced by Clarke and Rockafellar for con-

strained optimization, is considered. An equivalence to the technique of exact penalization due to
Eremin and Zangwill is established. It is then shown that calmness is satisfied on a dense subset of
the domain of the optimal value function.
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1. Introduction. The notion of calmness was originally formulated by Rock-
afellar and first appears in the literature of Clarke [3]. Since its appearance it has
been recognized as a fundamental concept in optimization theory and consequently
many variations on the original definition have been proposed and studied (e.g., see
Rockafellar [6]). In general terms, calmness can be described as a basic regularity
condition under which we can study the sensitivity properties of certain variational
systems. On the other hand, the term "exact penalization" refers to a reduction
principle in constrained optimization wherein we replace a constrained optimization
problem by an unconstrained optimization problem whose objective is finite-valued
on the domain of the original objective function and which under various conditions
possesses a common local minimum. The particular reduction technique for exact
penalization discussed herein originates in the papers of Eremin [4] and Zangwill [8]
(also see Pietrzykowski [5]). We shall establish an equivalence between the notion of
calmness and the viability of the Eremin-Zangwill exact penalization procedure for
the constrained optimization problem

(7:’) minimize f(x)
subject to g(x) E C,

where f is a mapping from the normed linear space X into tA {+}, g is a mapping
from X into the normed linear space Y, and C is a nonempty closed subset of Y. In
order to make this statement precise we give the following definitions.

DEFINITION 1.1. Let f, g, X, Y, and C be as in the statement of 7v and consider
the perturbed problems

(P) minimize f(x)
subject to g(x) C + u,

where u Y. Let X and Y be such that

g(g) eC+gand gedom(f):={xeX:f(x) <+oc}.
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494 J.v. BURKE

The problem P is said to be calm at -2 if there are constants _> 0 and e > 0 such
that for every pair (x, u) e X Y with IIx- -211_<_e and g(x) e C + u, we have

(1.1)

Here we use the notation IIzll for the norm of z. The constants and e are called the
modulus and radius of calmness for P at -2, respectively.

Remarks. (1) Definition 1.1 varies from the definition given by Clarke [2, Def.
6.4.1] in that the variable u is not required to satisfy Ilu-ll _< e in order for inequality
(1.1) to hold. In 2, we show that the restriction on the perturbation u is redundant.

(2) Observe that if P is calm at -2, then -2 is necessarily a local solution to P.
DEFINITION 1.2. Let f be a mapping from the normed linear space X into

{+oc} and let S be a subset of X. Let e > 0. We say that -2 E S is an e-local minimum
of f on S if

f (-2) <_ f (x)
for all x E S with x -2 + elt where is the closed unit ball in X, i.e., {v X
Ilvll__<l}, and-2+ eI := {-2 + ev’v e I}.

The main result of this paper can now be stated.
THEOREM 1.1. Let -2 X and Y be such that

and -2 dom(f).

Then P is calm at -2 with modulus - and radius e if and only if-2 is an e-local
minimum of

P,a(x) f(x) + a dom(g(x)lC + ),
where we define

dist(zIC + ):= inf{Ily +- zll’y e

Proof. (=) Let 5 > 0. Givenx -2+eI, set ux := g(x)-yx, where yx C
satisfies

Note that g(x) C + ux and

I1 - ull dist(g(x)lC + ) + .
Thus, if a _> , we obtain from the calmness hypothesis that

f(-2) + a dist(g(-2)lC + g) f(-2)
<_ f(x) + c llg- uxll
< f(x) / dist(g(x)lC / /

Since 6 > 0 was chosen arbitrarily the implication is established.
() Let u Y and x -2 + eI be such that g(x) C + u and x dom (f).

Then
f()<_f(x) +- dist(g(x)lC + )

f(x) +- inf {IlY +- g(xDIl’Y C}
<_ f(x) + - inf {IIY + u g(xDI + u mll y e c}

f(x) + - dist(g(x)lC + u) + -llu Ell
f(x) + II.
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CALMNESS AND EXACT PENALIZATION 495

Hence P is calm at
Remark. The function Pu,a defined above is a familiar tool in the mathematical

programming literature [2],[4],[5],[8]. For example, in the case where X "= R’, C
]_m C ]m y, and Y is endowed with the 11 norm, we have

m

f(x) +
i--1

where g and u are the ith components of g and u, respectively, and z+ := max{0, z}
for every z E .

In the case where Y is finite-dimensional and g(x) is Lipschitz continuous, Clarke
[2, Prop. 6.4.3] has shown that the calmness of P at 5 implies the existence of a
constant > 0 such that 5 is a local minimum for the function P,m (x) for all m__>.
However Clarke’s result does not reveal the full extent of the relationship between
calmness and exact penalization. In particular, it does not describe the relationship
between the parameters and as given in Theorem 1.1.

As previously stated calmness is an important tool in the sensitivity analysis for
P. In this regard Theorem 1.1 can be used to study the sensitivity of P to changes
in u and to establish multiplier rules for :P. These results and others are pursued
in Burke [1]. In the remainder of this note we briefly explore two topics directly
related to the definitions of calmness and exact penalization as they are employed in
Theorem 1.1. In 2 we compare Definition 1.1 to the definition for calmness used by
Clarke in [2, Def. 6.4.1]. We conclude in 3 by providing a result that is in the spirit of
Clarke’s generic calmness result [2, Prop. 6.4.5] indicating the robustness of the notion
of calmness.

2. Another formulation of calmness. According to Clarke [2, Def. 6.4.1] in
order for P to be calm at 5 we require that inequality (1.1) be satisfied whenever

IIx- 5]l__<e and I]u- ]l__<e. In the next proposition we show that if g is continuous
at 5, then no advantage gained by placing this further restriction on the choice of
perturbation u.

PROPOSITION 2.1. Let f,g, C,X, and Y be as in the statement of problem 7).
Let (5, ) X x Y be such that g is continuous at 5 and g(5) C + . If there is an- > 0 and an > 0 such that

f + > f

for every pair (x,u) e X x Y with I[u- [I <- , x -511 <_ , and g(x) e C + u,
then there is an with 0 <

_
such that -2 is an -local minimum of P,(x), and

consequently, 7) is calm at -2 with modulus- and radius .
Proof. Let 5 e (0, ) and a _> . Since the function (x)"= dist(g(x)lC + )is

continuous at 5, there is an " e (0, e] such that 0 <_ (x) <_ whenever IIx- 511 _< ’.
Now given x -2 + e, set ux "= g(x) yx where yx C satisfies

IlY +- g(x)]]

_
dist(g(x)lC) + 6.

Then g(x) e C + ux and Iluz [I -< e. Hence, by hypothesis,

P,a(5) f(5)
<_ f(x) + allux
<_ f (x) + a dist(g(x)[C) +
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496 J.v. BURKE

Taking the limit as 5 $ 0 yields the result. El
Calmness can also be defined independent of the existence of a solution to P.

This is done by considering the value function for P, V X - U {+ec}, given by

V(u) "-inf{f(x)’g(x) e C + u}

if {x "g(x) E C + u} and +oc otherwise. P, is then said to be calm at 7/if

(2.1) lim inf
V(u)- Y() > -oc.

In this connection we have the following straightforward extension to Clarke [2, Prop.
.4.].

PROPOSITION 2.2. Let f,g.C,X, and Y be as in the statement of , and let
Y. If (2.1) holds at , then for any solution to ,P is calm at .
3. Calmness is a dense property in finite dimensions. In the case where

P, has the representation

minimize
subject to

 0(x)
fi(x) <_ ui, i= 1,...,rn
and x E D,

where f I’ ---, I is locally Lipschitz for each 0, 1,...,m and D C In is a
nonempty closed set, we can employ the results of Clarke [2, 6.4] to show that if P
has a finite value for every u near some Im, then for almost every u near (in
the sense of Lebesgue measure) Pu is calm at u. In the spirit of this result we give
the following proposition.

PROPOSITION 3.1. Let f,g, C,X, and Y be as in . Furthermore, assume that
Y is finite-dimensional, f is lower semicontinuous, and g is continuous. If Y and
3‘ > 0 are such that V is bounded on + 3‘I, then Pu is calm on a dense subset of
+ 3‘.

Proof. With no loss in generality we assume that 0. Let u Y be an element
of the interior of 3‘ and e > 0. We must show that there is a u0 u + e such that

Po is calm. Define 0"[0, 3‘- Ilull] by

0(p) := inf {f(x) g(x) e C + u + p}.

The boundedness of O(p) on [0,3‘- Ilull] fonows from that of V on 3‘I. Since 0 is
nonincreasing on [0, 3‘- Ilull], 0 is differentiable at almost every p [0, 3’- Ilull] (in
the sense of Lebesgue measure) by Ward [7]. Let po be a point of differentiability for
0 such that 0 < po < min {e,3’- Ilull}o From the definition of 0 there is for each
n {1, 2,...} a u, u+ poB such that

(3.1) V(un)
1 <_ O(po).
n

Let u0 be a cluster point of the sequence {Un}. Now since f is lower semi continuous
and g is continuous, we have that V is also lower semicontinuous, hence, by (3.1), it
must be that V(uo) O(po). We now show that Pu is calm at u0.

Since 0 is differentiable at p0, there is a (0, 3’- Ilull- p0) and an a > 0 such
that

O(p) O(po) >_ -c]p Pol
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CALMNESS AND EXACT PENALIZATION 497

whenever Ip-p01 < 5. Let s0 e (0, min{5, min{s, 9,-Ilull}-p0}), and let w e u0+s0B.
Then

(3.) v(w) V(o)O(ll wll) O(po)

1 I1 wll- pol.

Now if II II <_ p0, then (II II) _> 0(p0) so that

v()- V(o) >_ 0 _> -o11,- o11.

On the other hand, if Ilu- 11 >_ p0, then

and hence
V(w) V(o) >_ -11,, oll

by (3.2). Therefore
V(w) + o11 oll >_ V(o)

for all w E u0 + soB. Consequently, T’u is calm at u0. El
The conclusion of Proposition 3.1 is weaker than that of Clarke [2, 6.4] since we

do not show that P is calm for almost all u near g. On the other hand, our result is
valid for more general constraints than those considered by Clarke.

Acknowledgment. Just before the final version of this article was sent to the
Publisher, we became aware of an important reference on this topic. The reference
is Thibault [9]. In this thesis, Thibault establishes certain equivalences between the
notions of calmness and exact penalization. These results, although similar to our
own, are somewhat different. The results of Thibault are complementary to those
presented in this paper.
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