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Spingarn introduced the notion of a submonotone operator and showed that the 
Clarke subdifferential is submonotone if and only if it is semismooth (in the sense 
of Mitllin) and regular (in the sense of Clarke). In this article a property of 
operators referred to as weak directional closedness (WDC) is introduced. The 
WDC property is used to extend Spingarn’s result to a broad class of generalized 
subdifferentials for locally Lipschitz functions. Two members of this class of sub- 
differentials are the Clarke subdifferential, which is always WDC, and the 
Michel-Penot subdifferential, which may or may not be WDC. A subdifferential 
that is WDC and is contained in the Clarke subdifferential is constructed. It is 
shown that this subdifferential coincides with the Michel-Penot subdifferential 
whenever the Michel-Penot subdifferential is WDC and submonotone. 0 1991 

Academic Press, Inc. 

1. INTRODUCTION 

Over the past 30 years the importance of nonsmooth functions for 
modern optimization theory has been well established. Consequently, the 
variational properties of these functions have been extensively studied. 
Perhaps the most powerful tool in this emerging method of analysis is the 
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concept of a subdifferential. Several types of subdifferentials have been 
proposed. Most of these extend the now classical notion of a subdifferential 
from convex analysis [19]. The first and most successful of these new sub- 
differentials is due to Clarke [6]. Unfortunately, the Clarke subdifferential 
is not entirely satisfactory in certain applications and so many others have 
been proposed [8, 10-12, 15, 16, 22,231. Recently there has been an effort 
to unify the theory of subdifferentials and to classify them according to 
their properties and their utility for various applications. Some excellent 
references along these lines are Ioffe [lo], Ward [23], and Treiman 
[21,22]. The present article is written in the spirit of this work. We con- 
sider Spingarn’s [20] notion of a submonotone operator and examine its 
role in the context of operators possessing properties shared by most 
generalized subdifferentials. In particular, we extend the following result 
due to Spingarn [20]. 

THEOREM 1 (Spingarn). A locally Lipschitz function f: R” H R is both 
regular and semismooth if and only if its Clarke subdifferential is sub- 
monotone. 

The terms regular, semismooth, and submonotone are defined in the next 
section wherein all of the necessary basic ingredients are reviewed. As an 
application of the concepts introduced in this section, we provide a charac- 
terization of Pshenichnyi’s notion of quasidifferentiability [16]. In Section 3 
we introduce the notion of a weak directionally closed (WDC) operator 
and establish our extension of Spingarn’s result. In Section 4, a subdifferen- 
tial that is always WDC is constructed. It is shown that this subdifferential 
is contained in the Clarke subdifferential and coincides with the 
Michel-Penot subdifferential whenever the Michel-Penot subdifferential is 
WDC and submonotone. 

2. THE BASICS 

A multifunction T: !R” H [w” is said to be 

(a) compact-valued if T(x) is compact for every x E dom( T), where 

dom( T) := {x E R”: T(x) # @}, 

(b) convex-oalued if T(x) is convex for every x E dom( T), 

(c) locally bounded if for each R E dam(T) there is a neighborhood 
U, of X such that the set 

u T(x) 
xeu, 

is bounded, and 
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(d) closed if graph(T) := {(x, y):xEdom(T),yE T(x)} is a closed 
set. 

We denote by 9 the set of all locally Lipschitz functions from R” to 88 and 
by .A! the set of all compact-valued, locally bounded multifunctions map- 
ping from R” to IV’. In this section we consider mappings 3 from 9 to JZ 
known as generalized subdifferentials. Two such generalized subdifferentials 
are the Clarke subdifferential [6] and the Michel-Penot subdifferential 
[ 121. We denote the Clarke and Michel-Penot subdifferential operators by 
a0 and a”, respectively. For a given function f E 9 we recall that the 
Clarke and Michel-Penot generalized subdifferentials are given by the 
expressions 

aOf(X):={UE(W":(U,h),i < imsup[f(y+th)-f(y)]/t,VhER”) 
y-x,110 

and 
aof(x):={u:(U,h) 

<sup {limsup[f(x+th+tk)-f(x+tk)]/t},VhER”}, 
keIW” (10 

respectively. It is well-known that for each SE Y one has dom(aOf) = 
dom(a”f) = II” and 

aof(+aof(x) (1) 

for all XE IX”. Moreover, both the Clarke and the Michel-Penot sub- 
differentials are convex-valued. Examples of other subdifferentials are the 
proximal subdifferential [18] denoted a, and the Dini subdifferential 
[ll, 151 denoted a-. For f o9’ one has uc&f(X) if and only if 

and u E a-f(X) if and only if 

We note that a-f(x) has the alternative description 

where f-(x; h) is the lower Dini directional derivative, 

f-(x; h) := lim inf f(x + to) -f(x) 

t10 t 
v-h 

409/159/z-13 
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Although it is not necessarily the case that either of the sets dom(a,f) 
or dom(d-f) are all of IV, it is the case that these sets are dense in R”. 
From 8, and a- one can construct the limiting proximal and limiting Dini 
subdifferentials as 

and 

J-f(X) I= {UEW”:U=lim Ui, UiEa-f(Xj), a-f(Xi)#@, Xi+X}, 

respectively. The construction of other generalized subdifferentials is dis- 
cussed in [lo, 16,8,22,23]. 

We begin our discussion with a few elementary observations. First note 
that B is a linear space under the usual notions of addition and scalar 
multiplication of functions, and M is a monoid over the reals under the 
following definitions: Let U, VE d and let 1> 0, then 

(i) U + VE &! is defined pointwise by 

(u+ V)(x) := {u+ U:UE U(x), UE V(x)}, 

for all x E IV, and 

(ii) 1U E 4 is also defined pointwise by 

AU(x) := {lu:uE U(x)}, 

for all x E UP. 

In (i) above, we employ the convention that S+ 0 = 0 for any subset S 
of IV’. Denote by .$ the submonoid of .N consisting of all convex-, com- 
pact-valued, multifunctions mapping R” to 174”. For every TE 4 and x E R” 
we define i5 T(x) to be the closed convex hull of T(x). The operator 
CC? 4 -+ 2 so defined is a projection onto 1. Indeed, E5 is linear and 
idem$otent. Furthermore, for each TEAI the projection of T onto .kf, 

Ei T, is completely determined by its associated support functional 

I)*( - ( T(x)) := sup{ (z, .) :ZE T(x)}, 

where II/*(. ( T(x)) maps from R” to Iw” u { f co} taking the value - cc 
whenever T(x) = 0. Given a mapping a: 9 H M we define 55 a: 9 + 2 
by E5 a(f) := Ei$@-) f or each f~ 9. It is well known that 

z&f=ciG-f=aOf: (2) 
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In order for a mapping a: 2 ++ JY to be considered a generalized subdif- 
ferential it should possess certain properties that generalize standard 
properties of the differential calculus. A few such properties are: 

positive homogeneity: a(@-) = 1 r3f for all L > 0 and f~ 2’. 
symmetry: a( -f) = -f?f for all fE 2. 
weak additiuity: a(f + (z, . )) = af + z for all SE Y and z E IF!“. 
lower extremality: f-(x; h) < JI*(h 1 af(x)) for all x, hE R” and all 

f EL?. 

The properties listed above do not yield as rich a calculus as one might 
desire for a generalized subdifferential. For example they do not yield the 
restricted calculus discussed in Ioffe [lo]. Nontheless, they give the flavor 
of the type of conditions that are usually satisfied. 

THEOREM 2. Let 6: 9 I--V A?, f E Y, and x E W. 

(a) Minimality Conditions: If 8 is lower extremal and f attains a 
local minimum at x, then 0 E W af(x). 

(b) Optimality Conditions: Zf i3 is lower extremal and symmetric, and 
f attains either a local minimum or local maximum at x, then 0 E i% af (x). 

(c) The Mean Value Theorem: Let us further suppose that 
dom(af)= R” and YE R” is such that y #x. If a is symmetric, weakly 
additive, and lower extremal then there exists z := Ax + (1 -A) y with 
0 <A < 1 and u ~7% LJf(z) such that 

f(Y)-f(x)= (4 Y-X>. 

Remark. Observe that if x is a local minimum for f, then it is 
necessarily the case that 0 E a-f(x). Hence if a is lower extremal, then 
df (x) # @ and 0 E E af (x). 

We do not pause to prove this result since the proof follows standard 
arguments found in the literature. Nonetheless, we note that the Lebourg 
Mean Value Theorem for the Clarke subdifferential and the Borwein- 
Fitzpatrick-Giles Mean Value Theorem [3] for the Michel-Penot sub- 
differential are special versions of the Mean Value Theorem given above. 
We should also mention that any subdifferential that does not satisfy the 
conditions given above is probably not particularly useful. Both the Clarke 
and Michel-Penot subdifferentials satisfy these conditions. 

A sequence {xi} is said to converge to x E R” in the direction h E Iw”, 
written xjyx if h#O, xj#x, and (xi--x)/lxi-xl -+h/)h). Given 
a: 2’ M JY and f~ 9, we say that f is %semismooth at x E R” if xi-s;’ x, 
{xi> c dom(af ), and UjE af(xj) imply that (Vi, h) -f’(x; h) for all h E [w”. 
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We say that f E 9 is %semismooth if f is %semismooth at each point in 
R”. From (l), we see that if f is a”-semismooth at x, then f is a”-semi- 
smooth at x. The notion of semismoothness was first introduced by Mifflin 
in [13, 143 for the Clarke subdifferential. Semismoothness is a rather useful 
property. For example, if f E 8 is do-semismooth, then aof is single- 
valued almost everywhere [17]. Also see [4,5]. 

It turns out that &semismoothness is the same as do-semismoothness 
under mild assumptions. This result is easily established with the aid of 
Rademacher’s Theorem, Caratheodory’s Theorem, and the fact that 

d”f(x)=E{uER”:u=~~~Vf(x,), wherexi-rxand {xi}cD), (3) 

where 

D := (x E UP: f ‘(x) exists). 

We record this fact in the following proposition. 

PROPOSITION 3. Let a: B H A. If 8 is lower extremal and for every 
f E 2’ and XE R”, af(x) G aOf( then a-semismoothness is the same as 
8 O-semismoothness. 

Therefore, we simply call do-semismoothness semismoothness as in 
Mifllin [13, 141. In particular, do-semismoothness is the same as semi- 
smoothness. 

Another notion that we make use of is that of a-regularity. Given 
a: 9 H &?, we say that f E Y is a-regular at x E [w” if the usual directional 
derivative 

f’(x;h):=lim [f(x+th)-f(x)]/t 
t10 

exists and equals +*(h ) af(x)) for all he E-V. Many of the calculus rules 
hold for the Clarke and Michel-Penot subdifferentials if the corresponding 
notion of regularity is satisfied [7, 1). Regularity with respect to the 
Michel-Penot subdifferential was called semiregularity in Cl]. A related 
property is studied by Borwein in [2]. By (1 ), 8 O-regularity is weaker than 
8 O-regularity. 

Regularity with respect to the Michel-Penot subdifferential is closely 
related to the Pshenichnyi’s notion of quasidifferentiability [16]. Recall 
that f E 9 is said to be quasidifferentiable at x E Iw” if there is a closed 
convex set K in Iw” such that f ‘(x; .) = $*(. ( K). It is easy to see that this 
property is weaker than a0 -regularity. Spingarn gives in [20] the following 
example in which f is semismooth and quasidifferentiable and yet f is not 
a O-regular. 
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EXAMPLE 4 (Spingarn). Let f: [w2 H [w be defined by 

fk Y) = 0 if x<O; 

fb, Y) = x2/4 if x > 0, lyl a x2/2; 

fb, Y) = IYI -Y21X2 if x> 0, 1 yl < x2/2. 

The function f is locally Lipschitz, semismooth, and quasidifferentiable. 
But it is not do-regular at the origin. 

It truns out that quasidifferentiability is the same as do-regularity. 

PROPOSITION 5. A function f E Y is quasidijferentiable at x E R” if and 
only if f is so-regular at x. 

Proof: If f is aG-regular at x, then f is quasidifferentiable at x with 
K = d "f (x). Conversely, if f is quasidifferentiable, then 

f”(x;.)= sup [f'(x;k+.)-f'(x;k)]=f'(x;.); 
kEUV 

i.e., f is a O-regular at x. 1 

We conclude this section by introducing a variation on Spingarn’s 
notion of a submonotone operator. A multifunction T: [w” H [w” is said to 
be submonotone at x E [w” if 

lim inf (u - U, y - x)/l y - XI B 0. (4) .v + x, ,’ # r 
UE T(Y),UE T(y) 

In [20], Spingarn requires that T also be locally bounded, convex- 
valued, and closed. We do not make these restrictions since we wish to 
study operators that do not necessarily have these properties. We say that 
the operator T is submonotone if it is submonotone at every x E dom( T) it 
is maximaI submonotone if there is no other submonotone operator 
i? [w” H [w” such that graph(T) strictly contained in graph(f). Note that 
every maximal submonotone operator is necessarily convex-valued; indeed, 
this follows immediately from Caratheodory’s Theorem and the definition. 

3. WEAK DIRECTIONAL CLOSEDNESS AND GENERALIZED 
SUBDIFFERENTIALS 

Recall that T E &! is closed if graph(T) is a closed set. One consequence 
of closedness is that 

limsup+*(h I T(Y))<+*@ 1 T(X)), 
Y 7 x 

(5) 

409/159/2-14 
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for all x, h E R”. One the other hand, an operator TE JZ can satisfy (5) 
without T being closed. For example, the operator aof, where f is the 
function defined in Example 4, satisfies (5) even though it is not closed. 
However, in general, the Michel-Penot subdifferential of a locally Lipschitz 
function does not satisfy (5) as illustrated by the following example. 

EXAMPLE 6. Let f: R M R be defined by 

f(x) := x2 sin( l/.x), for x#O; 

and f(0) = 0. This function is everywhere differentiable. Consequently, 
aOf = (f’(x)} f or a 11 x E R. It is easily verified that (5) does not hold for 
T=aOf, h= 1, and x=0. 

If an operator T$ A? satisfies (5) at a point x E R” for all h E R”, then we 
say that T is weak directionally closed (or WDC) at x. If T is WDC at 
every point x E dam(T), then we simply say that T is WDC. The WDC 
property can be used to establish the maximality of a submonotone 
operator. 

PROPOSITION 7. Let T: R” H R” be a locally bounded multifunction. If T 
is submonotone, convex-valued, and WDC, then T is maximal submonotone. 

Proof Suppose that the result is false. Then there exists x, UE R” with 
u not in T(x) such that for any h E R” 

06 lim inf 
( 

v-u y-x 
y + x, y # x ’ IY-xl > 0-z T(Y) 

<lim sup IC/*(h I T(y))- (u, h), 
YT"" 

where the second inequality follows from the local boundedness of T. 
Consequently, 

(u, h) G lim sup $*(h I T(Y)) < @*(h I T(x)) 
YTX 

for all h E R” since T is WDC. But then u E T(x) since T is convex-valued. 
This is the contradiction that establishes the result. 1 

Let a: 9 H A. We assume that 8 possesses properties that are 
associated with the notion of a generalized subdifferential. Specifically, we 
assume throughout the remainder of this section that 8 is symmetric, 
weakly subadditive, and lower extremal. Thus, for each f E 9, af satisfies 
the properties described in Theorem 2. By employing the WDC property 
we are able to obtain the following extension to Theorem 1. 
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THEOREM 8. Let d: 2’~ A? be symmetric, weakly additive, and lower 
extremal and let f E 2’ be such that dom(af) = R”. Then f is both 
a-semismooth and a-regular at x E R” if and only if af is both WDC and sub- 
monotone at x. 

Proof. Assume that f is a-semismooth and a-regular at x E R”. Then the 
lim inf in (4), where T = af is equal to the limit of a convergent sequence 
(vi-ui, xi-X)/(X;--x(, where xi-+x, v~E~~(x,), and q~af(x). We may 
assume that xi7 x. Thus this limit equals 

lim (vi- ui, h). 
i-s 

(6) 

Since af(x) is compact, we may assume that ui-+ u~af(x). By 
a-semismoothness, &regularity, and (6), we have 

Hence (6) is nonnegative and so af is submonotone at x. Finally, since $f 
is semismooth at x and 8 is lower extremal, we have that 

limsup$*(h) af(y))=limsup (v,h) 
q+x 1: 7 .x 

0 E 4fC.v) 

= f'(x; h) 

6 $*(A I G-(x)). 

Conversely, we now assume that af is submonotone and WDC at x E R”. 
Suppose xi T x for some h E OX”, and choose ui E (3s (xi) for each i = 1,2,... 
Now, since af is WDC at x, we have that 

liy+yp (vivh)G$*(hlaf(x)). (7) 

Let u~af(x) be such that (u, h) = +*(h 1 af(x)). Then, by the sub- 
monotonicity and local boundedness of af at x, we have 

litn_Ef(vi, h) >JI*(h I af(x)). 

This combined with (7) yields the a-semismoothness of ,f at x. 
Now, for every t > 0, 

Cf(x+ th)-f(x)llt= (0, h) 

for some u, E Z df(z,) with z, E [x, x + th], by Theorem 2. Thus, for each 
t > 0, Caratheodory’s Theorem implies the existence of vectors u,~, i = 1, 
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2 ,..., n + 1 in @(z,) and nonnegative scalars &, i= 1,2 ,..., n + 1 with 
C;:,’ & = 1 such that Cl=‘,’ &v,~ = u,. Next observe that every sequence 
{ ti} such that tj JO has the property that every one of its subsequences has 
a further subsequence, say Jc N, such that the subsequence {(A,, 1, A, 2,..., 
A r,(n + r)) :j E J} is convergent to some vector (A,, & ,..., ,I,, + 1J satisfying 
Cl:,’ Ai = 1 and li > 0 for i = 1,2,... . Hence, since f is a-semismooth, 

1iJm Cf(X+ tjh)-f(x)lltj=$*(h I afIX)). 

Since this is true for every such sequence, we find that f’(x; h) exists with 
S’(x; h) = 1,19*(/r ) af(x)) which establishes the result. 1 

Since both do and 8 o map 9’ into 2, we can combine Proposition 7 
and Theorem 8 to obtain the following corollary. 

COROLLARY 9. Let 8: 9 I-+ A be symmetric, weakly additive, and lower 
extremal and suppose that f E 2 is both a-semismooth and &regular. If af is 
convex-valued, then it is maximal submonotone. In particular, this is the case 
if 8 is the Clarke or Michel-Penot subdljjferential. 

We note that the function f given in Example 4 is both a”-regular and 
do-semismooth but is not do-regular. 

4. THE CONSTRUCTION OF OTHER WDC GENERALIZED 
SUBDIFFERENTIALS 

Given d: 9 ~1 JZ, if t3f is WDC for every f E 3, then we say that 8 is 
WDC. The Clarke subdifferential, do, is WDC since aof is closed for every 
f E 3. In this section we construct two other subdifferentials that are 
WDC. They are always contained in the Clarke subdifferential. Moreover, 
there are examples for which this containment is strict. 

Let f E 9. As is often done, we construct a subdifferential for f by first 
constructing its associated support functional. In order to obtain the WDC 
property, we begin by defining 

f o(x; h) := lim sup f ‘(y; h), 
YTX 

YeD 

(8) 

where 

D := {XE W:f’(x) exists]. 
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By Rademacher’s Theorem, the complement of D has zero measure and so 
fQ is well defined. Consequently, one can apply Caratheodory’s Theorem 
along with (2) and (3) to obtain 

f@(x;h)= limsup (~9 h) 
v-x ucJC’/“(y) h ’ 

= limsup (u, h) 
Y 7 -x, u E J2 f( Y ) 

yadom(J>f) 
= limsup (u, h). 

.v~x,ueJ-f.v) 
y E dom(d-f) 

Thus, by the Lebourg Mean Value Theorem, one has 

f-(x; h) <f@(x; h) <f’-‘(x; h) 

(9) 

for all x, h E Iw”. Moreover, it follows immediately from the definition that 

limsupf@(y;h)<S@(x;h)df”(x;h). 
v 7 x 

Consequently, if we define 

then 

~~f(x):={u~R.“:(~,h)~f~(x;h)Vh~R”}, 

d-f(x) c Pf(x) c aof 

for all x E Iw”. The subdifferential aof has several important properties. It is 
positively homogeneous, weakly additive, lower extremal, and, for every 
f~ 9, aQfis locally bounded. Moreover, Pfis WDC. On the other hand, 
d ef is somewhat weak since f @j(x; . ) is not necessarily subadditive. Thus, 
even though dom(aQf) is dense in R”, it may be empty for some x E Iw”. 
For this reason we define 

fa(x;h):= sup (fO(x;h+k)-fO(x;k)}. 
ktW 

(11) 

The function so obtained is sublinear. The operation employed to obtain 
f 0(x; .) is well known and goes by various names in the literature, e.g., 
deconuolution (for references and related results see Ioffe [lo] and 
Frankowska [8]). This is a standard trick by which a positively 
homogeneous function can be transformed into a sublinear function. Since 
SO(x; .) is sublinear, it is the support function of the set 

~Of(x):=(u&‘“:(u,h)<fa(x;h)Vh&‘n} (l-2) 
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(Hormander [9]). Unfortunately, the subdifferential a0 defined in this way 
is difficult to work with. In particular, we have not been able to determine 
whether or not aof is locally bounded for all f~ 2. In order to compen- 
sate for this deficiency, we define 

fQ(x; h) := $& (f0(x; h -k) +f “(x; h)}. (13) 

Since this is the infimal convolution of two sublinear functions, it is itself 
sublinear. Consequently, it is the support function for the set 

aQf(x):={uER”:(U,h)~fQ(x;h)VhER”}. (14) 
Clearly, 

fQ’(x;~Kfok), (15) 

and so 
a@f(x) c aOf( (16) 

Thus, in particular, J@‘f is compact-valued and locally bounded. The 
primary features of the subdifferential a@J are outlined in the following 
result. 

THEOREM 10. The subdifferential a@: 9 ++ A defined by Eq. (14) is 
positively homogeneous, symmetric, weakly additive, lower extremal, and 
WDC, For each f E 3, a@f is compact- and convex-valued with 
dom(Pf) = R”, and Pf(x) c aof for all x E R”. Furthermore, a@f 
coincides with the Michel-Penot subdifferential whenever the Michel-Penot 
subdifferential is WDC and submonotone. 

Proof: Let f E 8. The fact that @f is compact- and convex-valued with 
dom(Pf) = R” and the inclusion (16) holding follows immediately from 
observations that have already been made. The positive homogeneity of d@ 
again follows trivially from the delinitions. Next, given x, h E R”, observe 
that (-f)O (x; h)= f @(x;-h) and 

(-f)O (x;h)=;,~t” U-f)” (x;h+k)-(-f)@ (x;k)} 

= sup {f @(x; -h-k)-f @(x; -k)} 
kcsR” 

Hence 

= sup {f @(x; -h+k)-f @(x;k)). 
kEW’ 

(-f)@ (x;h)=:f;” ((-f)O (x;h-k)-(-f)O (x;k)) 

=>z& {f 0(x; -h-k)-fO(x;k)), 

and so d@f is symmetric. 
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Now, given x, z, and h E R”, note that (f+ (z, . >)@ (x; h) = f@ (x; h) + 
(z, h). Hence 

(f+<~,~>)~(x;h)=sup (f~(x;h+k)-fO(x;k)+(z,h)} 
keW” 

=f@(x; h)+ (z, h) 

and so 
(f+ (z, +)@(x;h)=;;$ (fO(~;h-k)+f’J(~;k)+ (z, h)) 

=fQ(x; h) + (z, h). 

Therefore, aQ is weakly additive. 
We now show that Pf is WDC. To this end note that, for every h E ET’, 

f@(x;h)=j$ {fO(x;h-k)+f”(x;k)} 

a;$ {j-(x; h)-f@(x;k)+f”(x;k)} 

=f@(x;h)+j$ {f”(x;k)-f@(x;k)} 

>fQ(x; h), (17) 

where the first inequality follows from (11) and the second inequality holds 
since the expression within the inf operation is always nonnegative. Com- 
bining (17) with (9) and (15), we obtain 

lim supf@(y; h)<lim supf”(y; h) 
,” 77 x J 7 x 

=f @(x;h) 

<j-(x; h). 

Therefore, 8 “f is WDC. 
Finally, by applying the Lebourg Mean Value Theorem for the Clarke 

subdifferential to the expression for f-(x; h), we find that a@tf is lower 
extremal from (9) and (17). 

Let us now assume that aof is WDC and submonotone. Then, by 
Theorem 8 and (8), we have 

fQ(x;h)=f’(x;h)=fo(x;h). 

BY (llh 
fO(x; h) = sup {f’(x; h + k) -f’(x; k)} = f +(x; h). 

ksR” 
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Consequently, 

f”(x; h)2fQ(x; h)>f@(x; h)=fO(x; h), 

where the first inequality follows from (13) and the second inequality 
follows from (17). This concludes the proof of the theorem. 1 

We conclude by observing that a@f coincides with aof at the origin in 
Spingarn’s Example, but it is strictly contained in aof at this point. 

Remark. The properties of the subdifferential a0 have not been dis- 
cussed. We have avoided doing so since we have not been able to establish 
whether or not aOf is locally bounded. In particular, we do not know 
whether aOf is contained in aof Clearly, if this were the case, then the 
operation (13) used to construct P would be redundant. 
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