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1. Introduction 

In convex composite optimization one studies the problem 

minimize f(x) 
(1.1) 

subject to x ~ R  n 

where f : =  h o F is the composition of a lower semi-continuous convex function 
h : ~ "  ~ ~ u {+~} and a function F : ~" ~ R"  which is assumed to be either locally 
Lipschitzian, C 1, or C 2, depending on the application. This problem model is 

extremely versatile, subsuming most of  the problem models usually considered in 
the nonlinear programming literature. As an illustration of this versatility, we offer 
the following example. 
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Example. The mathematical program 

minimize Fo( x ) 

subjectto F~(x)<~O, i = l , 2 , . . . , s ,  

Fi(x)=O, i = s + l , . . . , m ,  

where the functions F~, for i = 0 ,  1 , . . . ,  m, are C 1, can be reformulated as an 
equivalent non-finite valued convex composite optimization problem if one defines 
h :R x R " ~  ~ w {+oo} by 

:___ {Yl, if y2e~s  x{O}~m ~, 
h( y~, Y2) (+oo, elsewhere, 

and F is the mapping whose components are the functions F~, for i = O, 1 , . . . ,  m. 

In recent years, convex composite optimization has received considerable atten- 
tion, since it offers a unified framework within which many of the traditional problem 
types occurring in mathematical programming can be studied (e.g., [1, 2, 3, 5, 6, 7, 
8, 10, 12, 13, 14]). In [2], Burke expands upon a technique of Ioffe [7] to develop 
first- and second-order optimality conditions for (1.1) in the case where the convex 
function h is assumed to be finite valued. In this note we extend these results to 
the case in which h may take infinite values. 

In Section 2 we develop a first order theory for (1.1) based on chain rules due 
to Rockafellar [15, 16]. Section 3 contains the main technical result of the paper. 
In this result we show that if a constraint qualification is satisfied at a local minimizer 
)7 of (1.1), then g is also a local minimizer of the finite value convex composite 
function 

L : = h ~  o F  

for all a > 0 sufficiently small, where the convex function ha : E "  - ~ is given by 

h~(y):=inf{h(z)+cr 'Hy-z[ [ :  z c E ' } .  

Example. If the functions h and F are as given in the previous example, and the 
norm on E x E", in the definition of h~, is chosen to be the 11 norm, then the function 
f~ defined above is given by 

f~(x)=Fo(x)+a[Li~iF~(x)++i~s+l~ ]F~(x)l] ' 

where z+ := max{0, z} for all z c E. 

The strategy in Section 4 is to apply the results of [2] to f~ and then take the 
limit as a~,0 to obtain second-order optimality conditions for (1.1). The function 
ha(" ) is the inf-convolution of h(.  ) and a ill. [[ (see [17] for inf-convolution). There 
is considerable reference in the literature to this type of  operation. In Wets [18], 



J.V. Burke, R.A. Poliquin / Convex composite functions 105 

the set of functions {A I1" I1: A > 0} is an example of  what is called a cast. Casts have 
been used by Wets to characterize epi-convergence. By far the most common 
operation, in the literature, is inf-convolution with ½11" 112; this operation is called 
the Moreau-Yosida  approximation.  For another application of the functions f~ we 
refer to Poliquin [11], where the technique of extending convex functions is used 
to establish the "proto-derivative" of  the subdifferential of  the composition of  a 
"piecewise linear-qudratic" convex function with a C 2 mapping. 

In Section 5 we discuss the relationship between the necessary and sufficient 
second-order optimality conditions obtained in Section 4; in doing so we correct 
an error present in Burke [2, Section 4]. 

In [13], Rockafellar develops a new theory of first- and second-order variations 
for functions g : ~n -. ~ u {+oo}. He calls these variations the first- and second-order 
epi-derivatives of  the function g when they exist. The prefix "epi"  is used to 
emphasize the fact that these derivatives are defined as the epi-graphical limits of  
certain first- and second-order variations of  the epigraph of g, 

epi(g) := {(x, a )  c ~n x ~: g(x) <~ a}. 

In the context of  problem (1.1), Rockafellar [14] employs these epi-derivatives to 
obtain first- and second-order optimality conditions for (1.1) in the case where h is 
assumed to be piecewise linear-quadratic. In Section 6 we compare our results with 
those of Rockafellar. The comparison suggests a modification of our second-order 
necessary conditions; this is carried out in Theorem 6.2. 

The notation that we use is for the most part standard, and follows that which 
is given in [4, 17]. We provide a partial list for the readers '  convenience. For C a 
non-empty subset of  R n, we have 

ri C is the interior of C relative to the smallest affine set containing C; 
(~ is the closure of  C; 

cone(C)  := CJ {,~C} 
A~O 

is the cone generated by C; 

cO: = { x * ~ " : ( x * , x ) ~ < l  Vx~ C} 

is the polar of  C, in particular, if C is a cone, then one can show that 

C O = {x* ~ ~": (x*, x) ~< 0 Vx c C}; 

0, i f x c  C, 
O(xlC):= 

+o% else, 

is the indicator function for C; and 

~b*(x* I C) := sup{(x*, x): x c C} 

is the support  function for C. If, moreover,  C is convex with x e C then 

N(x] C) :=  {x* c R": (x*, z-x)<~OVzc C} 

is the normal cone to C at x and T(x I C):-- N(x I C) ° is the tangent cone to C at x. 
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The set B c ~s is the closed unit ball for the norm I1 II, i.e., B := {x c Rs: Ilxl[ < 1}. 
The set •o c R" is the polar  of  B, and is the closed unit ball of  the norm that is dual 
to [[" ]]. Given C c ~ the distance function to C is given by 

dist( y I C) := inf{ I[ y - x I1: x c c } .  

Of particular interest is the distance function associated with the 2-norm. It is 
denoted by dist2(yl C). 

Given M ~ ~,×k we have R a n ( M ) : =  {y c Rk: 3X C ~s with y = Mx} is the range 

of M, N u l ( M ) : = { x c ~ ' : M x = 0 }  is the nullity of  M. Given g:~S ~k, we 
denote by g'(x) the Fr6chet derivative of  g at x. I f  k = l ,  then g'(x; d) :=  

l imt+o(g(x+td)-g(x)) / t  is the directional derivative of  g in the direction d, 
levg(x) := {y: g(y)<~ g(x)} is the lower level set for g at x, and 

argmin g := {2 c ~s: g(2) = inf{g(x)}}. 

Let the mapping h : ~ ' - ~ u { ± e o }  be convex, i.e., epi(h) is a convex set. The 

function h is said to be proper  if the effective domain of  h, 

d o m ( h ) : = { y ~ m :  h(y)  < +oo}, 

is nonempty,  and h(y )>-oo  for at least one y c dom(h) .  The subdifferential of  h 
at a point y ~ dom(h)  is the set 

0h(y)  := {z c ~ " :  (z, - 1 )  ~ N( (y ,  h(y))lepi(h))}. 

The convex conjugate of  h is the function h* : N'~ ~ ~ w {±oo} defined by the relation 

h*(z) := sup{(z, y ) -  h(y) :  y c Rm}. 

The function h* is clearly convex, since it is the pointwise maximum of  a collection 
of affine functions. I f  h is lower semicontinuous and proper,  then the subdifferentials 
of  h and h* have the following relationship: 

z~Oh(y) i f a n d o n l y i f  y~Oh*(z). 

For more information on convex functions and sets see Rockafellar [17]. 

2. First-order theory 

Problem (1.1) is best viewed as a constrained optimization problem where the 

constraint region is the effective domain of the function f, 

d o m ( f )  := {x c R": f ( x )  < +oo} 

= {x c R": F(x) e dora(h)}. 

Thus problem (1.1) can be restated as 

minimize f ( x ) , 

subject to F(x) ~ dom(h).  (2.1) 

In this context, the subdifferential regularity o f f  (in the sense of Clarke [4]) will 
in general depend upon a constraint qualification for (2.1). 
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Definition 2.1. Let h : R '~ -> R u {+oo} be lower semi-continuous and convex, and let 
F : ~" -~ ~ "  be locally Lipschitzian. We say that the function f :  R n ~ ~ u {+~}, 
defined as the composition f : =  h o F, satisfies the basic constraint qualification at a 
point x E d o m ( f )  if the only point z 6  N ( F ( x ) l d o m ( h ) )  for which 0c  zTOF(x)  is 
z = 0, where OF(x) is the generalized Jacobian of F at x (see Clarke [4, p. 69]). 

Remarks. (1) If F : ~ "  ~ R" is C ~, then the basic constraint qualification is satisfied 

by f at x if 

NuI(F '(x) T) N N ( F ( x )  ldom(h))  = {0}. 

(2) For the mathematical program discussed in the introduction, the basic 
constraint qualification is equivalent to the Mangasarian-Fromovitz constraint 
qualification [9]. 

(3) The basic constraint qualification for (1.1) was introduced in Rockafellar 
[13]. Second-order optimality conditions for (1.1) are obtained in [14] for the case 
in which h is assumed to be piecewise linear-quadratic. A further discussion of 
Rockafellar's results appears in Section 5. 

The basic constraint qualification is just the tool needed to obtain first order 
necessary conditions for optimality in (1.1). The following result is an immediate 
consequence of Rockafellar [15, Corollary 5.2.3]. 

Theorem 2.1. Let f :  Nn ~ R u {+oo} be as in (1.1) with F:  ~ ~ R"  locally Lipschitzian. 

I f  x ~ d o m ( f )  is a local minimizer for f at which the basic constraint qualification is 

satisfied, then there exists y ~ Oh(F(x))  such that 

Oc yT OF(x). [] 

In the case where F is C ~, a much stronger result can be obtained from Rockafellar 
[16, Theorem 3]. 

Theorem 2.2. Let f : ~ n  ~ u { + o o }  be as in (1.1) with F:g~n ~g~ '~ C 1, and let x c  

d o m ( f )  be a point at which the constraint qualification is satisfied and ah ( F(  x ) ) ~ O. 

Then f is subdifferentially regular at x and one has 

o f (x)  = F ' (x )  T Oh(F(x)).  [] 

Corollary 2.1. Let f :  Rn-+ R u {+oo} and x ~ dora ( f )  be as in Theorem 2.2. I f  x is a 

local minimizer for f, then 

O~F' (x )T  ah(F(x)) .  [] 

We close this section by recalling the Lagrangian for (1.1) introduced in Burke 
[2]. The Lagrangian is given by the expression 

L(x, y):= (y, F ( x ) ) -  h *(y) (2.2) 
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where h* : N" -~ ~ w {+oo} is the Fenchel conjugate of  h. By analogy to constrained 
optimization, we define the set of  optimal multipliers at a local solution )~ to (1.1) 

to be 

~ ( ~ )  := {y c 0h(t~(~)): oc  0~/4~, y)}. (2.3) 

I f  the basic constraint qualification is satisfied at ~, then M(ff) is guaranteed to be 
non-empty by Theorem 2.1. In Lemma 4.2 we will show that the basic constraint 

qualification is equivalent to the compactness of  M ( x )  whenever M ( x )  is nonempty 
and F is strictly differentiable at x. This result extends the analogous result in 
nonlinear programming for the Mangasar ian-Fromowitz  constraint qualification. 

3. The reduction theorem 

Given a > 0  and h : R m ~ R u { + o o }  as in (1.1), define h c ~ ; ~ m ~  by 

h~(y)  :~- inf{h (z) + c~ -~ II Y - zi]: z ~ ~m} (3.1) 

and f~ :R"-~ ~ by 

f ~ ( x )  = h ~ ( F ( x ) ) ,  (3.2) 

where ]]. [[ is a given norm on N'~. 
In this section we show that if x e do ra ( f )  is a local minimizer o f f  at which the 

basic constraint qualification is satisfied, then there exists an ~ > 0 such that for all 
~ (0, ~), the point x is also a local minimizer for f , .  This result is the keystone 

of our development,  as it allows us to extend second-order optimality results for 
the finite valued case to the infinite valued case. We begin with a few preparatory 
lemmas. 

Lemma 3.1. Let  f :  ~ ~ ~ u {+co} be as in (1.1) with F : ~ ~ ~ ~"  locally Lipschitzian. 

I f  x ~ dora(f )  is such that f satisfies the basic constraint qualification at x, then there 

is a neighborhood U o f  x such that f satisfies the basic constraint qualification at every 

point o f  d o m ( f )  c~ U. 

Proof. The result follows immediately from the upper  semi-continuity of  the normal 
cone operator and the generalized Jacobian OF(x).  [] 

Lemma 3.2. Let  h : ~  ~ ~ u {+oo} be as in (1.l) and let {(yi, zi)} c graph(0h) be such 

that yi ~ y ~ dora ( h ) and II z~ [I ~ +oo. Then every cluster point o f  the sequence {zi/ ]] z~ II } 
is an element o f  the normal cone to dora(h) at y. 

Proof. The result follows immediately from the subdifferential inequality. [] 

Lemma 3.3. Let  h : ~ m ~ { + o e }  be as in (1.1), and let ha : R " ' ~ R  be as defined in 

(3.1). I f h ~ ( ~ )  = h(£) + a - ' l l y -  ~11, where ~ dora(h),  then u ~ Ohm(y) i f  and only i f  
u c Oh(Z) c~ ( a - ' B  °) and ( ~ -  ~) c N(u]c~-lB°). 
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Proof .  ( ~ )  Since h* = h * +  $ ( .  I a - ~ ° ) ,  we have 

)7 ~ oh*(u) = Oh*(u) + N(ula-~I~ °) 

and u ~ a - a ~  °. For  all z ~ dora(h) ,  

h(z)>~h~(z)>~h~()7)+(u,z-)7)=h(e)+a-'[[)7-21[+(u,z-)7) .  (3.3) 

Hence  

h (z) ~> h(~) + (u,)7 - ~) + (u, z -)7) = h (~) + (u, z - if), 

since a -~ I[ ) 7 -  i[[ ~> ( u , ) 7 -  ~). This shows that  u c Oh(Y.). Setting z = ~ in (3.3) yields 

01> ~-111)7-~11 +(u ,  ~-)7>. 

But 

-'  II ~ -  ell/> <v, y -  e> 

if  v 6  a -~B °. Hence  O>~(v-u,~-~.)  for  all v c  ~-~B °, i.e., ( f i - ~ ) c  N(u[a-~fi$°). 
( ~ )  I f  u~Oh(~) and ( y - 2 ) ~ N ( u l a - ~ B ° ) ,  then y = ~ + ( y - ~ ) ~ o h * ( u ) .  There-  

fore, u~Oh~(y). [] 

The reduct ion theorem now follows. 

Theorem 3.1. Let f :  E" -~ R u {+co} be as in (1.1) with F : R" ~ R m locally Lipschitzian, 
and let ~ be a local minimizer of f a t  which the basic constraint qualification is satisfied. 
I f  f ,  : ~" ~ R is as defined in (3.2), then there is an d > 0 such that ~ is a local minimizer 
for f~ with f~(~) = f ( ~ )  for all c~ c (0, ~).  

Remark.  I f  the funct ions h and F are as given in the examples  in the In t roduc t ion ,  
and the no rm on N xN'n is chosen to be the l~ norm,  then  as we observed,  the 

funct ion f~ defined above is given by 

f~ (x )=F°(x )+c~[  L~lF~(x)++~=S+,~ IF~(/)IJ  ' 

where  z+:= max{0, z} for  all z c ~. Therefore ,  T h e o r e m  3.1 extends the classical 
results for  exact  penal izat ion [4, 5, 7]. Fur ther  invest igat ions along these lines are 
pursued  in Burke [1]. 

Proof of Theorem 3.1. Let e > 6 > 0 be such that  f ( x )  >~f(~) for  all x ~ ~ + e~ ,  and 
f satisfies the basic  constraint  qualif ication on d o m ( f )  c~ (~ + 6B) (6 exists by L e m m a  

3.1). Set £ := 1 + max{ II F(x)  - F(.~)I1: x ~ + B}, define 

/~ (y )  := inf{h (z) + qJ(z ] F ( ~ )  + £B) + a -~ 11Y - z I1: z ~ Rm} 
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i.e., /~ ( . )  is the inf-convolution of [ h ( . ) + O ( . J F ( 2 ) + ~ a ) ]  with cr-~ll.]], and 
consider the function 

L (x) := fo(x) + + g,(xl + 

where ]~ :=/~  o F  and ¢ : ~ ' ~  is the C a function 

¢(x)  := dist~(x ] 2 + 6~). 

Observe that argminf~ is non-empty as f~ is lower semi-continuous and 2 +  e~ is 
compact. Consequently, there is a sequence a~ $ 0 for which there is a corresponding 
sequence {xg} ~ 2 + eB converging to some element ~ of 2 + eB, and such that 

X i ~ argmin f~, 

for each i = 1, 2 , . . . .  Also, from the lower semi-continuity of  h and the compactness 
of F(2)  + s~, there exists for each i = l, 2 . . . .  , a y~ in dora(h) c~ (F(ff) + 4:~) such that 

f,~,(x,) = h( y,) + a T, ~[l y i - F(xi)[]. 

Clearly, 

f ( 2 )  = h ( F ( 2 ) )  >~/~, (F(2))  ~> f~(2)>~f,~,(x,) >~ f,~(x,) ,  (3.4) 

from the definitions of  xi , /~, ,  and f~,. Therefore, as ai $0 we have I] Yi-  F (x / ) ] ] -  0 
so that yi ~ F(~),  and thus eventually Yi e int(F(2)  + ¢~), which implies that f~, (x~) = 
f~,(x~). From (3.4) we also obtain that F ( 5 ) c  d o r a ( h ) n  ( F ( 2 ) +  (B) and 

f ( 2 )  ~ ?ai(Xi) : fai(Xi) -~- @(Xi) 

= h(y , )  + a~-'l[ y , -  F(xi)l] + ~p(xi) ~ h ( y , ) +  ~o(x~). 

Now let i ~  co, and use the fact that h is lower semi-continuous to obtain 

f ( 2 )  ~>f(;) + ~(~) ~>f(~). 

But, since 5 ~ 2 + eg,  the hypotheses imply that f ( 2 )  = f ( 5 )  and ~ e 2 + 6B. 
We now show that eventually F(xi )  e dora(h). Since x~ e argmin f~, and x~ ~ 5 e 

+ 3B, we know that eventually 

v,p(x,). 

As above, h~,(F(x~)) = L , ( x j )  = f~,(xi) = h(y~)+ a;~]] y~ -F(x ; ) l ]  , so applying Lemma 
3.3, u e Oh~,(F(x~)) if and only if u e Oh(y~) n aTtB ° and F(x~)-y~ e N(u]  c~B°) .  
Now since x ~ e 2 + e B ,  

F(x~) ~ F(:~) e int(F(ff) + s~), 

so eventually Oho,( F(x , )  ) = Oh~,( F(x , )  ) and Of~,(xi) = Of,~(x~). Applying Theorem 2.1, 
there exists v~ e oh~(F(x~))  with 

0 ~ ~)f OF(xi)  ~- V@(Xi) T. (3.5) 
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I f  the sequence {v~} possesses a divergent subsequence {v~}j, then by Lemma 3.2, 

the sequence {v,/II v~ I[}J possesses a cluster point v c S ( F ( ~ ) l d o m ( h ) )  with [[ v II = 1. 
But for such a cluster point v we obtain from (3.5) that 0 ~ v T OF(R), which contradicts 
the choice of  6, therefore the sequence {v~} is bounded. Hence for d sufficiently 
small {v~}c c7 -~  ° so that N(v~la?~B °) = {0} for all i, such that a~ < c7. But then 
y~ = F(x~), so that F(x~) c dom(h)  whenever a~ < & Therefore, for all ~ < 6, 

f(,2) >~ f~(xi )  >~ f,~(xi) =f,~(xi) = h(F(xi))  >~ f(,2), 

so that ,2 E argminf,~. Consequently, )7 is also a local minimizer of  f,~ for all 
a , < d .  [] 

Remark. The method of proof  also shows that if ,2 is a strict local minimizer of  f, 
then it is also strict local minimizer of f~ .  

4. Second-order optimality conditions 

We begin by recalling the results of  Burke [2]. To this end we define the following 

two sets of non-ascent f o r f  at a point x c dora ( f ) :  set 

D(x):= {d ~N": f ' ( x ;  d)<~0} 

and set 

K ( x )  := {d e Nn: 3 [ >  0 such that h ( F ( x ) +  tF'(x)d)<~ h(F(x) )  Vt  c (0, t-)}. 

Remark. The set K ( x )  was introduced in Ioffe [7] where it is referred to as the 
critical cone. 

Theorem 4.1 (Burke [2, Theorem 4.1]). Let f : ~  ~ be such that f : =  h o F with 
h :Rm-~ ~ convex and lower semi-continuous, and F : ~ "  ~ R  "~ is such that F"  exists 
at ,2 E ~ n. 

(1) I f  f attains a local minimum at ,2, then 

max{dXV~xL(,2, y)d: y ~ M(~)} t> 0 

whenever d c K ( ,2). 

(2) If,2 is such that M(,2) ~ 0 and 

max{dXV~xL(,2, y)d:  y c M(,2)} > 0 

for all d ~ D(,2), then f attains an isolated local minimum at ~. [] 

We now use Theorem 3.1 to extend Theorem 4.1 to the infinite valued case. This 
requires an understanding of the relationship between the sets M ( x ) ,  D(x )  and 
K ( x )  and the sets 

M(x ,  ce):= {y ~ ah~(F(x)): 0 ~ OxL(x, y)}, (4.1) 

D(x,  a):= {d c N " : f ' ( x ;  d)~<0} (4.2) 
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K(x ,  a) := { d c  N": 3 ? >  0 such that  

h~(F(x )+tF ' ( x )d )<~h~(F(x ) )  Vt c (0, f)}. (4.3) 

Remark.  The set M(x ,  a) is related to the funct ion f~ just  as the set M ( x )  is related 
to the funct ion f In order  to see that  this is correct  the reader  should verify that  
( h ~ ) * = h * + O ( . ] a  1B). 

Lemma 4.l .  Let h : W " - ~  u {+0o} be lower semi-continuous and convex and let 
y ~ dom(0h) .  Then 

Oh~ ( y ) =a- la °  nOh(y )  

whenever a -l >i dist(0, oh(y))  where ha is defined in (3.1), 

Proof.  This is an immedia te  consequence  of  L e m m a  3.3. [] 

Lemma 4.2. Let f :  ~n ~ ~ u {+0o} be as in (1.1) and suppose that g c d o m ( f )  is such 
that M ( g )  # O. 

(1) I f  f satisfies the basic constraint qualification at ,Y, then M(~)  is compact. 
(2) I f  F is strictly differentiable at ff and M(X)  is compact, then f satisfies the basic 

constraint qualification at Y, 

Remark.  Recall  that  F : ~  n-*~m is said to be strictly differentiable at g c ~  ~ if for 

all v in R ~, 

F ( x  + tv) - F (x )  
lim inf  = F '(if) v, 

x ~  t 
t$0 

where F ' ( ~ )  is the Fr6chet derivative of  F at 2. 

P roof  of  Lemma 4.2. (1) The fact that  M ( ~ )  is closed follows f rom the uppe r  

semi-cont inui ty  o f  Oh and OF. N o w  if M(f f )  is unbounded ,  then there is a sequence 
{v~}c M ( g ) c  Oh(F(g)) with IIv~[I ],oo and v~/llv~ll ~ v with Ilvll = 1. By L e m m a  3.2 
we have v c N ( F ( g ) [ d o m ( h ) ) .  Also, OcvToF(g )  since OF(S) is compact .  This 
contradicts  the basic  constraint  qualification. Hence  M ( g )  is compact .  

(2) Since F is strictly di t terentiable at ~ we obta in  f rom [16, Theorem 3] that  
O~L(g, y) = F'(g)Vy. It then follows that  the recession cone of  M ( g )  is the set 

{z c W": z c N ( F ( ~ ) [ d o m ( h  )) and F ' (~ )Vz  = 0}. 

Hence  the result is a consequence  of  [17, Theo rem 8.4]. [] 

Proposition 4.1. Let f :~" ~ c ~ { + o o }  be as in ( l . l )  with F : ~ " - ~  " in C 1, and let 

g c d o r a ( f )  be a point at which fsatisfies the basic constraint qualification. 
(1) For all c~>0  such that a-l>~dist(Oloh(F(g))) we have that D(g)  c D(g, a). 

(2) I f  g is a local minimizer o f f  then for all a > 0 sufficiently small, 

M ( g ) = M ( g ,  a) and K(g )  c K(g,  a). 
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Proof. (1) From Burke [2], f~ is subdifferentially regular on R n with 

of~(X) = F'(X) T Oh~(F(X)). 

If  ce-' >/dist (OIOh(F(X))), then Oh(F(X)) # O, and so Of(X) = F'(X)  T Oh(F(X)) by 
Theorem 2.2. Consequently, Lemma 4.1 implies that 

of~(ff) = F'(g)X Oh~(F(ff)) = F ' ( f f ) x [ a - ~ °  c~ Oh(F('Y))] 

c F'(X) T oh(g(X))  = Of(~). 

Therefore, 

f~(g ;  d)=sup{@, d): zcOf~(ff)}<~sup{(z, d): z e O f ( X ) } = f ' ( g ;  d), 

whereby the result is established. 
(2) By the reduction Theorem 3.1, there is an o~ > 0 such that g is a local minimizer 

off~ for all a c (0, ~ ) .  Hence M(X, a)  # 0 for all a ~ (0, c~) by Theorem 2.1. From 
Lemma 4.2, we know that M(~)  is compact and so, by Lemma 4.1, there is an d2> 0 
such that M ( X ) c o h ~ ( F ( X ) )  for all a e(0 ,  82)-But  then M ( f f ) = M ( g ,  a)  for all 
a c (0, rain{d1, d2}). 

Next observe that 

h~ (F(X) + tF ' (X)d)  <~ h(F(X) + tF ' (X)d)  

for every choice of t~>0 and d e ~  ". Also, by Theorem 3.1, h , (F(ff ) )  = h(F(X))  for 
all a 6 ( 0 , 6 t ) .  Hence K ( X ) c K ( X , a )  for all a ~ ( 0 , 6 a ) .  [] 

The following extension of Theorem 4.1 to the infinite valued case is now easily 
established. 

Theorem 4.2. Let f : W '  ~ E u { + o o }  be as in (1.1), and let f f ~ d o m ( f )  be such that 
F"  exists at 2. 

(1) I f  ~ is a local minimizer of  f a t  which f satisfies the basic constraint qualification, 
then 

max{dTV~xL(~Z, y)d:  y c M(ff)}/> 0 (4.4) 

whenever d c K ( ,Y ). 

(2) I f  ~ is such that M ( f f ) ¢ 0  and 

max{dTV 2xxL()Z, y)d:  y c M(X)} > 0 (4.5) 

for  all d c D(2) ,  then there is a y > 0 such that 

f ( x )  >~ f (X)  + yllx - Xll 2 

for all x near X. 

Proof. (1) By Lemma 4.2, M(ff) is non-empty and compact. Hence the map 

d ~ max{dVV].xL(X, y)d:  y ~ M(~)} 
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is continuous. Consequently, we need only establish (4.4) for d e  K()7). From 
Proposition 4.1 and Theorem 3.1, we know that there is an t7 > 0 such that 
M()7)=M(:~, a )  and )7 is a local minimizer for f~ for all a ~(0, ~). Therefore, 
by Theorem 4.1, 

max{dTV 2xL07, y ) d :  y c M()7)} = max{dTV~xL(~, y ) d :  y c M(.~, a)} ~> 0 

whenever d c K()7, a )  for all a c (0, if). But by Proposition 4.1, K($)  c K()7, a )  for 
all a sufficiently small, whereby the result follows. 

(2) Suppose to the contrary that the result is not valid. Then there exist sequences 
yi~,0, and xi--~x with (x i - )7) / IJx~-$l l -~  d, such that 

f (x~) <~ f(.~) + yl IIx, - 2[[ 2 (4.6) 

for all i = 1, 2 , . . . .  Dividing (4.6) through by [Ix,-~[I and taking the limit as i-~ oo, 
we see that d c D(g) .  Moreover, since h is lower semi-continuous, 

f ( x , )  = sup{(y, F(xi ) )  - h*(y):  y e ~m} 

~> sup{(y, F(xi ) )  - h*(y):  y e M(2)} 

~>sup{(y, F(X)) h*(y)+½(xi  - ~r 2 - -- --X) V x x L ( X , y ) ( x i - x ) :  y 6  M()7)} 

+ o(llx,-)Tll 

= f ( ~ )  + ½max{(xi- )7)Tv ~-~ L()7, y ) ( x i -  )7): y c M()7)} + o(I]x/-  )7[I 2) 

where the last equality follows from the inclusion M(~)  c Oh(F(~))  i.e., (y, F(ff)) - 
h * ( y )  =f (~) .  Combining this with (4.6), dividing through by ]]xg- ff]]2, and taking 
the limit as i-~ oo yields the contradiction 

0 ~> max{dTV2xL(~, y ) d :  y c M(2)}. 

Hence part (2) is established. [] 

5. A comparison of the sets D(x) and K(x) 

The second-order necessary and sufficient conditions of the previous section differ 
in their use of  the sets D ( x )  and K ( x ) .  Thus an understanding of the relationship 
between D ( x )  and K ( x )  is necessary for an appreciation of  these second-order 
results. The relationship between these two sets was examined in Burke [2]; however, 
the primary result of that investigation [2, Proposition 5.1] is incorrect due to 
improper use of the closure operation. In this section we correct the errors present 
in [2, Section 5]. 

In Burke [2, Section 5] it was observed that 

D ( x )  = [ F ' ( x )  T cone(Oh(F(x) ) ) ]  ° 
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and 

K ( x )  = [ V ' ( x ) ]  -1 U t l ( l e v n ( V ( x ) )  - F ( x ) )  
t>0 

where [ F ' ( x ) ]  -1 is the mul t ivalued inverse of  F ' ( x ) ,  i.e., 

[ F ' ( x ) ]  ' ( y ) : =  {d 6 R ' :  y = F ' ( x ) d } .  

From Rockafe l la r  [17, Corol lary  16.3.2], we know that  
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[ ]o 
[ F ' ( x ) ] - '  U t - l ( l e v h ( F ( x ) ) - F ( x ) )  = F ' ( x ) V N ( F ( x ) ] l e v h ( F ( x ) ) )  

t>O 

if  

R a n ( F ' ( x ) )  c~ r i [ T ( F ( x ) [ l e v h ( F ( x ) ) ) ]  # O, (5.1) 

where  (5.1) is satisfied at any point  x c d o m ( f )  at which  the basic const ra in t  
qualif ication is satisfied (Burke [1, Proposi t ion  4.3]). Moreover ,  by Rockafe l la r  [ 17, 
Theorem 23.7], we have 

cone(Oh(F(x ) ) )  = N ( F ( x ) [ l e v h ( F ( x ) ) )  (5.2) 

at every point  x c R" for  which 0~ Oh(F(x) ) .  By combin ing  these facts we obta in  
the following result. 

Proposit ion 5.1. Let  f :  R n ~ R w {+00} be as in (1.1) with F : R "  ~ W ~ a C 1 function. 

I f  x 6 d o m ( f )  is such that (5.1) and (5.2) hold, then D ( x ) = K ( x ) .  Moreover, i f  f 

satisfies the basic constraint qualification at x, then (5.1) holds a t x, and i f  0 ~ 0 h ( F ( x ) ) , 
then (5.2) holds at x. [] 

I f  9~ is a local m i n i m u m  for f, it may  h a p p e n  that  F ( g )  is also a global m i n i m u m  
for  h, in which case the validity of  (5.2) is in question.  However ,  this is typical ly  
not  the case and  (5.2) is satisfied. An ext remely  useful  class of  functions for  which  
(5.2) is always satisfied are the indicator  funct ions  for  convex  sets. It is o f  course  
possible  that  (5.1), (5.2) or bo th  fail to hold  at the solut ion to (1.1). 

Examples. (1) Let h : ~ - ~  be defined by 

h ( y )  := max{O, y}, 

and  let F : E - ~  E be given by 

F ( x )  = x 2. 

Then  x = 0 solves (1.1). In this case (5.1) fails to hold  a l though (5.2) does hold.  
(2) Let h : R-* ~ be defined by 

h ( y )  :-- [max{0, y}]2, 

and  let F : ~ - ~  R be the identi ty map,  

F ( x )  = x. 

Then  the set {x : x ~< 0} solves (1.1). In  this case (5.1) holds at x = 0 but  (5.2) does  not. 
(3) I f  one takes h : R-~ ~ as given in example  (2) and  F : ~ -~ ~ as given in example  

(1), then nei ther  (5.1) nor  (5.2) hold at the solut ion x = 0 of  (1.1). 
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We conclude by noting that the condition that is missing from the analysis given 
in Burke [2, Section 5] is condition (5.1). 

6. The second-order conditions of Rockafellar 

We begin this section by recalling the second-order  opt imal i ty  condit ions of  
Rockafel lar .  

Definition 6.1. A function h : R m - ~ R u { + ~ }  with effective domain  D is called 
piecewise l inear-quadra t ic  if  D can be expressed as the un ion  of  finitely m a n y  sets 
Dj such that,  for  each j, the set Dj is a convex po lyhedron  and  the restriction of  h 
to Dj is a quadrat ic  (or affine) function. 

Theorem 6.1 (Rockafe l la r  [14, Theorem 3.4]). Let f :  R" ~ ~ u {+~} be as in (1.1) 
with h : R m --> [~ u {+~}  piecewise linear-quadratic convex and F : W' --> Em is C 2, and 

let X c d o r a ( f )  be such that f satisfies the basic constraint qualification at ,2. 
(1) I f  f h a s  a local minimum at £, then OcOf(~) and 

h"(F(X);  F' (X)d)  + max{dVV~xL(2, y)d:  y c M ( £ ) }  ~> 0 (6.1) 

for all d c D(X) where 

h"(F(X);  F'(  2)d)  := lim h( F(  X) + tF'(  X)d ) - h( F(  X) ) - th'( F(  2); F'(  2)d)  
no ½t 2 

(6.2) 

and this limit exists and may equal +~.  

(2) I f  0 c Of(X) and 

h" (F(~) ;  F ' ( £ ) d )  + max{dVV~xL(£, y)d: y ~ M(2)}  > 0 (6.3) 

for all d ~ D(X)\{0}, then there is an a > 0 such that 

f ( y )  ~>f(X) + a[I Y - X I[ 2 

for all y near 2. [] 

One can obtain some insight into the nature  of  the express ions  (6.1) and (6.3) by 
considering the C 2 case. I f  bo th  h and F are C 2 near  2, then so is f, in which case 

dTV2 f ( £ )d = h"(F(ff) ;  F'(  X )d ) + dTVZ L( X, V h ( F(  2) ) )d 

r " Oh h ] 
= dT-F ' ( x )TV2h(F(2 ) )F ' ( f c )  + Z (F(2))V2~(2) d. 

L i= 10yi 

Thus it appears  that  Theorem 6.1 is able to capture  the second-order  behavior  of  
h, whereas  Theorems  4.1 and 4.2 do not. Of  course,  in the case where h and F are 
C 2 as above,  then the appropr ia te  second-order  results can be obta ined  f rom 

Theorem 4.1 by redefining F as h o F and h as the identi ty map.  Nevertheless,  there 
are m a n y  examples  in which Theo rem 6.l provides  a sharper  result. 
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Example. Let h : R-~ ~ be defined as follows: 

[2X 2, if X ~< 0, 
h(x ) :=(x2 ,  if x > 0 ,  

and let F : ~ R  be the identity map F(x )  =- x. Then part (2) of Theorem 6.1 applies 
to yield that x = 0 is a local minimizer o f f  However, Theorem 4.2 does not apply. 

One can also verify that i f f  satisfies the basic constraint qualification at ff ~ d o m ( f )  

and 0 ~ Of(~), then 

h"(F(ff); F'(YQd) ~ 0  

for all d ~ W', and 

h"(F(ff); F'(X)d)  = 0 

for all d c K(X). Therefore, part (1) of Theorem 6.1 implies part (1) of  Theorem 
4.2, and part (2) of Theorem 4.2 implies part (2) of Theorem 6.1. Consequently, 
Theorem 6.1 is a stronger result for the case in which h is piecewise linear-quadratic 
and D ( f f ) ¢  K(2) .  In light of this fact we establish the following result concerning 
a second-order necessary condition for optimality. 

Theorem 6.2. Let f : ~ ' ~ w { + ~ }  be as in (1.1) with F : ~ ' - ~ R  ~ a C 1 function. I f  
6 d o m ( f )  is a local minimizer of  f a t  which F" exists andfsatisfies the basic constraint 

qualification at ,2, then 

t !  - . h , ( F ( x ) ,  F'(,Y)d) + max{dXV ~L(~,  y)d:  y c M(~)} >~ 0 (6.4) 

for all d c D(2) ,  where 

h (F (Y )+  tF' (~)u)  - h(F(~))  - th'(F(~); F ' (g )d )  
h" "F- , (  (if); F'(,2)d) := lim inf 

u ~ d  l t2 
~$0 

Proof. We begin by establishing (6.4) in the case where h is finite valued. In order 
to do this we need to reintroduce some of the tools developed in Ioffe [7] and Burke 
[2]. Consider the function 

O~(x) := max{L(x, y): y c M~ (~)} 

where L: ~" x R m ~ R w { - ~ }  is the Lagrangian defined in (2.2), ~ c ~" is such that 

O~Of(~), ~ > 0 ,  e > 0 ,  and 

MeE (~):= {y 6 o~h(F(:~)): [[VxL(~, Y)II ~ ~}. 

Here O~h(y) denotes the usual e-subdifferential of  convex analysis. In Burke [2, 
Theorem 3.1] it was shown that if F : R ' ~ W  ~ is C 1 and h : R ' ~ R  is lower semi- 
continuous and convex, then ~ is a local minimizer for f if and only if ~ is a local 
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minimizer for 0~ for some or all ~>  0 and e > 0. Since ~ is a local minimizer o f f  
and 0¢~(ff) = h(F(Y)) ,  we have 

lim inf 0~ (Y + tu) - h(F(Y))  >~ 0 
u ~ d  ½t 2 
t ~ O  

for all d c~".  Furthermore, h '(F(ff);  F'(YOd)~O for all d c D ( ~ )  and 

0~(~+ tu) = max{L(~ + tu, y): y c Me, (~Z)} 

= max{(y, F(~ + tu)) - h*(y): y ~ M~, (if)} 

= max{(y, F(~)  + tF'(~)u +½tZF"(~)(u, u))+ o(t 2) - h*(y):  y ~ M~ (if)} 

<~ h(F(~)+ tF '(Y)u)+½t 2 max{uVV ~L(~,  y)u: y ~ M~ (~)} + o(t  2) 

for u near d and all t sufficiently small. These observations yield the inequality 

t¢ - . h , ( F ( x ) ,  F '(~)d) + max{dVV 2~ L(ff, y )d :  y c M~, (if)} ~> 0 

for all d c D(~).  Expression (6.4) now follows since 

M(~) : ~ M~(~Z). 
~ > 0  

e > 0  

Next let us suppose that h is not necessarily finite valued. By Theorem 3.1 and 
Proposition 4.1, there is an 6 > 0 such that ~ is a local minimizer off~ where f~ is 
defined in (3.2), M(ff) = M(ff, a) ,  and D(.f) c D(ff, c~) for all a c (0, a).  Hence, by 
the first part of the proof, 

h " F -  ( , ) , (  (x); F ' ( ~ ) d ) + m a x { d T V ~ L ( Y , y ) d : y c M ( ~ ) } > - O  

for all d c D ( $ )  and a t ( 0 ,  6). Now since h , ( F ( ~ ) ) = h ( F ( ~ ) )  for a t ( 0 ,  if) and 
h(F(~)  + tF ' (~)d)  >i h~(F(~) + tF ' (~)d)  for all t ~ ~, d ~ ~", and a > 0, we have that 

t! - -  . t! - -  h,(F(x) ,  F'(~)a) >_ (h~),(~(x); ~'(~)~) 

for all d 6 D(~)  and c~ 6 (0, &), whereby (6.4) is established. [] 

Theorem 6.2 agrees with part (1) of  Rockafellar's result, Theorem 6.1, for the 
piecewise linear-quadratic case. However, extending part (2) of Rockafellar's 
Theorem 6.1 to more general functions h does not seem to be as simple task and 
is a topic of ongoing research. 

7. Final comment 

Our study of these more general types of  second order conditions was originally 
motivated by algorithmic interests. We wished to develop a local convergence theory 
for nonlinear programming algorithms that did not suffer from the rather severe 
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loca l  hypo theses  requ i red  by  the ava i lab le  p r o o f  techniques ,  Our  inves t iga t ions  

i nd i ca t ed  the  need  to extend the s t a n d a r d  second  o rde r  theory .  We bel ieve  tha t  the  

a p p r o a c h  d e v e l o p e d  in this p a p e r  and  in [1, 2, 13, 14] is the correct  way  to go. 

Regard less ,  f rom an a lgor i thmic  v iewpoin t ,  the  a p p r o a c h  does  presen t  m a n y  chal-  

lenges.  Even now we are unsure  as to how this type  of  s econd  o rde r  s t ructure  can 

be  used  to gu ide  the cons t ruc t ion  of  a lgor i thms possess ing  a more  robus t  local  

convergence  theory.  Indeed ,  it even remains  uncer ta in  whe the r  or  not  a numer ica l ly  

prac t ica l  theory  can be d e v e l o p e d  for  genera l  p rob l ems  o f  this type.  None the less ,  

we do bel ieve  that  cer ta in  in t e rmed ia ry  results  are poss ib le  and  that  a more  genera l  

u n d e r s t a n d i n g  of  the  second  o rde r  s t ructure  o f  convex compos i t e  funct ions  will  be  

requ i red  to ob ta in  them. 

Correction 

The first au thor  regrets  the presence  o f  errors  in Sect ion 5 o f  [2]. As p rev ious ly  

s tated,  the  most  f u n d a m e n t a l  er ror  is the absence  o f  cond i t ion  (5.1) in [2, P ropos i t i on  

5.1]. But there  is yet  ano ther  er ror  in [2] that  needs  to be  addressed .  Specif ical ly ,  

one of  the impl ica t ions  in [2, L e m m a  5.8] is false. Consequen t ly ,  the second  

impl i ca t ion  in [2, P ropos i t ion  5.9] is also inval id .  We thank  D a n n y  R a l p h  for  

ques t ion ing  the p r o o f  of  [2, L e m m a  5.8]. His quer ies  p r o m p t e d  us to cons t ruc t  a 

coun t e r - example  demons t r a t ing  this resul t  to be inval id .  
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