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A ROBUST TRUST REGION METHOD FOR CONSTRAINED
NONLINEAR PROGRAMMING PROBLEMS*

JAMES V. BURKEf

Abstract. Most of the published work on trust region algorithms for constrained optimization
is derived from the original work of Fletcher on trust region algorithms for nondifferentiable exact
penalty functions. These methods are restricted to applications where a reasonable estimate of
the magnitude of an optimal Kuhn-Tucker multiplier vector can be given. More recently an effort
has been made to extend the trust region methodology to the sequential quadratic programming
(SQP) algorithm of Wilson, Han, and Powell. All of these extensions to the Wilson-Han-Powell SQP
algorithm consider only the equality-constrained case and require strong global regularity hypotheses.
This paper presents a general framework for trust region algorithms for constrained problems that
does not require such regularity hypotheses and allows very general constraints. The approach is
modeled on the one given by Powell for convex composite optimization problems and is driven by
linear subproblems that yield viable estimates for the value of an exact penalty parameter. These
results are applied to the Wilson-Han-Powell SQP algorithm and Fletcher’s SIQP algorithm. Local
convergence results are also given.
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1. Introduction. Consider the constrained nonlinear programming problem

P" minimize f(x)
subject to x E ,

where {x E X’g(x) C}, X n and C C m are nonempty closed convex
sets, and f n

_
and g n

_
R, are Frechet differentiable on an open set U

containing X where the Frechet derivatives if" R -, R and g" ’ mn are
bounded and continuous on X.

If C- II x {O}Rm- and

where i, z_ R U {+/-cx} for each 1,..., n with zi <_ i, _z +o, and
for i 1,-..,n, then P is said to be in standard form. In general, the set X is
considered to be some "simple" set of constraints so that the inclusion x E X is easily
maintained.

In this paper we describe a framework for the development of robust trust region
methods for solving P. By "robust" we mean that the global convergence theory for
these methods does not require assumptions concerning the regularity or the feasibility
of P. This is accomplished by designing the algorithm to locate stationary points for
the problem

P" minimize f(x)
subject to x arg min {(x) x
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326 JAMES V. BURKE

where

and

argmin{(x):x e Rn} := ( e Rn: g(5) min{(x):x e Rn}},

(1.1)

with

(x) := dist(g(x)lC) + (xlX

(1.2) dist(y[C) := inf{][y- z[[:z e C}

and

0 ifx EX,(1.3) (xlX) :=
+c ifx X

(here and throughout, the symbols I1" denote a given norm on In or m). Clearly, if
:P is feasible, then P and P are equivalent. On the other han, if P is not feasible, then
further information about P can be obtained by studying P. In [1], Burke introduces
a notion of stationarity for :P which will be reviewed in the next section. Burke [1] also
discusses an algorithm for locating points that are stationary for P. This algorithm
extends the well-known SQP method of Wilson [28], nan [13], and Powell [17]. The
plan of this paper is to extend the techniques of [1] to the trust region framework and
then to apply these results to both the SIQP algorithm of Fletcher [11], [12] and to
a trust region implementation of the Wilson-Han-Powell SQP method.

Many other authors have considered trust region algorithms for constrained op-
timization. One can broadly classify this work into three categories: (1) methods for
linear constraints, (2) methods for nonlinear equality constraints, and (3) exact pe-
nalization methods. The first class of methods is studied in Conn, Gould, and Toint
[9]; Woint [26]; Mor [14]; and Burke, Mor, and Woraldo [5]. This class of methods
corresponds to the case of :P with the functional constraint g(x) C absent, and is
based on projected gradient techniques. The second class of methods concentrates on
the instance of P where C {0}R- and X ]n and these methods can be viewed
as extensions to the Wilson-Han-Powell SQP method. These methods are studied in
Celis, Dennis, and Tapia [7]; Vardi [27]; Byrd, Schnabel, and Shultz [6]; and Powell
and Yuan [18]. All of these papers require g’(x) to be of full rank on 1n. Under this
hypothesis, the method of Cells, Dennis, and Tapia [7] has recently been provided with
a convergence theory by E1-Alem [10]. The methods of Vardi [27] and Byrd, Schnabel,
and Shultz [6] obtain the feasibility of the modified constraint region by including an
additional parameter [0, 1] in the constraint

(1.4) yg(x) + g’ (x)s O.

Unfortunately, there are many examples that defeat this trick. For instance, if one
takes

(1.5) g(x) := [ 1-exIx
with g ]R ]2, then 0, s 0 is the unique solution to (1.4) for all x I.
The difficulty here is that gt(x) never has full rank. The method introduced in 5 has
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TRUST REGION METHODS FOR CONSTRAINED NLP 327

no difficulty with this example. The method proposed by Powell and Yuan [18] has
a flavor that is similar to the approach suggested here for the case C (0}. and
X Rn, but there remain fundamental differences.

There is a large body of work directly associated with the third class of algorithms,
exact penalization methods [11], [12], [16], [29], [30], etc. Most of this literature is
couched in the language of trust region algorithms for convex composite optimization
and is based on the original work of Fletcher. In the context of problem 7 all of
these methods implicitly require knowledge of an upper bound on the norm of some
Kuhn-Tucker multiplier at a Kuhn-Tucker solution to 7. They also require that the
procedure be initiated close enough to this Kuhn-Tucker solution. One of the fruits
of this investigation is a modification of these methods that eliminates the need for
hypotheses of this type in the global convergence theory.

We now describe the plan of the pper. In 2, we present the basic algorithm.
In 3, the stationarity conditions for /) given in [1] are recalled. In 4 the basic
properties of the objects employed in the description of the algorithm are given and
the convergence analysis is presented in 5. The application of these results to SQP
and SIQP are given in 6 and 7, respectively.

The notation that we employ is standard. Nonetheless, a partial listing is given
for the readers convenience. Given x, y E k the inner product is denoted by

k

(x, y) := xTy E xiyi
i--1

where x :- (xl x2
then

,xk)T and y := (yl,y2,...,yk)T. If X and Y are subsets of Rk,

cX +Y := {cx + y:x X,y Y}.
The polar of X is defined as

X := {w ]k: (w,x} _< 1 for all x X}.

If X is convex, that is, Ax + (1 A)y X for all x,y E X and A [0, 1], then the
recession cone of X is defined as

rec(X) := {y e k: X + y C cl(X)}

where cl(X) is the closure of X. The normal cone to X at any point 5 X is defined
by

N(-IX := {w e Rk: (w,x--5) _< 0 for all x e X}.
The tangent cone to X at 5 is the polar of the normal cone,

T(-IX := N(-IX)o.

The support and convex indicator functions for X are given, respectively, by

*(wIX := sup{(w,x) x e X}

and

(xlX) :=
0,

ifxX,
ifxX.
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328 JAMES V. BURKE

A norm on Rk is denoted by Ilxll and its unit ball is designated by

{x Ilxll < 1}.

The dual norm to I[xll is given by

Ilxll0 := *(xlS)

and consequently the dual unit ball is 15. The two-norm plays a special role and it is
denoted by Ilxl[2 :- ((x,x})l/2. The distance function for the set X associated with
the norms I[" and [1" IIo are given by

dist(yIX) inf{lly- xIl x e X}

and
disto(ylX) := inf{lly- xllo x e X},

respectively. Given g ]Rn ]1m the Frechet derivative of g at a point x ERn, if it
exists, is the linear mapping g’(x) Rn -- R’ (if it exists, it is unique) for which

g(y) g(x) -4- g’(x)(y x) + o(lly xll), where lim
o(lly- xll)- II- xll

Since gl(x) is a linear mapping from ]n to ]m, it has a matrix representation in
mn, with respect to the standard basis. This representation is called the Jacobian
of g at x. In this presentation, we identify g(x) with its Jacobian. Also, for a set
X c Rn and a mapping f :l l we define

argmin{f(x)’x e X} {-2 e X" f(-2) min{f(x) x e X}}.

The set argmax {f(x)’x e X} is defined similarly.

2. The model algorithm. As in [1] our approach is based on a type of "lin-
earization" of the constraint region . Given x X, 0 < pl < p2, and 0 E [0, 1] we
define

(2.1) L(x, pl, p2, O) {8 e IX x] A p2n[ g(x) + gt(x)8 e C -3
t- l](X, pl, 0)]m},

where B" and Bm are the closed unit balls of the norms that are given for R" and
Rm, respectively, and for T > 0

.(x, , 0) (x, 0) + 0[(x, ) (x, 0)],

(2.3) (x, T) := inf{ dist(g(x) + g’(x)slC Is e [X x] Tn}

(henceforth the symbol ]$ is used to denote the unit ball of either ]n or m unless
some ambiguity is possible). We refer to the multifunction L" X T [0, 1]
where

T {(pl,p2)" 0 <_ pl <_ p2},
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TRUST REGION METHODS FOR CONSTRAINED NLP 329

as a "linearization" of . Such linearizations are well studied in the literature [2], [19],
[21], [22]. Given (x, (pl, p2), ) e X T [0, 1], the set L(x, pl, p2, ) is a nonempty
compact convex subset of Rn. Moreover, if

(pl, p2, 0) e int (T [0, 1]) and o(x, pl) ((x, 0),

then int [L(x, pl, p2, )] 0 (the notation int (S) means the interior of the set S).
This observation is significant since we use L(x, pl,p2, O) as the constraint region
for our convex programming subproblems. The condition int [L(x, pl, p2, )] q
implies that the Slater constraint qualification [25] is satisfied and so these convex
programming subproblems have Kuhn-Tucker multipliers [23] at their solution.

The condition o(x, pl) o(x, 0) is of particular significance in the construction
of the multifunction n. In [3] it is shown that if T > 0, then o(x, T) 0(X, 0) if and
only if x is a stationary point for the function defined in (1.1) (see 3). Moreover,
given (x, pl, p2, ) E X T [0, 1], it is shown that the inequality

< 0

holds for every s Lt(x, pl, p2, 0) where

’(x; s) := lim
(x + ts) (x)

to t

is the usual directional derivative of at x in the direction s. Consequently, if 0 # 0
and x is not a stationary point for , then Lt(x, pl, p2, O) is contained in the set of
directions of strict descent for at x. This relationship supports the goal of locating
stationary points for 7.

If P is in standard form and the norms chosen for ]n and ]m are polyhedral, then
Lt(x, pl, p2, O) is always a polyhedral convex set and the computation of the value
(x, pl) reduces to solving a linear program. Thus, in this case, the set Lgt(x, pl, p2, 0)
can be specified in finite time.

In order to develop a local convergence theory, it is important that the set
Lt(x, pl, p2, O) closely resemble the constraint region in the standard SQP algorithm
whenever possible. For example, if x X is such that (x, pl) 0, we would like to
set 0 1, since then

Lt(x, pl, p2, 1) :-- (s e IX x] r3 P2l g(x) + g’(x)s e C}.

If 7) is in standard form and the norms on ]I and Rm are polyhedral, then this is
indeed possible. However, in general, such a choice of 0 is not theoretically sound.
Nonetheless, we can choose 0 as a function of x so that O(x) -+ 1 as [(x, pl)-
(x, 0)] -+ 0. Specifically, given 00 > 0 we consider functions 0: X - [00, 1] such that
if any one of the sets C, X, n, or m is not polyhedral, then

O(x) 1 only if o(x, Ol (:(X, 0).

Two examples of such functions are

(2.5) 01(x):=0o for allxX

and

(2.6) 02(x) :-- max(00, 1 + [o(x, Pl) ((X, 0)]}.
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330 JAMES V. BURKE

The structure of the trust region algorithms that we discuss is standard, and is
modeled on the one given by Powell [16] for convex composite functions. There are
also similarities to Fletcher’s SIQP method [11], [12]. In particular, the acceptance
of the trial step Sk at the kth iteration depends on the quadratic approximation

sTHs+( dist(g(x)+g’(x)slC)+(x + siX(2.7) Pa(s; x, H) "= f(x) +Vf(x)Ts + -to the exact penalty function

P(x) :-- f(x) + ((x)

for P. As usual, the matrix H E Rnn is intended to approximate the Hessian of
the Lagrangian. The trial step sk is chosen so that the reduction in P(s;x,H) is
comparable to that which could be obtained by choosing the step that optimizes a
linear model of P at xk. In the case of constrained optimization, a typical linear model
considered by Powell [16] is P(s; x, 0) for some prespecified c > 0. The linear model
that we use is given by

LP(x) minimize f(x) + f’(x)s
subject to s e L(x, pl, p2, O(x)

for a fixed choice of (D1, to2) e int (T).
The subproblems LP(x) are also used to obtain updates for the penalty parameter

(u. The update rule is similar to the one proposed by Han in [13];

where y ]1m is any Kuhn-Tucker multiplier vector for the constraint

(2.10)

in LP(xk), where I1"110 is the norm dual to the norm I1"11 (i.e., Ilyll0 := sup(zTy: z e ))
and > 0. From Burke [1], [3], this set of Kuhn-Tucker multipliers is given by

KTM(x) := {yl(s,y,w,z) e KT(x) for some s,w,z e ’},

where

KT(x) := { (s, y, w, z)

is the multifunction of Kuhn-Tucker solutions to LP(x). In general, the ak’s can be
updated by any rule such that IlYkllo <- ak for all k 1,2,..., and ak is updated
infinitely many times if and only if sup{llykll0 k 1, 2,...} +. Having ak, the
trial step sk is accepted if

(2.11) + <

where 0 </1 < 1 and

(2.12) AP. :=
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TRUST REGION METHODS FOR CONSTRAINED NLP 331

A detailed description of the algorithm follows.

Initialization: Choose xo E X, Ho E ]Rnn, a-1 > 0, e > 0, to (0, 1), 0 < "1 <_
’2 < 1 _< "/3, 0 < 1

_
2 < 3

_
1. Set k 0.

Step 1. If KTM(xk) q}, set ak := ak-1; otherwise choose Yk KTM(xk) and set

Ok-l if ak- _> Ily llo /
otherwise.

Step 2. Choose "k, Sk [X Xk] r tkp2]$ with APa (Sk; Xk, Hk) < O. If no such sk
exists, then stop.

Step 3. Set rk [P (Xk + Sk) P(Xk)][APa (8k; Xk, Hk)] -1 and ’k := [P (xk +
S"k) P (Xk)][APa (sk; Xk, Hk)] -1. If rk <_ ?k, reset rk := ’k and sk := k.
If rk _> 3, choose tk+l Irk, min{1,’3tk}]; if/32 _< rk < 3, set tk+l := tk; if
rk < 2, choose tk+l [’ltk, 9/2tk].

Step 4. If rk < /1, set Xk+l := Xk, ak+l ak, k := k + 1, and return to Step 2.
Step 5. Choose Hk+l nxn, set Xk+l Xk + Sk, k :---- k + 1, and return to Step 1.

Remarks. (1) The alternate trial step s in Step 2 of the algorithm is introduced
to facilitate the discussion of second-order corrections in 6 and 7. It will be shown
that one may always take sk := tkk where k solves LP(xk) and then set ’k := Sk.

(2) The updating formula for the penalty parameter depends upon the knowledge
of a dual solution to LP(xk). This linear subproblem has a fixed trust region radius
that could be adjusted finitely many times without affecting the global convergence
behavior of the procedure. Nonetheless, it would seem to be more natural, if not more
efficient, to let the trust region radius of this subproblem be the same as in the choice
of trial step Sk. Unfortunately, our proof theory does not allow such a variation. In
particular, if the trust region radius in LP(xk) is allowed to vary, then we are unable
to provide a satisfactory analysis of the cases where the sequence {tk } is not bounded
away from zero.

(3) The function O(x) is introduced primarily for considerations associated with
local convergence and to simplify adjustments in the trust region radius. The ability
to adjust the trust region radius in this way follows from the inclusion

L(x, tp, tp2, ) C Lf(x, p, tp2, tO),

to be established in Proposition 4.1. In the polyhedral case the function O(x) can also
be used to reduce the effort required to obtain Yk in Step 1 whenever (xk, p) :
(Xk, 0) : 0. This is done by implicitly defining O(x) in terms of the algorithm used
to evaluate (x, pi) and any other function O(x) satisfying (2.4). The algorithm for
evaluating (x, pl) should produce a sequence {(,i,’k)} ]I X ([X X] N p]) such
that

dist(g(x) + g(x)k IC) (x, fix)

and
; T (x, p).

One then terminates the procedure when

dist[g(x) + g’(x)sklC] o(x, 0) _< O(x) [,i o(x, 0)]
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332 JAMES V. BURKE

(which must occur after a finite number of iterations i if (x, p) # (x, 0)) and define

In this case

and

dist [g(x)Tg’ (x)i
O(X) V(,,)-V(,0)

1,
if (x, ill) (fl(X, 0),
otherwise.

O(x) <_ O(x)<_ 1

0(X)[(X, 91) 9(X)] dist[g(x) q- (x, 0)
so that (x, pl) need not be computed except when (x, pl) (x, 0) - 0.

(4) There are many ways to update the penalty parameter ak in order to guarantee
the existence of a trial step sk so that AP (sk; Xk, Hk) < 0, however, not all of these
methods guarantee the inequality

ak >_ disto(OIKTM(xk)).

Our proof of convergence requires this inequality since we need to invoke Proposition
4.2(2) when (ak} is bounded.

(5) As described above the sequence of penalty parameters (hi) is necessarily
nondecreasing. However, one can employ a clever device proposed by Sahba [24] for
reducing the penalty parameter on certain iterations. Specifically, at the end of the
kth iteration one evaluates

k :-- min{k-1, (xk, 0)}.

If k _< k-1 -- for some prespecified > 0, then one resets ai+ to any positive real
number, say,

(i-kl := ]]Yi]lO "- E.

Clearly this reinitialization of ai can only occur a finite number of times. Hence the
convergence analysis remains unaltered.

(6) In the case where C and X are polyhedral and the norms on n and n are
polyhedral, then LP(x) is a linear program and the evaluation of (x, p) reduces to
solving a linear program.

We now proceed to the analysis of the algorithm. The first sp in this process is
to describe the first-order necessary conditions for optimality in 7)

3. Stationarity conditions for P. We say that a point x E X is a stationary
point for P if it is a stationary point for 7). By this we mean that 5 satisfies first-order
necessary conditions for optimality in both of the problems

(3.1) minimize (x)
xER

and

(3.2) minimize f(x)
subject toxEX and g(x) EC+(-).

It is shown in [1, 2] that these conditions can be expressed in terms of the multifunc-
tions

MI(X) "---{(Y) Y g(g(x)]CA-(x)]t)’w N(x]X), }w 0 f’ (x)T + g’ (x)Ty + w

D
ow

nl
oa

de
d 

11
/0

6/
17

 to
 2

05
.1

75
.1

18
.1

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



TRUST REGION METHODS FOR CONSTRAINED NLP 333

and

 0,x, 0

where x E X.
THEOREM 3.1. (Burke [1, 2].) Let 5 X.
(1) /f 5 is a stationary point for , then either Mo(5) (0} or g(5) e C, or

both. Moreover, if (5) O, then Mo(5) (0} if and only if (5, p) (x, O) for
every p > O.

(2) /f 5 is a stationary point for (3.2), then either M1 (x) 7 or Mo(x) (0},
or both.

In Clarke’s [8] terminology the sets MI(X) and Mo(x) are called the normal and
abnormal multipliers for (3.2) at x X. We will call M1 (x) the set of Kuhn-Tucker
multipliers for (3.2) at x X and Mo(x) the set of Fritz John multipliers for (3.2)
at 5 X. If his such that (5) 0 and 7 is in standard form, then M1(5) is
precisely the set of Kuhn-Tucker multipliers for :P that one normally encounters in
mathematical programming. A point 5 E X is called a Kuhn-Tucker point for 7)
if (5) 0 and M1 (5) 0; it is called a Fritz John point for 7 if (5) 0 and
M0(5) = (0}; and it is called a nonfeasible stationary point for 7) if (5) 0 and
M0(5) (0}. Any point that is either a Kuhn-Tucker point, a Fritz John point, or a
nonfeasible stationary point for 7 is simply called a stationary point for T’.

We conclude this section by recalling certain elementary facts concerning the
distance function dist(ylC), the support function *(ylC), and normal cones that are
used in our study. For the proofs of these facts we refer the reader to [3] and [23].

LEMMA 3.2. Let K be a nonempty closed convex subset of Iq.
(1) The distance function

dist(y]K) := inf{lly- z]l z e K}

is convex on q with convex subdifferential

0 dist(xlK [ D A N(xlK),
(bdry) N N(xlg + dist(ylK)),

Consequently, dist(.IK is globally Lipschitz continuous on Iq with Lipschitz constant
ofl.

(2) If x K, then w N(xlK if and only if

(3) For any x n and w Rq, it is always the case that

(w, x)- *(wlK _< Ilwll0 dist(xlK).

4. The linear subproblem LP(x). We begin this section with a description
of the properties of the linearization L.

PROPOSITION 4.1. Let xl,x2 X, 0 <_ Pl <_ p2, 0 <_ -ill <- -fi2, and 01,02,
t, a [0, 1], and suppose that M > 0 is a bound for fr and gr on X.

f IX 1, hn

dist[sl[X x2] V) pl] _< 2[[xl x2[[.
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334 JAMES V. BURKE

(2) [(Xl, Pl) (Xl, 0)[

_
Mpl.

(3) (Xl, "): ]1+ --+ ]1 i8 a convex function.
(4) [9(Xl, ill) (x2, fll)[

_
3M[Ixl x2[[ + pl]]g’(Xl) g’(x2)]].

(5) P(Xl, ", el): + i8 a convex function and so

P(Xl, tpl, {91)

_
)(Xl, pl, tOl).

(6) I(x1,P1,01) ’(x2,p1,O2)l _< 5MIIx .11 + MplIOl 1 + pll’(x)
’()11.

(7) L(Xl, tpl, tp2, 1) C L(Xl, pl, tp2, tO1).
(8) tL(x, pl,P2,01) + (1 t)L(x, pl,2,02) C L(x, pl,tp2 + (1 t)2, t01 +

(1-t)e).
(9) The multifunction n is upper semicontinuous on X x T [0, 1].

(10) g x e Z is such that Mo(x) {0} and (p, p2, O) e int IT x [0, 1]], then the

multifunction L is continuous near (x, p, p2, O) relative to X T x [0, 1].
Proof. (1) If x2 x + s we are done since 0 e (X x2) p and s 0]

]]Xl-X:[. If x2 x+s choose A > 0 so that A]x+s-x2 p. IfA 1,
then (Xl + s) x2 e [X x] p and ]Is ] Xl x[, from which
the result follows. If A < 1, then again := A[Xl + s x2] IX x] plY, since
x2 + A[Xl + s x] A(Xl + s) + (1 A)x2 e X. Moreover,

_< 211=1 ==ll + I111-
_< 211x ==11.

(2) Let s E IX x] p] be such that

o(xl, pl) dist(g(xz) + g’(xl)slC).

Then, by Lemma 3.2,

I(x,p)- O(Xl,0)l dist(g(x)+ g’(x)slC) dist(g(x)lC <_ IIg’(x)llP.

(3) This follows immediately from the fact that

A[X x] r3 pl + (1 A)[X x] r3 P2] C IX xl] r3 (,p + (1 ,)p2)].

(4) Let s2 E IX- x2] N pl] be such that

O(X2, pl) dist[g(x2) + g’(x2)s21C]

and let 2 IX Xl] N Pl be such that

I1 11 dist[s21[X xl] r3 pl]].

Then, by (1) of the proof and Lemma 3.2(1),

o(x,pz) <_ dist[g(x) + g’(xl)’21C]
_< IIg(xl) g(x)ll + IIg’(Xl) g’(x)llllll

+ IIg’(x)llll, ’11 + (x2, pl)
<_ 3Ml[xl x211 + pllg’(x) g’(x2)ll + o(x2, p).
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TRUST REGION METHODS FOR CONSTRAINED NLP 335

The result now follows by symmetry.
(5) This follows immediately from (3).
(6) This follows immediately from Lemma 3.2(1) and parts (2) and (4) above.
(7) This follows directly from the inequality P(Xl,tlpl,O1)

_
P(xl,Pl,tlO1) in

part (5).
(8) This follows from part (5), the convexity of the sets C and X, and the fact

that ?’11]-[-g]21--" (11 "+- g]2)] for every 1, ?’/2

_
0.

(9) This follows directly by continuity.
(10) This is established in Burke [1, Whm. 9.3]. v1

Let 0 < pl < p2 be fixed throughout the remainder of the paper. Also let
X --+ [0, 1] be given so that (2.4) is satisfied unless all of the sets X, C, B, and

]m are polyhedral. Moreover, we assume that 6 is chosen so that there are constants
K1,K _> 0 such that

(4.1) 10(x) 0(y) _< K111x Yll -+- K2 IIg’(x) g’(y)II for all x, y e X.

The functions 1 and 02 given in (2.5) and (2.6), respectively, satisfy (4.1). The fact
that (2.6) satisfies (4.1) is an easy consequence of Proposition 4.1(4).

Now, given x E X, recall the structure of the linear subproblems discussed in 2:

LP(x) minimize {f(x) q- f’(x)s s e Lf(x,p,p2, O(x))}.

As has been observed, the subproblem LP(x) is always well defined and finite valued
since L(x, pl, p2, O(x)) is a nonempty convex compact subset of ]R for all x X. In
conjunction with LP(x), we also need to consider the value function for LP(x),

t(x) := min{f(x) + f’(x)sls e Lt(x, pl,p2, O(x))},

the multifunction of Kuhn-Tucker solutions to LP(x), KT(x), and the multifunc-
tion of Kuhn-Tucker multipliers for the functional constraint g(x) + g’(x)s C +
(x, pl, O(x)), KTM(x). The properties of these objects that are important for our
study are given in the following proposition.

PROPOSITION 4.2. (1) Both KT(x) and KTM(x) are nonempty as long as x X
and Mo(x) {0}. Moreover, both KT and KTM are upper semicontinuous on X.

(2) If a > disto(OIgTM(x)) for all x e S c X, then there exist nonnegative
constants K3, K4, and K5 such that

It-(x) (Y)I -- K311x Yll + K411f’(x) f’(Y)ll + Khllg’(x) g’(Y)ll for all y e S.

Proof. (1) The first statement follows from Burke [1, Thm. 4.4] and the second
follows from Proposition 4.1(9) and Burke [1, Prop. 6.1].

(2) Consider the exact penalty function

P(s,x) := f(x)+ f’(x)s+a dist(g(x)+g’(x)slC+.(x p, O(x))])W(81[X-x]CIp2

for LP(x). From the hypothesis on a we obtain from Burke [3, Thms. 10.3 and 10.7]
that the solution sets of the two convex programs LP(x) and

LP(x) minimize {Pc(s; x)ls e IRn}

coincide on S with
e(x) min{Pa(s; x)]s e Rn}.
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336 JAMES V. BURKE

Let s be a solution to LP(y), E IX x] N p2l satisfy

dist[sl[X x] Cl p2]],

and z E satisfy

dist(g(y) + g’(y)s + u(y, pl, O(y))z]C) dist(g(y) + g’(y)IC + (y, p, O(y))).

Then, by Lemma 3.2 and parts (1) and (6) of Proposition 4.1, we have

The result now follows by symmetry. E]

Remark. For each x e X the function given by g(x,t):= min{f(x)+ f’(x)sls e
L(x, pl,tp2,tO(x))} is convex in t on R+. This follows from Proposition 4.1(8).
Although this property has interesting consequences, we do not directly make use of
it in our study.

The subproblems LP(x) can also be used to characterize stationarity in T’ and
to obtain descent directions for Ps for an appropriate choice of c.

PROPOSITION 4.3. Let x X.
(1) Suppose that KT(x) is nonempty and choose

(4.3) c >_ disto(OIKTM(x)) +

for some >_ O. Then

(4.4) As(x):= g(x)- f(x)+a(x)[(x, pl)- (x,0)] <_ eO(x)[(x, pl)- (x,0)].

Moreover, if A(x) 0, then x is a stationary point for 7). If both As(x) 0 and
99(x, 0) 0, then x is a Kuhn-Tucker point for P.

(2) If x is a Kuhn-Tucker point for P, then

As(x) 0 for all >_ disto(O[KTM(x)).
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TRUST REGION METHODS FOR CONSTRAINED NLP 337

(3) If (s, y, w, z) e KT(x), then

(4.5) P(s; x) < As(x).

Remarks. (1) If x E X is a stationary point for :P that is not a Kuhn-Tucker point,
then it is still possible that gT(x) is nonempty and As(x) < 0 where c satisfies (4.3).
This is illustrated by considering the example

min{x" x3 _< 0,-25 _< x}

at the point x 0. This is an attractive feature of the subproblem LP(x), since even
if one is at such a stationary point for :P it may still be possible to obtain descent
directions for P.

(2) Observe in (4.5) that if is chosen with

(4.6)

then (4.3) is satisfied and so

P’(x; ) < a.(x) < o

with P(x; s) 0 only if x is stationary for P.
Proof. We begin by establishing statements (1) and (3) of the proposition. Let

(s, y, w, z) e KT(x) and in the case of (1) we also assume that (s, y, w,z) is chosen so
that

IlYl]o disto(OIgTM(x)).

By Lemma 3.2, we have

(4.8)

-(, ,(x)) (, (x)) (, (x) + ,(x))
(, (x)) *(1c + .(x, , O(x))S)

<_ [[Y[Io dist(g(x)IV + u(x, p, O(x))])
llylloO(x)[(x, 0) (x, p)]

_< ( )(x)[(, 0) (x, p)],

(4.9)

-(, ) (, x) (, x + )
(,x)

_< Ilwll0 dist(xlX)
_<0,

and

(4.10) -(z, ,) -*(zl,o) -pellzl]o.

Since

(4.11) ,(x) -[(u, ,(x))+ (, )+ (z,
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338 JAMES V. BURKE

these relations yield the inequality

f’(x)8 ( )O(x)[ga(x, 0) 9(x, pl)] P21]z]]
< ( )(x)[(, 0) (x, p)],

from which inequality (4.4) immediately follows. Now if As(x) 0, then (4.4) implies
(x, pl) (x, 0). Thus, by Theorem 3.1, we may as well assume that (x, 0) 0.
In this case ff(x)s- 0 and so (4.12) implies that z- 0. But then, by (4.11),

0 (, a,(x)) + (,

while (4.8) and (4.9)imply
0 < (,,(x))

and
o < (w, ),

respectively. Hence 0 (y, g’(x)s> (w, s>. Consequently, again by (4.8) and (4.9),

(u, a()) ,
and

<,> *(lx),

and so, by Lemma 3.2, y E N(g(x)]C) and w N(x]X) with

0 f’(x)T - g’(x)Ty - W.

Therefore, x is a Kuhn-Tucker point for
To obtain (4.5) we simply observe that

P’.(x; ) < f,(x)s + a[ dist(g(x) / g’(x)slC dist(g(x)lC)]
<_ f’(x)s + a[u(x, pl, O(x)) (x, 0)]
(x).

(2) If (s,y,w,z) e KT(x), then, as in the proof of part (1), (x,y,w) e M(x).
Hence c >_ disto(OIgTM(x)) >_ dist0(01Mc(x)) where

Mc(x) :- (y (y, w) e Ml(x) for some w

Hence, by Burke [3, Thm. 10.7], P(x; s) >_ 0 for all s e if(n. Thus As(x) 0 by (4.4)
and (4.5). 0

From Proposition 4.2 we know that KTM(xk) :/: 0 as long as Mo(xk) {0}.
Proposition 4.3 shows that if KT(xk) 0 and A(xk) 0, then xk is a station-
ary point for 7. This proposition also assures us of the existence of an element
8 i(xk, pl,tkp2,tkO(Xk)) for which APa (s; Xk, Hk) < 0 whenever Aa (Xk) <
0. Therefore, in Step 2 of the algorithm in 2 one can always locate an sk

IX- Xk] N tkP2l (note that sk need not be in Lt(xk,p,tkp2,tkO(xk))) for which

AP (sk; xk, H) < 0 as long as xk is not a stationary point for :P. If Mo(xk) {0},
it may still be possible to obtain Sk such that AP (Sk; Xk, Hk) < 0 as noted in remark
(1) after Proposition 4.3. This is an attractive feature of the algorithm and it explains
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TRUST REGION METHODS FOR CONSTRAINED NLP 339

why we set O/k+l ak if KTM(xk) 0. Particular choices of the trial step sk are
studied in 6 and 7.

5. Convergence. The convergence theory presented in this section is modeled
on that given in Powell [16, 4]. Consequently, we require the following assumption
(see Powell [16, Thm. 2]).

ASSUMPTION 5.1. For every 5 > 0 there exist constants nl, N;2 > 0 such that the
inequality

(5.1) APk (sk, xk, Hk) <_ --1 min{a2, tk}

holds whenever Ak (Xk) <_--5.
Inequality (5.1) is used to guarantee that the reduction in Pak (s; xk, Hk) induced

by sk is comparable to the reduction that one would expect to obtain by use of the
linear model LP(xk) alone. The following proposition indicates a way to choose sk
which assures the validity of inequality (5.1) when the sequence {Hk } is bounded.

PROPOSITION 5.1. Let x E X, H ]nn, > O, and (0, 1). If s IX x]
p2 solves LP(x), then there exists e [0, such that

(5.2) aP(s; x,H) a(x)min
where a > 0 is chosen so that ]z]2 a]z] for z e R.

Proo For A G [0, observe that

P,(; x, H) f’(x) + ():Hii
+ A[ dist[g(x) + g’(x)sC] dist(g(x)]C)]

Af’(x)s + (ap2): H[2

+ .[(x. 1. e(x)) (x. 0)]

.(x)+ (:)H]]:.
If we now let

t e argmin AA(x)+--(ap2)2" A e [0, t-]

then it is straightforward to show that (5.1) is satisfied (see, for example, the proof of
[16, Lemma 5, p. 20]). [:]

The following technical lemma greatly facilitates the discussion of convergence.
LEMMA 5.2. Let x X, H Rnxn, 0 ( 1 ( 2 < 1, and O,gl, t2 > 0, and

choose t > 0 so that

nl (1 f12) min{a2, t}

_
(1 + a)tp2wx(tp2) +

for all t [0, where

w(tpe) := max{llf’(y) f’(x)ll, llg’(y) g’(x)ll y e x + tpe}.

Then for every t e [0, and s e IX x] tp2 for which

(5.4) AP(s; x, H) _< -al min{a2, t},
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340 JAMES V. BURKE

one has

[P(x 4- s) P(x)] < IAP(s;x,H).

Proof. By Lemma 3.2(1), we have

for every t e [0, and s e IX- x] 3 tp2l$ satisfying (5.4).
By combining Proposition 5.1 and Lemma 5.2 we see that unless Ak (Xk) 0,

one can always choose Sk in Step 2 of the algorithm of 2 so that APak (sk; xk, Hk) < 0
and Assumption 5.1 is satisfied. Furthermore, the procedure cannot jam at xk with

xk+i xk for all i 1, 2,’. ".

The main result is now given. The proof of this result is based on the approach
of Powell in [16, Thm. 2].

THEOREM 5.3. Let {xk } be a sequence generated by the algorithm of 2 for which
Assumption 5.1 is satisfied.

Furtheore, assume that ff and g are bounded and uniformly continuous on
S := [{x} + p2] X and that the sequence {H} is also bounded. Then at least
one of the following must occur:

(1) A(Xk) 0 for some k and the procedure terminates,
(2) T
(3) Pa (x) -,
(4) o.
Proof. We will sume that none of (1)-(4) occur and derive a contradiction. First

note that by Proposition 5.1 the sequence {xk} is infinite. Also observe that since k
is bounded the updating strate of Step 1 sures us that ak remains constant for
all k sufficiently large. Thus we may assume that ak a for all k 1, 2,.... Now
since A(Xk) 0 there is a constant 5 > 0 and a subsequence J c N such that
sup{A(xa) k J} < -26 < 0. Consequently, by Assumption 5.1, there are
constants al, g2 > 0 such that (5.1) holds for all k J. Via Lemma 5.2, the uniform
continuity of ff and g now yield the existence of a t > 0 such that

rk _> fll and Xk+l Xk 4- 8k

whenever t < . Suppose there is a > 0 and a subsequence J of J such that

inf[tk]k e J] > .
Then for each k E J let a(k) be the first integer greater than or equal to k for
which Xa(k)+l Xa(k) 4- 8a(k) and consider the subsequence J {a(k)lk J}.
Observe that for each k J we have tk > min{71,71}. Consequently, Pa(Xk+l) <
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TRUST REGION METHODS FOR CONSTRAINED NLP 341

Pa(xk) aii min{a2, "l,l} for each k E . But then P(xk) --c, which is a
contradiction. Therefore, we can assume that tk

_
for all k E J and limj tk --O.

By Proposition 4.1(4), Proposition 4.2(2), and (4.1), the uniform continuity of f’
and g’ imply the uniform continuity of As on S. Hence there is an > 0 such that

whenever Ilxi- xjl <_ e, i,j N. Given k J let v(k) be the first integer greater
than k for which one of

(5.6) IIx.( ) x ll <

and

(5.7) _<

is violated. If (5.6) is violated, then

Pc(Xs+l) Pc(Xs) 11 min{a2, ts}

and

for s- k,...,v(k)- 1. Hence

ts+i >_ ts

gc(Xv(k))

_
Pc(Xk) 11 min{a2,/p2}

since

If (5.7) is violated, then

Po(Xv(k))
_

Po(Xv(k)-l) tl/l min{2, /-1}.

In either case we have

gc(Xv(k))

__
g(Xk) ;11 min{t2, /p2, v-i},

which implies that P,(xk) J, -oc. This is the contradiction that establishes
the result.

COROLLARY 5.4. Let {Xk }, {Hk}, f’, and g’ be as in Theorem 5.3.
(1) If ak +c, then every cluster point of the subsequence J := {i: ai+l > hi}

satisfies Mo(5) {0} and so is either a Fritz John point or a nonfeasible stationary
point for P.

(2) If a := sup{ak} < cx, then every cluster point of {xi} is a stationary point
for . Moreover, if (x, O) O, then

Proof. (1) Suppose to the contrary that M0(5) {0}. Since ck T cx, the multi-
function

LMI(x) := { (y, w, z)l(s, y, w, z E KT(x) for some s e ]n}
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342 JAMES V. BURKE

is locally unbounded at 5. By Burke [1, Thm. 6.3] it must be the case that (5) 1 and
so 9(, pl) 9(5, 0) by (2.4). But then 99(5, 0) 0 since M0(5) (0}. Furthermore,
by Burke [3, Prop. 3.7],

LMo(-2) := rec[LMl()] # {0}

since LMI (x) is locally unbounded at 5. But then by Burke [1, Thm. 4.3], M0(5)
{0}, a contradiction.

(2) Since the O/k’s are bounded they eventually equal O/. Moreover, for all k suffi-
ciently large, P (xk) >_ P(-2). Therefore, by Theorem 5.3, A() 0. Consequently,
by (4.4), 9(5, pl) 0(5, 0). Thus we can assume that 99(5, 0) 0. We now show that
5 is a Kuhn-Tucker point for LP().

Let {(sk,yk, wk, zk)} be such that (sk,yk,Wk, Zk) e KT(Xk) and
Jfor all k 1,2,.-.. Let J e N be a subsequence for which xk. If {(wk, zk)}g is

bounded, then 5 is a Kuhn-Tucker point for LP(-) since gT(x) is upper semicontinu-
ous. If {(Wk,Zk)}g is unbounded, we can assume that J is such that

J.]lZk[[O) A(k,"k) # (0,0) and sc--s. Then e g(5 + X), e N(p2), and
0 + since (sk, ya, wk, zk) E KT(xk) for all k E J. Hence, by Lemma 3.2,

0 +

=-p ll llo _< o,

but then 0, which is a contradiction.
Since is a Kuhn-Tucker point for LP(5) at which A(5) 0 for all

disto(OIKTM(5)) / , the result follows from Proposition 4.3.

6. Application to StQP. In this section we assume that :P is given in standard
form, the norms chosen for ]n and m are polyhedral, and the function 0 X -- [00, 1]
of 4 is such that O(x) 1 whenever 99(x, p) 0. We now consider an instance of the
algorithm of 2 wherein the choice of trial step sk is based on the Szl QP algorithm
of Fletcher. The procedure incorporates the second-order correction technique due to
Fletcher [11], [12] in order to avoid the Marotos effect.

Initialization. Choose xo X, Ho ][nxn, O/--1 > 0, g > 0, and to (0, 1). Set
k := 0 and choose a > 0 so that Ilxll2

_
a[[x[I for all x

Step 1. Choose (k, k, k, k) KT(xk). If k 0, then stop; otherwise set

O/k-l, ir O/k-1

_
I[k]lO -}-

otherwise,

and

tk := argmin ,A (xk) + S’SHkdk 0 <_ ) <_ kk

Step 2. Let sk be a stationary point of the subproblem

QP1 (Xk, tk )" minP (s; xk, Hk
subject to s tkP2 N Sk
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TRUST REGION METHODS FOR CONSTRAINED NLP 343

for which

(6.1) P. (s; x. H) < P.(t; x. H).

where Sk is any subspace of Rn containing k.
Step 3. Set rk :-- [P (xk + Sk) Pa (xk)][AP (sk; Xk, Hk)] -1

Step 9.
Step 4. Let k be a stationary point for the problem

If rk > 0.75, go to

QP(xk, tk min Pk(s)
subject to s E IX xk] N tkp21 Sk,

where

sTHks+ak dist(g(xk+sk)--g’(xk)sk+g’(xk)slCPk(s) := f(xk)+f’(xk)s+7

and Sk is any subspace of Rn containing Sk.
Set

P(O) P()r r + APa(sk;xk, Uk)"
If rk < 25, gO to Step 6.

Step 5. If r E [0.9, 1.1], set tk+ 2tk and go to Step 11; otherwise go to Step 10.
Step 6. If r [0.75, 1.25], go to Step 7. Set

P. (x + P. (x
AP (Sk; X, Hk

Step 7.
Step 8.
Step 9.

Step 10.
Step 11.
Step 12.

If ’k > 0.75, set sk k, rk ?k, and go to Step 9.
If ’k _> 0.25, set Sk k, rk ’, and go to Step 10.
If ?k >_ rk, set Sk :-- S and rk :--
Choose tk+l [0.1tk, 0.5tk]. If rk > 0.05, go to Step 11.
Set xk+ :- xk, k k + 1, and go to Step 2.
If Ilskll < tkP2, go to Step 10. If rk > 0.9, then tk+ 4tk; otherwise

tk+l 2tk. GO to Step 11.
Set tk+
Set xk+ Xk + sk.
Choose Hk+l ]1nn, set tk+l :-- min(tk+l,1}, k k + 1, and go to
Step 1.

Remarks. (1) The vector Yk in Step 1 is often called the Cauchy step since it
naturally corresponds to the best step obtainable from first-order information. The
vector k is used in (6.1) in order to assure the validity of inequality (5.2). In this
way, Assumption 5.1 is satisfied.

(2) Except for the possibility of increasing tk when 0.25 _< rk

_
0.75, this algo-

rithm is an instance of the algorithm of 2. However, it is easily verified that this
slight change in the implementation does not nullify the validity of Theorem 5.3 and
Corollary 5.4.

The remarks above demonstrate that the results of 5 provide a global conver-
gence theory for the algorithm in this section. Let us now concentrate on the local

D
ow

nl
oa

de
d 

11
/0

6/
17

 to
 2

05
.1

75
.1

18
.1

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



344 JAMES V. BURKE

convergence. These results are obtained by appealing to the work of Yuan [30]. To
this end we assume that X n and we set

m

Hk VxL(xk, yk) V2f(xk) + E yk+l(i) V2..(xk)
i--1

in Step 12, where L(x, y) := f(x)+yTg(x) is the Lagrangian for P and Yk is a multiplier
estimate. For example, the multiplier estimate may be chosen as the solution to a
least squares problem based on the optimality conditions. If {xk} is the sequence
generated by the algorithm of this section, then we also assume the existence of a
Kuhn-Tucker point 5 of :P to which the sequence {Xk} converges and at which the
following hypotheses are satisfied:

(H1) (linear independence of the active constraint gradients). The gradients {g (5)"
e A(5)t2 {s + 1,..., m}} are linearly independent where

A(x) {i e {1,...,s}lgi(x >_ 0}.

(H2) (strict complementary slackness). The unique Kuhn-Tucker multiplier vector
E ]n is such that () > 0 for each i

(H3) (second-order sufficiency condition). For each

s e {d n. f’(5)d- 0 and

with s 0, one has

> 0.
i--1

THEOREM 6.1. Let {xk} be a sequence generated by the algorithm of 6 with

Sk Sk ]n for all k 0, 1, 2. Assume that xk - 5 and that hypotheses (H1)-(H3)
hold at 5. Furthermore, assume that Hk := V2xL(xk,Yk) and that Sk and k solve

QP(xk,tk) and QP(xk,tk), respectively, for each k 0,1,... with {Yk} chosen so
that yk converges to , the unique Kuhn-Tucker multiplier for at 5. Then xk --, 5

superlinearly, and if Yk is chosen to be the value of y that minimizes

IlVf(xk +

then Xk converges to 5 quadratically.
Proof. The hypothesis (H1) implies that M0(5) {0}, consequently, by Theorem

5.3, ak is constant for all k sufficiently large. Therefore the algorithm is eventually an
instance of the algorithm studied by Yuan in [30] and so the result follows from [30,
Thm. 2.5, Cor. 2.6].

Remark. The assumption about the choice of multipliers {Yk } is satisfied if, for
example, one chooses the yk’s to be solutions to the least squares problems

min{1/211VL(xk, Y)ll2 y e }.

7. Application to SQP. In this section we again assume that :P is given in
standard form with X n, that the norms chosen for ]n and ]m are polyhedral,
and that the function 0" X -- [00, 1] of 4 is such that 0(x) 1 whenever 99(x, p) 0.
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TRUST REGION METHODS FOR CONSTRAINED NLP 345

We consider an instance of the algorithm of 2 wherein the choice of trial step Sk is
based on a modification to the Wilson-Han-Powell SQP subproblem. The algorithm
is identical to the algorithm of 6 except that the subproblem Q,Pl(Xk,tk) in Step 2
is replaced by Step T.

Step T. Let sk be a stationary point of the subproblem

QP2(xk,tk) "min f(xk) + f’(xk)s + 1/2sTHks
subject to sk E L(xk, Pl, tkP2, tkO(Xk)) CI Sk

for which

f(xk) + f’(xk)sk + sHkSk
_

f(xk) + f’(x)() + -where Sk is any subspace of n containing k.
Remarks. (1) Observe that from Proposition 4.1(7), we have

Lgt(Xk, tkp, tkp2, O(Xk)) C LVt(xk, p, tkP2, tkO(Xk)).

Hence the subproblems QP2(xk,ta) are always well defined. The subspaces Sk (and
Sk) are introduced to reduce the dimensionality of the feasible region for the subprob-
lems QP2(xk, tk) (QP(xk, tk)). For example, when (x, p) 0, a typical choice for Sk
would be the span of Yk and the solution to the Wilson-Han-Powell SQP subproblem
when this subproblem has a solution, e.g., see Celis, Dennis, and Tapia [7].

(2) Inequality (7.1) plays a role similar to that of inequality (6.1) in that it
guarantees that Assumption 5.1 holds. Consequently, the results of 5 provide a
global convergence theory for this modification to the algorithm of 6.

The local convergence theory for the algorithm when Step 2 is used instead of
Step 2 is not yet well understood. However, we conjecture that if the hypotheses
(nl)-(n3) hold, then the subproblems QP and QP2 should produce identical trial
steps Sk when xk is sufficiently close to 2. If this is indeed true, then Theorem 6.1
remains valid when Step 2 is used instead of Step 2. The resolution of this conjecture
is the topic of ongoing research.

In lieu of establishing this conjecture, one can obtain a preliminary local con-
vergence result by assuming that the trust region radius in the modified algorithm
is eventually inactive. In this case, a local convergence result is easily obtained by
appealing to results in Robinson [20].

THEOREM 7.1. Let {xk} be a sequence generated by the algorithm in 6 with Step
2 replaced by Step 2 and Sk Sk I for all k O, 1, 2. Assume that xk - 2 where
satisfies the assumptions (H1)-(H3). Furthermore, assume that Hk := V2L(xk, Yk-1)
and that sk and solve QP2(xk,tk) and QP(xk,tk), respectively, for all k >_ ko for
some ko N, with each Yk chosen as a Kuhn-Tucker multiplier vector associated with
the constraint

+ c +
in QP:(xe, tk). If the trust region radius in QPe is eventually inactive, then xi -quadratically.

Proof. Since the trust region constraint in the subproblems QP2 is eventually
inactive, the subproblems QP2 reduce to the standard subproblems employed in the
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346 JAMES V. BURKE

Wilson-Han-Powell SQP method. Thus quadratic convergence follows from Robinson
[20, Thm. 3.1].

Before closing, we wish to emphasize that the assumption that the trust region
constraint is locally inactive is very strong. A more complete convergence result would
establish conditions under which this hypothesis is valid. Until a clearer picture of
the convergence properties of this procedure is established, the usefulness of Step
2 remains in doubt. Nonetheless, we introduce this alternative to Step 2 since we
conjecture that the resulting algorithm possesses convergence properties similar to
those described in Theorem 6.1. The resolution of this conjecture is the subject of
ongoing research.
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