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ABSTRACT 

A complex matrix is said to be stable if all its eigenvalues have negative real part. 

Let I be a Jordan block with zeros on the diagonal and ones on the superdiagonal, and 

consider analytic matrix perturbations of the form A(E) = J + EB + O(E~), where E is 

real and positive. A necessary condition on B for the stability of A(E) on an interval 

(0, .Q), and a sufficient condition on B for the existence of such a family A(e), is (i) 

Re trB 6 0; (ii) the sum of the elements on the first subdiagonal of B has nonpositive 

real part and zero imaginary part; (iii) the sum of the elements on each of the other 

subdiagonals of B is zero. This result is extended to matrices with any number of 

nonderogatory eigenvalues on the imaginary axis, and to a stability definition based on 

the spectral radius. A generalized necessary condition, though not a sufficient condition, 

applies to arbitrary Jordan structures. The proof of our results uses two important 

techniques: the Puiseux-Newton diagram and the Arnold normal form. In the non- 

derogatory case our main results were obtained by Levantovskii in 1980 using a 

different proof. Practical implications are discussed. 
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1. INTRODUCTION 

A matrix is said to be stable if all its eigenvalues lie in the open left half of 
the complex plane. A problem of great theoretical interest and practical 
importance is the following: given a matrix A on the boundary of the set of 
stable matrices, i.e. with no eigenvalue having positive real part and one or 
more eigenvalues lying on the imaginary axis, what perturbations to the matrix 
are associated with stability? To be more specific, suppose that A(‘) is an 
n x n Jordan block Jo, with zeros on the diagonal and ones on the main 
superdiagonal, and consider a real perturbation A(E), with A(0) = Jo. It is 
well known (e.g. [24, Section 2.21) that if 

A(E)= 

then the multiple zero eigenvalue splits into n eigenvalues 

&nwh h = l,...,n, (1) 

where w is the nth principal root of unity, exp(2?ri/n). Thus if n > 2, at least 
one of these eigenvalues has positive real part for all E # 0. 

In this paper we give a much stronger result. We show, for example, that if 
A(E) is a real analytic matrix function of the form 

A(E) = Jo + EB + O(E”), 

then a necessary condition on B for the stability of A(E) on an interval (0, Ed), 
and a sufficient condition on B for the existence of such a family A( E), is 

(i) tr B < 0, i.e., the sum of the diagonal elements of B is less than or 
equal to zero; 

(ii) the sum of the elements on the first subdiagonal of B is less than or 
equal to zero; 

(iii) the sum of the elements on each of the other subdiagonals of B is 
exactly zero. 

Note that (iii) excludes (1) for n > 2. In fact, we show that the jth diagonal 
in the lower triangle (counting the main diagonal as the first) is associated with 
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perturbations of the form 

251 

El/jwh h= l,...,j, 

where w is the jth principal root of unity. This largely explains (i)-(iii), since 
eigenvalue splitting separated by angles of less than a in the complex plane 
cannot be tolerated for stability, while the splitting associated with j = 2, 
namely in opposite directions in the complex plane, is permitted only along 
the imaginary axis. The case j = 1 corresponds to an eigenvalue shift permit- 
ted only in the negative direction. Our results are established in quite full 
generality, allowing A(‘) and A(E) to be real or complex and requiring 
knowledge only of the Jordan form of A co) In the case of a complex perturba- . 
tion of lo (taking E to be real), we obtain, instead of (i), that Re tr I3 < 0, and, 
instead of (ii), that the sum of the elements on the first subdiagonal has real 
part less than or equal to zero and imaginary part equal to zero. This is 
because an imaginary shift in the eigenvalues is permissible, but even a small 
rotation of a split along the imaginary axis is not. 

In the case that A(‘) has one or more derogatory multiple eigenvalues, we 
obtain a generalized necessary condition but no sufficiency condition. For 
example, in the nondefective (semisimple) case (e.g., A(‘) = 0), conditions of 
the form (ii) and (iii) vanish (since a perturbation of a nondefective eigenvalue 
is always Lipschitz), and (i) remains an obvious necessary but insufficient 
condition for stability. In fact, a stronger necessary and sufficient condition is 
well known for the nondefective case: if A(‘) = 0, it is trivially that the 
maximum real part of the eigenvalues of B be less than or equal to zero. For a 
more complete discussion of the semisimple case, see [I& 211. 

To a large extent the present work arose through attempting to answer the 
questions raised in Section 6 of [21]. The present paper, together with related 
work [4], not only answers those questions, but establishes much stronger 
results than anticipated by [21]. For the much more special symmetric or 
Hermitian case, see [20]. 

The proof of our results uses two powerful techniques: the Puiseux- 
Newton diagram for describing roots of polynomials with analytic coefficients, 
and the Arnold normal form for perturbation of multiple eigenvalues. These 
are both explained in the text. 

In the nonderogatory case our main results have already been obtained by 
Levantovskii [S-17], who used a different technique to study C’ (continu- 
ously differentiable) perturbations. Levantovskii also made use of the Arnold 
normal form, but he did not use the Puiseux-Newton diagram, which we 
consider to be a key point for the understanding of these results. (Analyticity is 
required for the use of the diagram.) See Levantovskii’s papers, as well as [2, 
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pp. 255-2571, for some further results, particularly illustrations of the shape of 
the stability region in parameter space for various cases. 

We note that the Puiseux-Newton diagram has been used in a related 
context, namely the stability of methods for solving ordinary differential 
equations; see [ll]. However, that work has a very different emphasis, not 
being concerned with multiple eigenvalues but instead with second-order 
effects of the perturbation of simple eigenvalues. 

All the results have a straightforward extension to the case of reducing the 
spectral radius of a matrix with multiple eigenvalues. This case is relevant, for 
example, when the definition of matrix stability requires the magnitude of the 
eigenvalues to be less than one. This situation typically arises in practice when 
studying the solution of difference equations rather than differential equations. 

The paper is organized as follows. Section 2 uses the Puiseux-Newton 
diagram to study the roots of polynomials with complex coefficients. Section 3 
uses the Arnold normal form to extend these results to perturbation of a 

complex matrix with multiple eigenvalues, both the nonderogatory and 
derogatory cases. Section 4 briefly discusses the real case. Section 5 is 
concerned with reducing the spectral radius of a matrix. Section 6 discusses 

practical implications. 

2. ROOTS OF POLYNOMIALS WITH COMPLEX COEFFICIENTS 

A complex function /3(e) is said to be analytic (equivalently, holomorphic) 

near E = 0 if it may be expanded in a power series in E, convergent in a 
neighborhood of E = 0. Consider 

P(X,&) = (“- a)” + &(&)(X- ,),-l + *** +p+) = 0, (2) 

a polynomial equation in X with analytic coefficients flj( E), satisfying 

@j(O) = O, j= l,...,n. (3) 

We may therefore write 

flj( &) = @jl)& + py)E2 + * * * . 

We shall restrict E to a nontrivial real interval [0, E,,]. 
It is well known (e.g. [3, 131) that the roots of (2) are described by series in 

fractional powers of E. These series are commonly called Puiseux series, since 
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it was Puiseux [22] who established their convergence; however, they were 

derived formally by Newton two centuries earlier. Newton, of course, was 
concerned only with real coefficients and real roots, but we shall consider the 
general complex case first for simplicity. We shall obtain the results we need 
by making use of a diagram devised by Newton for the purpose of calculating 

coefficients of Puiseux series [19, 231. Since so many calculation techniques go 
by the name of Newton, we shall follow [3] in calling this diagram the 
Puiseux-Newton diagram. 

Let jj = @‘J) be the first nonzero value in the sequence { @‘), /3?), . . . }. 
By definition, lj > 1, j = 1, . . . , n. If pi(e) is identically zero, take Zj = 09; 

also, since the coefficient of X” in P( X, E) is one, take I, = 0, &, = 1. Now 
plot the values lj versus j, and consider the lower boundary of the convex hull 

of the points plotted. Let sj be the slope of the line on [j, j + l] forming part 

of this boundary, j = 0,. . . , n - 1. Clearly l/n < sa Q sr < **a < s,_i. 
Figure 1 shows the diagram for the following example (taken from [3]): 

n = 3, x, = 0, pi(&) = E, &(E) = --E - e2, Ps(e) = e2 + 2e3. 

(5) 

We have 1, = 0, 1, = 1, 1, = 1, 1, = 2, and so sa = s1 = i, sz = 1. 

Now consider the following Ansutz argument. Suppose a root of (2) is to 
have the form 

X(E)-A()=acyEp+ *-*, (6) 

FIG. 1. 
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where a! is nonzero and p is the smallest power of E in the expansion for this 
root. Substituting (6) into (2), we need 

( (y"EnP + . . . ) + (&& + . . . )(an-lgwbJ + . . . ) + . . . 

The terms involving the smallest powers of E are among the terms 

CYnEnp >a,a n-lEl,+(n-l)p ^ 
,...> &&YYE1”-‘+p, fi”El”. (7) 

For cancellation to take place, at least two terms with the same smallest power 
of E must appear. Equivalently, p must equal one or more of the slopes 

so, . . . 7 S”_l defined by the Puiseux-Newton diagram. The following discus- 
sion will apply to a particular choice of such p. Define f and d by p = sf = 
*** =s f+d- 1’ so that the line in the diagram with slope p passes from the 
point (f, lr) to the point (f + d, I,&. Cancellation of the coefficients of the 
terms with the smallest powers of E in (7) requires (Y to be the root of a 
polynomial equation with degree d, with leading term ~?,-a and constant ^ 
coefficient fif+& and with an additional intermediate nonzero term for each 
point (j, Zj) ly. g m on the line in the diagram with slope p, where f < j < f + d. 
Now let p = 9/r, where 9, r are relatively prime integers. By definition, p is 
an integral multiple of l/d, so d is an integral multiple of r, say d = mr. It is 
then clear from the diagram that of the d - 1 abscissa values j between f and 
f + d, only every rth value is a candidate for the intersection of the line with a 
point with integer coordinates. Consequently the polynomial of degree d in cr 
reduces to a polynomial of degree m in cy ‘, which we may denote by Q(r). 
The conclusion is that the given value of p is associated with d roots with an 
expansion of the form (6) with 01 taking the values 

r;l r,j h=l,..., m, j=l,..., r (8) 

where the y,, are the m roots of Q(r) = 0, r,!,l r is the principal rth root of yh, 
and w is the principal rth root of unity. 

Completing the example given above, we see that the two values for p are 
so=sl=$ and sa=l. In the case p=i we have f=O, d=2, r=2, 
m = 1, with Q(-y) = y - 1, so the possible values for (II are + 1, giving the 
Puiseux series 

A(E) - x,= -t&‘/2+ **- . 
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Inthecasep=Iwehavef=2,d=l,r=l,m=I,withQ(y)=y-1,~0 

the only possible value for (Y is 1, giving the Puiseux series 

The subsequent terms in the series may also be calculated by repeating the 

process. 
The Puiseux-Newton diagram may be used to establish many results. For 

example, it is a trivial consequence of the diagram that there is a Puiseux 
series (6) with p = l/n if and only if /3p) is nonzero. 

We may now state the main result of this section. 

THEOREM 1. Consider the polynomial equation (2), with roots given by one 
or more Puiseux series of the form (6). Suppose that there exists Q, > 0 such 
that all the roots h(E) of (2) satisfy 

Re[A(E) - a] < 0 (9) 

Re pi’) > 0, 

Re /3!$) > 0, Im &? = 0, 

pJ” = 0, j=3,...,n. 

Proof. The coefficient B,(E) is the sum of the differences X, - r(c) over 
the roots A(E) of (2); thus (10) follows from (9), letting E -+ 0. The other results 
follow from the Puiseux-Newton diagram as follows. Consider the Puiseux 

series corresponding to p = sO, the smallest possible value. In order for the 
roots on the right-hand side of (6) to all be in the left half plane, it is necessary, 
because of (8), that r= 1 or r=2, with Reyh<O, h= l,...,m, in the 
former case, and 

Reyh<O, Imyh=O, h=l,...,m, (13) 

in the latter case. In both cases p > $. Since the points (j, Zj) lie on or above 
the line through the origin with slope p = so, (12) holds. In the case r = 1 we 
have p 2 1, so /3&l) is also zero. In the case r = 2, we have 

Q(y) = ym + @f’y”-’ + **- +@‘;“,. 

Since -&‘) is the sum of the roots of Q(r), (11) follows from (13). 

(14) 
n 
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The result of Theorem 1 was first obtained by Levantovskii, using a 
completely different technique developed for C’ polynomial coefficients. We 
were unable to verify some of the steps in his proof, particularly the justifica- 
tion for the division by the quantity in [15, p. 20, line D]. Although we do not 
doubt that the result is correct for C’ perturbations, we think that our 
approach using the Puiseux-Newton diagram, which requires analyticity, gives 
far more insight. 

The next theorem shows that the conditions (lo)-(12), as well as being 
necessary for (9) are sufficient for the existence of a polynomial whose roots 
have real part strictly less than Re &. 

THEOREM 2. Suppose that (lo)-(12) hold. Then there exists a polynomial 
of the form (2) such that 

Re[X(s) - &,I c 0 

on an open interval (0, Ed). 

Proof. The proof is trivial if n = 1. Otherwise, let ok(e), k = 1, . . . , n, 
be defined by the coefficients of 

i 

PS’ 
n-2 

X-X,+-&+E2 
n I i x - x, + i( pp&)1’2 + qE + E2 

I 

( 

Pj” 
x x - x, - i( p&)1’2 + T’ + E2 . 

1 

(Here i = fl.) n 

Note that two roots split from the rest, but that all the roots have the same 
real part. (It is interesting to compare this with the more complicated example 
in [IS, p. 20, line F], as well as with [21, p. 4891.) 

It is also possible to use the Puiseux-Newton diagram to make statements 
about higher-order coefficients of fij(s). For example, it seems reasonable to 
suppose that the following theorem was known to Newton, since its proof 
using the diagram is trivial. 

THEOREM 3. Let g be the minimum, over all the Puiseux series describing 
the roots, of the associated values p. Then 

pjk’ = 0 forall j > [k/g]. (15) 
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Here 1 x] is the largest integer less than or equal to r. This theorem may 

be viewed as a form of converse to the obvious fact that, if Pi(&) is identically 
zero, j = n - k, . . . , n, then for any of the Puiseux series describing the roots, 
p > l/k, since dividing P( X, E) by the factor Xnek leaves a polynomial of 

degree k. 
Finally we note that Theorem 1 can be generalized in a straightforward 

way to products of polynomials of the form (2). Since our main interest is in 

matrices, we omit the details (but see [4]). 

3. EIGENVALUES OF COMPLEX MATRICES 

Let A(‘)E gnx” be a matrix with eigenvalues Xi, . . . , h, having (alge- 
braic) multiplicities t,, . . . , t, respectively, where Re X, = * * * = Re A0 = 0 

and Re A,+, < 0,. . . , Re X, < 0. Let the Jordan form of Ato) be given by 

where 

/k = 

and the Jordan block 

has dimension nkl. We have 

hl 

Jkm, 

nkl + *‘- +nk,,,, = tk, k= l,...,a. 
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If mk = 1, then xk is said to be a nonderogatory eigenvalue, while if mk = tk, 
i.e. flkl = “. = nkmL = 1, then xk is said to be nondefective (semisimple). 

We will now consider an analytic perturbation of the matrix A(‘), i.e. a 
matrix A(E)E PZnx” each of whose elements is an analytic function of E near 
E = 0, with A(0) = A('). It will be convenient to define 

J(E) = P-'A(&)P, 

so that l(O) = J, the Jordan form of A(‘). 
We will use a powerful result of V. I. Arnold [l, Section 1 together with 

Theorem 4.41 which states that any such analytic perturbation J(E) of J has 
the following local representation: 

J(E) = Y(E)c(E)Y(E)-’ 

where Y(E) is analytic, with Y(0) = I, 

C(E) = Diag(C&)), 

ck@) = Jk + Ek(+ 

and Ek(E), which satisfies Ek(0) = 0, has a structure best described by an 
example as follows: 

Here we suppose that ]k has three blocks Jkl, ]k2,Jk3, with dimensions 
nki = 3, nka = 2, nks = 1 respectively, so that tk = 6. Each X indicates a 
distinct complex analytic function of E. Denote the diagonal blocks of Ck(&) by 
&(e); each of these has the form commonly known as a companion matrix. 
Let us write 

Ckl(E) = 

lk 1 
. * 

1 I ’ (16) 
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so that, for the example given above, 

Ck(E) = 

Again each X indicates a distinct unnamed analytic function of E. Note that 

Ck(6) = lk. 

The matrix C(E) is called a versa1 deformation of /, and the proof that this 
versal deformation exists relies on some elementary concepts from differential 
geometry, in particular the orbit of a matrix and the notion of transversality 
with respect to the orbit. The orbit of J is simply the set of matrices which are 
similar to J, i.e. have exactly the same Jordan form. The orbit is a differential 
manifold in the matrix space gnx”, and so there exists a linear manifold T 
which is tangent to the orbit at the point J. The main idea is as follows: since J 
is similar to all the matrices in its orbit, any perturbation J(E) is similar to a 
representation C(E) which lies entirely in a linear manifold of matrices 
transversal to the orbit at 1, e.g. the orthogonal complement of T. For 
example, consider the “least generic” case, where J is the identity matrix 
(which has exactly one nondefective eigenvalue); then the orbit consists of the 
single point I, and the orthogonal complement of T is Ynx”. Thus C(E) is a 
matrix with n2 distinct analytic component functions. On the other hand, the 
most generic case is where J is a diagonal matrix with distinct elements 

h,, . . . > A,. In this case it turns out that the orthogonal complement to T is the 
set of all diagonal matrices, so that it suffices for C(E) to contain only n 
distinct analytic component functions, the off-diagonal elements being zero. In 
general it turns out that the orthogonal complement to T is the set of matrices 
which commute with the transpose of J, which leads to the general minimum- 
parameter form described above. (This particular normal form is not in the 
orthogonal complement, but in another transversal linear manifold.) For 
further details, see either Arnold’s original paper, or the excellent summary 
given by Fairgrieve [6]. 

Before stating the main results we need a definition. 

DEFINITION. Define the jth 
denoted by 

generalized trace of a square matrix A, 

tr(j) A, 
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as the sum of the elements on that diagonal of A which is j - 1 positions 
below the main diagonal. Thus one obtains the ordinary trace in the case 

j = 1 and the bottom left element of the matrix in the case that j is the 
dimension of the matrix. If j exceeds the dimension of A, take tr(j) A = 0. 

THEOREM 4. Let A(E) be an analytic matrix function with A(0) = A(‘), 
A’(0) = A(‘). We shall restrict E to a nontriuial real interval [0, co]. Partition 
P- ‘A(nP conformully with the partition of J giuen aboue, and denote its diagonal 
block corresponding to Jk by Bk, k = 1, . . . , (I, with each Bk hauing diagonal 
blocks Bk, corresponding to Jkl, 1 = 1, . . . , mk. De$ne 

TV) = 1$1 tr(j) Bkl, j = 1,. . ., mfix{nk,}, k = 1,. . .,u. 

phis sum includes zero terms when j exceeds nk.,) Then, for k = 1, . . . , CJ, the 
eigenualues of A(&) corresponding to hk are the roots of 

(A - A,$’ + p&)(x - hk)+’ + ‘-’ +&t,(E) = 0, (17) 

Where the flkj(&) are analytic, with 

/3ij(0) = -Tj;i), j= l,..., “1”” {"kd . 

Proof. Define J(E) = P- ‘A( E) I’, and let C(E) be the versa1 deformation of 

J(E) described above. We have 

J’(0) = C’(0) + Y'(O)] +J(Y-l)'(O) 

= c’(o) + [Y'(O), J], (18) 

where the latter term is the Lie bracket 

[Y’(O), J] = Y’(O)J - r(o). 

Following Arnold, we note that 

([Y’(O),l], K) = 0 (19) 

for all K such that K* commutes with 1, where 

(A, B) = tr A*B, 
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the Frobenius matrix inner product, and A* denotes the complex conjugate 
transpose of A. Such matrices K * are block diagonal, K * = Diag( Kz), where 
K: commutes with Jk. From [l, 81, the matrices commuting with Jk have a 
block upper triangular Toeplitz form, specifically, for the example given above, 

a b c d e f 

a b d 
a 

= 

i ! ghi j k. 

g i 
1 m n 

Consequently, K, has a block lower triangular Toeplitz structure. Note that if 
mk = 1 (the nonderogatory case), then K, is a lower triangular Toeplitz 
matrix, while if mk = tk (the nondefective case), then there is no restriction on 

the structure of Kk. By (19), then, we have 

tr(j) Gkl = 0, j = 1, . . . , rnF { nkl}, k= l,...,a, 

where the Gkl are the diagonal blocks of [Y’(O), J], corresponding in dimen- 
sion to B,, and Jkl. (Indeed, more can be said about the off-diagonal blocks of 
[Y’(O), J] but we shall not need this.) Now, by definition, the diagonal blocks of 

j’(0) are Bkl, so, by (18), 

(20) 

here el;‘r’ is taken to be zero if j exceeds nkl. 

Since A(E) is similar to J(E) and therefore to C(E), we need only examine 
the eigenvalues of C(E). We need the following: 

LEMMA 1. 

det[XI- c~(E)] = (A- A~)~~+P~~(E)(x- ~k)~~-‘+ *** +&(E), (21) 

where 

In the case that X, is nonderogatory, the proof of Lemma I is trivial. In 
general, it may be proved by a fairly straightforward but complicated induction 
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argument which gives little insight; we shall not give it here. For a more direct 
but perhaps less intuitive proof, see [4]. The proof of Theorem 4 is completed 
by combining (20) and (21). n 

The next theorem continues to use the notation of Theorem 4. 

THEOREM 5. Suppose now that all the eigenvalues of A(E) have nonpositive 
real part on a nontrivial interval [0, eel. Then, for k = 1, . . . , p, 

and 

Re 7i1) < 0, 

Re ri’) < 0, Im 7-i*) = 0, 

(22) 
(23) 

rj;i) = 0, j = 3,. . . , rn? { nkl). (24) 

Proof First note that there is no restriction on the eigenvalues of Ck(&) 
for k > p as long as &o is small enough, since He Xk < 0 for k > p. The proof 
is completed by applying Theorem 1 to Equation (17), k = 1, . . . , p. n 

If X, is nonderogatory, i.e. mk = 1 and Jk = Jkkl, Bk = B,,, then we have 
$1 = t&) B,, j = 1, . . . , tk. The next theorem shows that the necessary 
condition of Theorem 5 is also a sufficient condition for the existence of a 
stable family A(E) when the eigenvalues with real part equal to zero are all 
nonderogatory. 

THEOREM 6. Assume that Xk is nonderogatory, i.e. mk = 1, for k = 
1 p. Let B be a given matrix, and denote its diagonal blocks, partitioned 
c&o&ally with J, by B,, k = 1, . . . , cr. Suppose that B satisfws 

Re tr(‘) B, < 0, 

Re trc2) B, < 0, Im trc2) B, = 0, 

tdj) B, = 0, j = 3,. . . , tk, 

for k = 1, . . . , p. Then there exists an analytic family A(E), with A(0) = A(a), 
A’(0) = PBP- ‘, such that the maximum real part of the eigenvalues of A( E) is 
strictly negative on an open interval (0, ee). 

Proof. There exists an Arnold normal form for J + E B, namely 

J+ EB = Y(e)C(e)Y(e)-‘, 
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where Y(E) is analytic and satisfies Y(0) = I, and where C(E) = Diag(Ck(&)). 

We need consider only k Q p as long as E is small enough. By the nonderoga- 
tory assumption, Ck( E) consists of a single companion matrix block; see (16). 
We have 

B = c’(0) + [Y'(O),]]. 

Observe that the relevant diagonal blocks of the second term have generalized 
traces equal to zero, so the first-order terms in the last row of Ck(e) are 
tr(j) Bk, j = tk, . . . , 1. Now define C(E) to be another block diagonal matrix 
with the same structure as C(E). Specifically, choose C(E) so that C(0) = C(0) 
= J and C’(O) = C’(O), with the k th block of C(E) set equal to the companion 
matrix for the corresponding stable polynomial (of degree tk) defined by 
Theorem 2. Let 

J(E) =j+ EB + Y(E)[E(E) - c(E)]Y(E)-’ 

= Y(E)i;(E)Y(E)-‘, 

so that J’(0) = B and, by Theorem 2, J(E) is stable on an interval (0, ~a). The 

proof is completed by defining 

A(E) = I’/(+‘-‘. n 

We note that, in the nonderogatory case, Theorem 4 is implicit in the work 
of Levantovskii. However, he apparently did not obtain our necessary condi- 
tion in the derogatory case. Regarding analyticity, Arnold [l, p. 371 mentions 
that his normal form may be extended to C’ perturbations, although the proof 
is tedious. As in the polynomial case, this extension does not seem to be worth 
the effort involved. 

Having discussed the nonderogatory case, consider now the other ex- 

treme case, namely when all the eigenvalues with real part equal to zero 
are nondefective (semisimple), i.e. mk = tk, k = 1,. . . , p. The necessary 
condition of Theorem 5 reduces to 

RetrBk Q 0, k= l,...,p, 

since all the Bkt are of dimension one. This condition is an obvious necessary 
condition for stability, and equally clearly not sufficient for the existence of a 
stable family A(E) with A’(0) = PBP-‘. A necessary and sufficient condition is, 
however, well known in this case, as the following theorem states. 
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THEOREM 7. Assume that ?Q is nonddective, i.e. mk = tk, for k = 

1 >..‘> p. Let A(E) be any matrix family with 

A(0) = A(‘), A’(0) = PBF’, (25) 

and where, as before, Bk is the diagonal block of B corresponding to hk. Then a 

necessary condition for all the eigenvalues of A( E) to have nonpositive real part 

on a nontrivial real interval [0, eO] [respectively, sufJicient condition for all the 

eigenvalues of A(e) to have negative real part on an open interval (0, Ed)] is that, 

fmk= l,..., p. the maximum real part of the eigenvalues of B, is less than or 

equal to zero [respectively, less than zero]. 

The proof uses [13, 211. Note that in this case the relevant first p columns 

of P are eigenvectors. Note also that, unlike in Theorem 6, the sufficient 
condition applies to any family A(E) satisfying (25); this is because 
the eigenvalues are Lipschitz in E. Analyticity of A(E) is not required; C’ 
parameter dependence is sufficient. 

When X, is simple, i.e. mk = tk = 1, k = 1, . . . , p, the necessary condi- 
tions of Theorems 5 and 7 and the sufficient condition of Theorem 6 all reduce 
to the following: the first p diagonal elements of B have nonpositive real part. 

The most difficult case is therefore the derogatory, defective case, for 
which we have given only a necessary condition. Perhaps a sufficient condition 
could be derived by consideration of the off-diagonal blocks of [Y’(O), J]. 

4. THE REAL CASE 

Every eigenvalue of a real matrix is either real or one of a complex 
conjugate pair. The results given in Section 3 apply, in particular, in the real 
case. However, they may be simplified. When A(‘) is real, its Jordan form may 
be taken to have the form 

where PTQ = Z and 

J= Diag(~o,h,J1,....J,,~~,...), 

P= [P,,P,,p, ,..., P,.p,,...]~ 

Q= [Q,,Q,,~,,-..,Q,,o,,...]. 
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Here Jo corresponds to the eigenvalue A, = 0, the only possible real eigen- 
value on the imaginary axis; this block and the corresponding blocks Pa, Q0 
may be absent. The blocks I’,, and Qa can be taken to be real. Blocks 

1 . . .) J, correspond to eigenvalues with positive imaginary part and zero real 
iart. The symbol Z, of course, denotes the complex conjugate of z. The 
number of eigenvalues on the imaginary axis is p = 2s + 1 if the zero 
eigenvalue is present and p = 2s otherwise. Blocks not explicitly listed are of 
no interest, since their eigenvalues have negative real part. 

Now assume also that A(E) is real. We have, if the zero eigenvalue is 
present, that B, = QgA(‘)P, is real, and hence that r6j) is real for all j. 
Consequently, the conditions (22)-(24) reduce, in the case k = 0, to 761) < 0, 
rh2) Q 0, and rhj) = 0 for j > 2. 

Now consider a complex conjugate pair of eigenvalues. In this case the $1 
are generally complex, but they occur in complex conjugate pairs. Since each 
of conditions (22)-(24) applies equally to a complex number or its conjugate, 
each condition appears exactly twice. Thus it is necessary to apply them only 
to rl;” corresponding to eigenvalues with positive imaginary part. 

Most likely it is possible to rewrite these conditions using only real 
quantities by using the real Jordan form [7, 141. However, our attempts to do 
this have led only to complicated results. See [7] for the extension of the 
Arnold normal form to the real field. 

Regarding complex conjugate roots of polynomials with real coefficients: 
instead of (2) we may consider 

P(X,&) = [(A- ia)n+&(E)(X- ia)“_l+ -** +/3”(E)] 

x[(h+ kf+ &(+A+ k~)~-l + *-* +6”(c)], (26) 

where a is real and nonzero. Suppose now that P( A, E) has no root with 
positive real part on a nontrivial interval [0, ~a]. By the generalization of 
Theorem 1 mentioned at the end of Section 2, it follows that (IO)-(12) hold. 
Let 

R(X) = X2 + a2. 

Multiplying out the factors in (26), we see that 

P( X, e) = R( A)“-‘[ R( X)’ + v@R( “) + Y~ER( X) + Y~E] + 0( &“), 

where vi 2 0, us < 0, and there is no sign restriction on vz. The same result 
(with a different derivation) is given in [15, p. 20, line E]. 
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5. REDUCING THE SPECTRAL RADIUS 

The spectral radius of a matrix is the radius of the smallest disk in the 
complex plane containing all its eigenvalues. For the purposes of this section, 

we change the definition of matrix stability to require the spectral radius to be 
less than one. We first modify the polynomial theorems accordingly. 

THEOREM 8. Consider thP polyrwmid equation (2), with roots given by one 
or more Puiseur series of the form (6). Suppose that there exists Q, > 0 such 
that all the roots A(E) of (2) satisfy 

for 0 Q E < Ed. Then 

Re &fl$‘) > 0, 

Re Gp&‘) > 0, Im %/3p) = 0, 

pj” = 0, j = 3,. . . , n. 

(28) 
(29) 

(30) 

Proof. First note that when X, is real and positive the result is the same 
as before; this is because the circle of radius 1 X, 1 centered at the origin lies to 
the left of the vertical axis Re z = Re &,. When X, is real and negative we 
obtain the negative of the original conditions, since the circle lies to the right 
of the corresponding axis. In general, (27) is equivalent to 

Reh,[X(e) - a] < -*IX(E) - &(“, 

so that a necessary condition for (27) to hold is that 

Re&[X(e) - a] < 0. (31) 

The proof is now an easy modification of the proof of Theorem 1 as follows. 
The coefficient &(e) is the sum of the differences X, - X(E) over the roots 
X(E) of (2); thus the first condition follows from (27), letting E -+ 0. The other 
results follow from the Puiseux-Newton diagram. In order for the roots on the 
right-hand side of (6) to lie in the half plane defined by (31), it is necessary that 
r = 1 or r = 2, with Re -h-y,, < 0 in the former case and 

Re %7h < 0, Im %rh = 0, h= l,...,m, 

in the latter case. The rest of the proof is exactly as before. n 
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A sufficient condition is somewhat harder to obtain in the spectral-radius 
case. The difficulty is, by way of example, that an eigenvalue splitting of the 
form 1 f ie’/‘, while having the same real part as the unperturbed eigenvalue 
1, has spectral radius fi. Consequently, we need to make an assumption 
that the left-hand side of (28) is sufficiently bigger than the first left-hand side 
of (29). For example, we have: 

THEOREM 9. Suppose that X, # 0 and that (28)-(30) hold. Suppose also 
that 

Then there exists a polynomial of the form (2) such that 

I”(&)1 < I %I 

on an open interval (0, Q. 

Proof. Let Pk(e), k = 1, . . . , n, be defined by the coefficients of 

i 

PP’ 
n-2 

x-x,+--E 
n 1 i X - X, + i(fif)E)1’2 + Fe 

I 

x A - x, - i( P&%)1’2 

( 

PP’ 
+--E. 

n 
1 

(32) 

Note that the larger ( X, ( is, the more likely (32) is to be satisfied for given 
@), #). This reflects the fact that the smaller a circle is, the greater is the 
distance between it and a tangent line segment of given length. In the limit 
case & = 0, reduction of the spectral radius is, of course, impossible. The 
factor n in (32) reflects the particular choice of polynomial used in Theorem 2 
and can be improved (see [4]). 

Now take A(‘) to have the same Jordan form as in Section 3, but assuming 
1x,1 = *** = IX,I=land (XP+rl<l,..., Ih,I<l.InsteadofTheo- 
rem 5. we obtain: 

THEOREM~~. Suppose that the spectral radius of A( E) is less than or equal 
to one on a nontrivial interval [0, ~~1. Then, for k = 1, . . . , p, 
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7p = 0, j=3,...,mpx{rr,,}. 

The proof is identical to the proof of Theorem 5, using Theorem 8 instead 
of Theorem 1. 

In the nonderogatory case, we obtain the following sufficient condition. 

THEOREM 11. Assume that hk is nonderogatory, i.e. mk = 1, for k = 

1 . . 7 p. Let B be a given matrix and denote its diagonal blocks, partitioned 

c&ormally with J, by B,, k = 1, . . . , u. Suppose that B satisfies 

Re xk tr(‘) Bk < 0, 

Re xi tr@) Bk < 0, Im %t tr@) Bk = 0, 

tr(j) Bk = 0, j=3,...,t,, 

fork= l,..., p. Suppose also that 

2 
ltd2) B, 1 < - - Re xk tr(‘) Bk . 

n (33) 

Then there exists an analytic family A(E), with A(0) = A(‘), A’(0) = PBP- ‘, such 

that the spectral radius of A(E) is strictly less than one on an open interval 

(0, Eo)* 

The proof combines those of Theorem 6 and 9. As before, (33) can be 
weakened. 

Finally, in the nondefective case we have the following modification to 

Theorem 7. 

THEOREM 12. A necessary condition for the spectral radius of A( E) to be 

less than or equal to one on a nontrivial real interval [0, ~~1 [respectively, 
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suffh.%nt condition for the spectral radius of A( E) to be less than one on an upen 
interval (0, Ed)] is that, for k = 1, . . . , p, the maximum real part of the 
eigenvalues of & Bk is less than or equal to zero [respectively, less than zero]. 

The proof uses [21]. 

6. PRACTICAL IMPLICATIONS 

How useful are our results in practice? The necessary condition is practical 
in the sense that, if the Jordan form of A(‘) is known, a candidate first-order 
perturbation A(‘) can be rejected immediately if it does not satisfy the given 
necessary condition. However, the sufficient condition is of little practical use, 
since nothing is said about how to compute the actual matrix family A(E). 
Indeed, it is well known that the nonsymmetric eigenvalue problem is very 
ill conditioned in the case of multiple eigenvaltles. The reason for the ill- 
conditioning is immediately apparent from the Puiseux series (6); the eigen- 
values are not Lipschitz when the Puiseux exponent is less than one. Comput- 
ing the Jordan form of A(‘) is itself a very ill-conditioned numerical problem, 
and, in fact, it is the instability of this process which originally led to Arnold’s 
normal form for perturbed matrices. 

instead of the Jordan form, one may consider reduction of A(‘) to some 
other canonical form. The most stable of these is the triangular or Schur form, 
since only unitary similarity transformations are required; but the Schur form 
gives little information beyond the eigenvalues themselves. Nonunitary trans- 
formations are required to further reduce a matrix to block diagonal form, with 
one triangular block associated with each eigenvalue [lo, Section 7.1.31. In 
fact, our necessary and sufficient conditions have recently been extended to 
apply to the block diagonal canonical form [4]. 

The idea of the Schur or block diagonal forms, as opposed to the Jordan 
form, is to avoid the reduction to too small a number of parameters. On the 
other hand the Arnold theory uses minimum-parameter versa1 deformations; 
hence the use of the Jordan form and the block triangular Toeplitz matrices 
which commute with the Jordan form. Several proposals have been made to 
stabilize the computation of the Jordan form of a matrix A(‘); see [5, 9, 121. 
One approach is to compute the “least generic” of the Jordan forms of those 
matrices which are within some tolerance of A co) Perhaps the most promising . 
approach along these lines is that of Fairgrieve [S], who has introduced a 
path-following method for this purpose. Fairgrieve’s method is based on 
Arnold’s normal form and in particular uses Arnold’s classification of the 
degeneracy hierarchy [l], in which, as is well known, a nonderogatory eigen- 
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value is the most generic and a nondefective one the least generic, but for 
which the ordering of the “middle” cases is by no means obvious. 

We conclude with the description of two numerical experiments, con- 
ducted in Matlab [18], which give substantial insight. In the first experiment, 
we set J to the Jordan block of order n = 10 with zeros on the diagonal and 
ones on the superdiagonal. We then computed the maximum real part of the 
eigenvalues of J + EB(~), say rk, where E = 106” and Bck) is a random real 
matrix of order n with the property that 

tr(j) B(k) = 0, j=n-k+l,...,n. (34) 

Thus, for k = 1, the bottom left element of i?ck) is zero; in addition, for k = 2, 
the two elements on the (n - I)th subdiagonal sum to zero, etc. This matrix 
was computed using the Matlab pseudo-random-number generator, first pro- 
ducing a matrix with elements independently uniformly distributed in the 
interval [ - 1, 11, then adding the necessary k constant diagonals to enforce 
(34). The results were averaged over 100 random matrices and the resulting 
averaged values of rk plotted, as a function of k, as *‘s in Figure 2. The + 
symbols in Figure 2 show the quantities E ‘hnmk) Inspecting Figure 2, one sees . 
a steady reduction in the averaged value of t-k as k increases from 0 to n/2, 
with close agreement between the two plotted values. At k = n/2, however, a 
“floor” is reached. Variation of E and the machine precision showed that this 
floor is not a consequence of roundoff error, as might be suspected. Instead, it 
is easily explained by the Puiseux-Newton diagram. By imposing (34) we are 
setting the corresponding polynomial coefficients $‘) to zero. Thus for each k 
between 1 and n /2, slopes with value l/n, l/( n - l), . . . , l/( n - k + 1) are 
not possible. Consequently, roots of the form (6) with corresponding powers 
are not possible, and the perturbed eigenvalues are instead dominated by 
terms of order E ‘lcnmk). Hence the close association of the “*” and “+” plots. 
However, when k reaches n/2, the second-order coefficient fi’,“) comes into 
play. Since the second-order terms arising from the Arnold normal form are 
not zero, the slope with value 2/n cannot be eliminated from the Puiseux- 
Newton diagram. Hence the “floor.” We have succeeded only in reducing the 
order of the eigenvalue perturbations from ~if” to ~~1”. 

In the second experiment, we set 1 to the Jordan block of order n and 
defined B to be a real random matrix (in the same sense as above) with the 
property that 

b-(j) B = 0, j=l, j=3 ,..., 12. 
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+ 

l 

+ 
. 

k (#B=O, j=n-k+l,...,n; n=lO) 

FIG. 2. 

This time we plotted the maximum real part of the eigenvalues of J + EB 
against the value of tr t2) B Again, the results were averaged over 100 random . 
cases. Plots are shown in Figure 3 for n = 4 and n = 5. The reason for the 
two very different graphs is similar to the explanation for the result of the first 

experiment. In the case n = 5, the nonzero second-order coefficient fl&‘) 
yields a slope with value g in the Puiseux-Newton diagram; this prevents a 

reduction in the maximum real part of the perturbed eigenvalues. However, in 
the case n = 4, the slopes in the diagram must be at least $, so that stability is 
possible when tr (2) B ( 0. Theorem 5 suggests that the larger the quantity 
- trc2) B is, the “more stable” the perturbed matrix should be, and indeed this 

is supported by the graph for ri = 4. Stability is not actually achieved, 
however, because of the effect of flq , c2) which is in general nonzero. 

We thank V. 1. Arnold fbr bringing the work of Levantovskii to our attention. 
We also thank R. S. Womersley fi some helpful discussions during the early 
stages of this work. This research was supported in part by National Science 
Foundatiun grants DMS-9102059 and CCR-9101640. 
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