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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING*

J. v. BURKEt AND M. C. FERRIS$

Abstract. The notion of a sharp, or strongly unique, minimum is extended to include the
possibility of a nonunique solution set. These minima will be called weak sharp minima. Condi-
tions necessary for the solution set of a minimization problem to be a set of weak sharp minima
are developed in both the unconstrained and constrained cases. These conditions are also shown to
be sufficient under the appropriate convexity hypotheses. The existence of weak sharp minima is
characterized in the cases of linear and quadratic convex programming and for the linear complemen-
tarity problem. In particular, a result of Mangasarian and Meyer is reproduced that shows that the
solution set of a linear program is always a set of weak sharp minima whenever it is nonempty. Con-
sequences for the convergence theory of algorithms are also examined, especially conditions yielding
finite termination.

Key words, finite termination, strongly unique minima, sharp minima
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1. Introduction. Let f: X H R’- RU{-x3, x3}; we say that f has a sharp
minimum at 2 e Rn if f(x) >_ f(2)+ a IIx 211 for all x near 2 and some a > 0. The
notion of a sharp minimum, or equivalently, a strongly unique local minimum, has far
reaching consequences for the convergence analysis of many iterative procedures [1],
[8], [11], [12], [17], [18]. In this article, we extend the notion of a sharp minimum to
include the possibility of a nonunique solution set. We say that S c Rn is a set of
weak sharp minima for the function f relative to the set S c Rn where S c S if there
is an a > 0 such that

(1) f(x) > f(y) + adist (x

for all x E S and y E S where

dist (x IS):- inf IIx-

The constant a and the set S are called the modulus and domain of sharpness for f
over S, respectively. Clearly, S is a set of global minima for f over S. The notion of
weak sharp minima is easily localized. We will say that 2 e Rn is a local weak sharp
minimum for f on S c Rn if there exists a set c S and a parameter 6 > 0 with
2 e S such that the set S A {x x 211 < } is a set of weak sharp minima for the
function

f(x) { f(x), ifllx-211 <6,
+cx3, otherwise,

relative to the set S. Since the restriction to the local setting is straightforward, we
will concentrate on the global definition.

The study of weak sharp minima is motivated primarily by applications in convex
and convex composite programming, where such minima commonly occur. For ex-
ample, such minima frequently occur in linear programming, linear complementarity,
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1341

and least distance or projection problems. The goals of this study are to quantify this
property, investigate its geometric structure, characterize its occurrence in simple con-
vex programming problems, and, finally, to analyze its impact on the convergence of
algorithms. Furthermore, although our primary interest is with convex programming,
we also investigate the significance of weak sharp minima for nonconvex problems.
However, in the latter case, rather strong regularity conditions are required to yield
significant extentions of the convex case. Nonetheless, we do obtain some very in-
teresting and significant results for differentiable problems with convex constraints.
These results extend and refine earlier work of A1-Khayyal and Kyparisis [1] on the
finite termination of algorithms at sharp minima. In a later study, we also show how
these results can be applied to convex composite optimization problems to establish
the quadratic rate of convergence of a variety of algorithms. This study builds on the
work initiated in [9].

Our study begins in 2 with the derivation of first-order necessary conditions for
the solution set of a problem to be a set of weak sharp minima. The unconstrained
(S Rn) and constrained cases are treated separately. When the problem data
is convex, it is shown that these conditions are also sufficient. In the third section
these results are applied to three important classes of convex programs: quadratic
programming, linear programming, and the linear complementarity problem. In the
final section we examine certain tools for studying the convergence of algorithms in
the presence of weak sharp minima. In particular, it is shown how we can attain finite
convergence to weak sharp minima.

The notation that we employ is for the most part standard; however, a partial
list is provided for the readers’ convenience. The inner product on Rn is defined as
the bilinear form

n

i--1

We denote a norm on Rn by I]’[[. Each norm defines a norm dual to it and is given by

IlXllo := su, (u,x).

The associated closed unit balls for these norms are denoted by B and B, respectively.
The 2-norm plays a special role in our development and is denoted by

]Ix[] 2 := V/(x,x).

If it is understood from the context that we are speaking of the 2-norm, then we will
drop the subscript "2" from this notation.

Given two subsets A and B of Rn and/ E R, we define

A =k B := {a-t- 3b a E A, b B}.

On the other hand,

A \ B := {a e A a q B}.

If A C Rn then the polar of A is defined to be the set

A := {x* e Rn: (x*,x) _< 1 Vx e A}.
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1342 J.V. BURKE AND M. C. FERRIS

This notation is consistent with the definition of the dual unit ball B. The indicator
and support functions for A are given by

(xlA)’= 0 if x E A,
otherwise

and

*(x IA):= sup((x*, x): x* e A},

respectively. Moreover, we write int A for the interior of A, clA for the closure of
A, and span A for the linear span of the elements of A. The relative interior of A,
denoted ri A, is the interior of A relative to the aJfine hull of A, which is given by

s {1,2,...}, xk A and Ak R (
for k 1,2,.. s, with s f.--k=l Ak 1

The subspace perpendicular to A is defined to be

A-L:={yeRn (y, x) 0 for all x e A}.

If A is closed, then we define the projection of a point x Rn onto the set A as the
set of all points in A that are closest to A in a given norm. In this paper, we will only
speak of the projection with respect to the 2-norm; it is denoted by

P(x A) ( e A IIx-112 inf IIx--yEA

The projection is an example of a multivalued mapping on Rn. The set A is said to
be convex if the line segment connecting any two points in A is also contained in A.
The convex hull of the set A, denoted co (A), is the smallest convex set that contains
A; that is, co (A) is the intersection of all convex sets that contain A. It is interesting
to note that the projection operator can be used to characterize the closed convex
subsets of Rn. That is, the set A is closed and convex if and only if the projection
operator for A, P(. A), is single valued on all of Rn [2], [16].

Given x A, we define the normal cone to A at x, denoted N(xlA), to be the
closure of the convex hull of all limits of the form

lim t- (Xk Pk)
k

where the sequences {tk} C R, {pk} c A, and {x} c Rn satisfy tk O, pk P(xk
A), and Pk --+ X. If A is convex, we can show that this definition implies that

N(xlA)={x*eR (x*,y-x)<_0VyeA}.

The tangent cone to A at x is defined dually by the relation

T(x [A):= N(x [A).
If A is convex, we have the relation

T(x A) cl [UA>0A(A x)].
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1343

The contingent cone to A at x plays a role similar to that of the tangent cone but is,
in general, larger. The contingent cone to A at x is given by

K(x A) := {d E Rn 3tk J, O, dk --* d, with x + tkdk E A}

The set A is said to be regular at x A if T(x A) K(x A). In particular, every
convex set is regular.

Let f: X R R t_J {+(x}. The domain and epigraph of f are given by

dora f :-- {x e Rn f(x) < d-oo}

and

epif := ((x,A) e R R f(x) <_ },

respectively. Observe that f is lower semicontinuous if and only if epi f is closed. For
x dom f, we define the subdifferential of f at x to be the set

Of(x) "= {x* (x*,-1) e N((x, f(x))I epi f)),

and the singular subdifferential of f at x to be the set

Of(x) :.- {x* (x*,0) e N((x, f(x))I epi f)}.

The mappings Of and Of are further examples of multivalued mappings on Rn.
We observe that the set Of(x)t30f(x) is always nonempty even though Of may be
empty at certain points. Moreover, the function f is locally Lipschitzian on Rn if and
only if Of is nonempty and compact valued on all of R. The domain of Of is the set

dom0f {x* Rn Of(x) 0}.

If f is convex, then this subdifferential coincides with the usual subdifferential from
convex analysis. The generalized directional derivative of f is the support function of
Of(x),

fo (x; d) "= *(d Of(x)),

and the contingent directional derivative of f at x in the direction d is given by

f- (x; d) := liminf f(x + tu) f(x)

The relation f-(x; d) _< f(x; d) always holds. The function f is said to be regular at
x if fo (x; d) f-(x; d) in which case the usual directional derivative,

f’ (x; d)’= lim f(x + td) f(x)
to t

exists and equals this common value. See [7] for further details of subdifferential
calculus.
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1344 J.V. BURKE AND M. C. FERRIS

2. Subdifferential geometry. We begin with a study of some geometric con-
sequences of of weak sharp minima. Specifically, we are interested in first-order nec-
essary conditions. The general unconstrained (S Rn) and constrained cases are
treated separately. In both cases, it is shown that the necessary conditions are also
sufficient under appropriate convexity hypotheses. The following preliminary result
is required.

LEMMA 2.1. Suppose f: R - R is closed, proper, and convex,, the sets S:
argmin(f(x) x e R} and C are nonempty, closed, and convex subsets of R" with
C C_ S, and c > O. The following are equivalent:

1. B N( S) c_ 0(), o a e C,
e. BUcN(x IS) c_ 0().

Proof. [1 == 2]. Trivial.
[2 1]. Let z e C and z* e cB [ N(z I). Then by hypothesis, z* e Of(u)

for some u E C. Since C c_ implies that Of(u) C_ N(ul), hence z* N(ul), it
follows from z* N(z S that

(2) <z*, ) (z*, z).

However, z* e Of(u) is by definition f(y)- f(u) >_ (z*, y- u), for all y. Since u,
z e S, f(u) f(z) so that (2) gives f(y)-f(z) >_ (z*, y z), for all y, or equivalently,
z* Of(z).

Necessary conditions for weak sharp minima in the unconstrained case now follow.
THEOREM 2.2. Let f: R" -, R be lower semicontinuous and a > O. Consider

the following statements:
1. The set S is a set of weak sharp minima for the function f on Rn with

modulus a.
2. For all d Rn,

f-(x; d) >_ cdist (d K(x

3. For all d Rn

4. The inclusion

holds.
5. The inclusion

holds.
6. For all y Rn,

f(x; d) _> (dist (dlT(x IS)).

B NN(x ) c_ of(x)

f’ (p; y p) _> cdist (y S),

where p P(y S).
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1345

Statement 1 implies statement 2 for all x E S. Statement 2 implies statement 3 at
points x at which is regular. Statements 3 and 4 are equivalent. If f is closed
proper and convex and the set S is nonempty closed and convex, then statements 1-6
are equivalent with 2, 3, and 4 holding at every point of S.

Proof.
[1 == 2]. Let x S. The hypothesis guarantees that for all t and d

f(x - td’) f(x)

_
cdist (x + td’ ),

which implies that

f(x + td’) f(x) > dist (x + td’ S) dist (x S)
t t

By taking lim infs of both sides as d’ - d and t 0 and applying [4, Thm. 4], we
obtain the result.

[(2 plus regularity 3]. Simply observe that regularity at x S implies the
equivalence T(x IS) g(x IS) and by definition f(x; .) >_ f-(x; .).

[3 == 4]. We recall from [5, Whm. 3.1] that if K c an is a nonempty closed
convex cone, then

dist (x K)- *(x K NB).

The result now follows from the fact that f(x; .) -*(.
Observe that if f is closed proper and convex, and is nonempty closed and

convex, then f is regular on its domain and is regular at each of its elements.
Hence either one of the statements 1 or 2 implies both 3 and 4 for all x S.

[(4 holds for all x e S) 5]. Trivial.
[(5 plus convexity) 4]. Convexity and Lemma 2.1 combine to establish that

5 implies 4.
[(5 plus convexity) == 1]. Given y e Rn, Theorem 1 in [4] implies the existence

of a x* e aB ’1N(P(y J) ) such that adist (y ) (x*, y} *(x* ). Thus,
by hypothesis, there exists a x S with x* Of(x). Hence

f(y)

_
f(x) + (x*, y- x)_
f(x) + (x*, y) (x*, x)

>_ f(x) + (x*, y) b* (x* )
f(x) + dist (y S).

Since y Rn is arbitrary, the result is obtained.
[(1 plus convexity) 6]. Let y be given and define p:= P(y S) so that

f(y) >_ f(p) + dist (y S) f(p) + IlY-PlI. Let z Ay + (1 A)p for A e [0, 1].
Then p-- P(z S and

implying that

The result now follows in the limit.
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1346 J.V. BURKE AND M. C. FERRIS

[(6 plus convexity) 1]. Since f is convex it follows that for all x and y

inf I f(x -b t(y- x))- f(x)lf’(x;y X)
t>0 L t

so that for any y we may take x P(ylS) p, t 1 and

f(p + y p) f(p) _> f’ (p; y p) _> adist (y S). [:]

COROLLARY 2.3. Suppose f is closed proper and convex and has a set of weak
sharp minima that is nonempty, closed, convex, and compact. Then

0 e int U Of().

Proof. The corollary follows if we can show that

U N(x

Clearly, U,e N(xiS) c R, so let y E Rn. By continuity of (y, .) and compactness
of :

z* E arg maXze (y, z)

so. that (y, z- z*) _< 0, for all z e S. Hence y e N(z* IS). u
In the constrained case, we must introduce a constraint qualification to guarantee

the validity of the type of first-order optimality conditions that are required for our
analysis. For the problem

minimize f(x),(3) x e S

these optimality conditions take the form

(4) 0 e Of(x)+ N(x IS).

Condition (4) is not always guaranteed to be valid even in the fully convex case, so a
constraint qualification is required.

Example 2.4. Consider (3), where f: R - R is given by

-x/1 + x2,f(x) :--
-boo,

forxe [-1, 1]
otherwise,

and S := (x x _< -1}. This is a convex program with a closed proper convex
objective function having unique global solution -1. However, (4) does not hold
since Of() O.

For this reason we introduce the following constraint qualification due to Rock-
afellar [20].

DEFINITION 2.5. We say that the basic constraint qualification (BCQ) for (3) is
satisfied at x S if for every u Of(x) and v N(x[S) such that u + v 0 it
must be the case that u v 0. The BCQ is said to be satisfied on a set S c S if it
is satisfied at every point of S.
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1347

From Rockafellar [20, Cor. 5.2.1], we know that the optimality condition (4) is
satisfied at every local solution to (3) at which the BCQ holds. In particular, if f
is locally Lipschitzian on Rn, then Of(x) {0} on all of Rn; hence the BCQ is
vacuously satisfied on all of S, so (4) holds at every local minima for (3).

THEOREM 2.6. Suppose f:Rn R is lower semicontinuous and S c S are
nonempty closed subsets of Rn.

(a) The inclusion

(5) aB c 0f()+ [T( S)NN( .
holds at 2 E S if and only if

f(2; z)

_
Ilzll v z e T( S)N N(2 ).

(b) If S is a set of weak sharp minima .for f over S with modulus c > 0 such
that the BCQ holds at every point of S, then .for each 2 S at which f, S, and S are
regular, we have the inclusion (5).

(c) If we further assume that f is closed proper and convex and the sets S and
S are nonempty closed and convex, then S is a set of weak sharp minima for f over
S with modulus c > 0 if and only if the inclusion (5) holds for all 2 S.

Proof. (a) We show that (5)and (6)are equivalent. Clearly, both statements
are false if Of(2) is empty, so we assume it to be nonempty. First note that (6) is
equivalent to

(7) sup {(x*, z) x* e Of(2) }

_
I[zl[ Vz e T(2 S) N N(2 ).

We show this is equivalent to

This is accomplished in two parts. First, it is shown that the supremum in (8) is
infinite if z T(21S N(21S and then it is shown that the suprema in (7) and
(8) are equal if z e T(2 S) n N(2 S). Suppose z T(2 S) N(2 S). Then there
exists z* e IT(2 S)N(2 )] such that (z*,z) > 0. Let x* e Of(2), which is
nonempty by assumption, and consider x* +/kz* as /k oc. Since (x* + Az*, z} T
+cx) as/k $ +x, we see that the supremum in (8) is infinite. Suppose that z
T(2 S) n N(2 S). Then

sup { (x*, z) x* e Of(2) }

since 0 e [T( S)NN( )] . However

sup { (x*

sup {(y*, z) y* e Of(2)}

by the definition of a polar cone.
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1348 J.V. BURKE AND M. C. FERRIS

Note that (8) is equivalent to

*(z IB) < *(z [T( S)NN( q)] )’
which is equivalent to

which establishes the result.
(b) The definitions imply that is a set of weak sharp minima for f over S

with modulus c > 0 if and only if S is a set of weak sharp minima for the function
h(x) f(x)+ (x IS) over R" with modulus > 0. We will show that this implies
(6) for every 5: E at which f, and S are regular.

Let 5: E be a point at which f, , and S are regular. Since is a set of weak
sharp minima for h over Rn with modulus c > 0, Theorem 2.2 implies that

h’(5:; d) _> adist (dIT(IS)) for all d.

Now, by the BCQ, [20, Cot. 8.1.2], and the regularity of S, we know that

(9) h’(5:; d) <_ f’(5:; d) + %5(. S)’(5:; d) f’(5:; d) + (d T(5: S)).

Therefore,

f’(5:; d) _> dist (d T( )) for all d e T( S).

This last inequality implies (6) since

dist (dlT(YIS)) Ildll
for every d e N( S).

(c) Since convexity implies regularity, half of this result has already been estab-
lished in part (b). It remains to show that (5) holding for all 5: implies that is
a set of weak sharp minima for f over S with modulus .

Let 5: . It was shown in part (a) that the statement (5) is equivalent to
the statement (6). Thus we need only show that if (6) holds for all 5: e S, then
S is a set of weak sharp minima for f over 5’ with modulus c. To this end, let
x E Rn be given and set 5: P(x ,). By (9) we only need consider cases where
x 5: T(5: S). From the definition of projection it follows that x- 5: N(5: ).
Therefore, f’(5:;x- ) >_ llx- 11, for all x and hence h’(5:;x- .) >_ (dist (x I),
for all x. By Theorem 2.2, S is a set of weak sharp minima for f over S with modulus

COROLLARY 2.7. Suppose f" R" - R is differentiable and S c S are nonempty
closed subsets of Rn.

(a) The inclusion

(10)

holds at S if and only ifD
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1349

(b) If S is a set of weak sharp minima .for f over S with modulus > O, then
.for each E at which S and are regular, we have the inclusion (10).

(c) If we further assume that f is closed proper and convex and the sets S and
S are nonempty closed and convex, then S is a set of weak sharp minima for f over
S with modulus > 0 if and only if

Remark. The corollary given above is a strengthening of [1, Prop. 2.2]. In par-
ticular, the equivalence in part (a) is proven without assumptions on convexity of
S. In fact, under the convexity assumptions in part (c), the condition given in [1] is
equivalent to strong uniqueness. By relaxing strong uniqueness to the assumption of
a weak sharp minimum, all the results of [1, Prop. 2.2] still follow, with the exception
of uniqueness.

3. Some special cases. We now examine three important classes of convex pro-
gramming problems and characterize when these problems posses weak sharp minima.
The problem classes considered are linear and quadratic programming and the linear
complementarity problem.

3.1. Quadratic programming. We will use the results on weak sharp minima
from 2 to obtain a necessary and sufficient condition for weak sharp minima to occur
in convex quadratic programs.

The quadratic programming problem is

(11)
minimize 1/2 (x, Qx)+ (c,x),
xS

where S is polyhedral and Q Rnxn is symmetric and positive semidefinite. The key
to our characterization of when problem (11) has weak sharp minima is the relation
(6) in Theorem 2.6. To apply this result, we must first obtain a tractable description
of the tangent cone to the solution set of (11). This is accomplished by using the
description of the solution set of a convex program given in [3], [14].

THEOREM 3.1. Let be the set of solutions to the problem min{f(x) x E S}
where both S: Rn R and S c R are taken to be convex and choose 2 S. Then

It is clear that for convex quadratic programs this gives the solution set as

and since S is polyhedral

(2) T(x I)= T(x is) n +/- nker(Vf()).
Note that Vf(2) is constant on the solution set of a convex program and V2f(2)
is constant for the problem (11). In the rest of this paper, we will use the notation
Vf(2), V2f(2) for these constants and span (d), ker(A) to represent the subspace
generated by d and the nullspace of the matrix A, respectively.
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1350 J.V. BURKE AND M. C. FERRIS

THEOREM 3.2. Let be the set of solutions to (11) and assume that J is non-
empty. Then is a set of weak sharp minima for f over S if and only if

(ker(V2f())) -L c_ span(Vf())+ N(x IS), Vx 6 ,
or, equivalently,

(Vf())-L NT(x IS) c_ ker(V2f()), Vx e ,
where . is any element of S.

Proof.
== We show that (6) holds. Let x e and d e T(x IS). Note that (12) and

the hypothesis gives

K: T(x I) g(x IS)+ span (Vf())+ (ker(V2f())) +/-

N(x IS)+ span (Vf(2)).

Therefore

adist (d T(x )) a*(d BrT(x ))

It follows from [21, p. 65] that g span (Vf())+(g (Vf())z), hence, z e BK
implies z AVf() + y with A y, where

1/[[Vf()[[, if[Vf()[[O,
N :=

0 otherwise,

and y K (Vf()). Therefore

dist (d T(x ))

d)
d) (VI(x), d) =/’(x; d)

required. The lt two inequalities follow since d and y are polar to each other and
by choosing Vf()[ when Vf() 0.

Suppose that for some x e , T(x S) (Vf())z ker(V2f()). Then
there exists d e T(x S)(Vf())z with d ker(V2f()). Thus from (12), d
T(x]S) and so

dist (d[T(x S)) > 0 (Vf(), d) f’(x; d),

which, using (6), implies that (11) does not have a weak sharp minimum.
It is possible to illustrate the theorem by means of adapting a simple example

given in [18, p. 206].
Example 3.3. The problem is

minimiz%eR 5x12 + X212
subject to xi [hi, bi], i 1, 2, 3
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1351

for given a, b E R3 with a < b. We let S- [al, bl] [a2, b2] [a3, b3]. Note that-- ((P(O [al,bl]),P(O [a2, b2]),x3) x3 e [a3, b3]}

and for each e S, Vf() (1,2, 0). Also,

vf() [ 100]0 1 0 so that kerV2f(2)= {0} {0} R.
0 0 0

Furthermore, for 2 S we have

T( S)= Zx(x) x 4(=) x 13(3),

where

if xy
ifay <xy <by,
if xy by.

It follows that the second equivalence of Theorem 3.2 is satisfied exactly when 0 > bi
or 0 < ai for i 1, 2; that is, the box does not straddle the xl or x2 axis. This is
precisely when the problem has a weak sharp minimum.

A generalization of this result that does not require the set S to be polyhedral is
easily obtained. Observe that the argument given above only employs the polyhedral-
ity of S to establish that (12) holds. However, (12) also holds under the assumption

ri (S 2)A (vf(e)) +/- A ker(V2$()) 0

(see [21, Cors. 23.8.1 and 16.4.2]), so the following result is immediate.
THEOREM 3.4. Let S be the solution set for (11) where it is no longer assumed

that S is polyhedral. Suppose S is such that

ri (S e) (vy()) +/- ’) ker(V:$()) O.

Then S is a set of weak sharp minima for f over S if and only if

(ker(Vef())) +/-
C_ span (Vf())+ N(x IS) w e 3.

3.2. Linear programming. It was shown in [15] that the solution set of a linear
program is a set of weak sharp minima. We show below how it can be obtained as a
corollary to Theorem 3.2.

The linear programming problem is

(13) minimize (c, x}
xS

where S is polyhedral.
THEOREM 3.5. If (13) has a solution, then the set of solutions is a set of weak

sharp minima for this problem.
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1352 J. V. BURKE AND M. C. FERRIS

Proof. Let 5: be a solution of (13). We note that for linear programming f(x)
(c, x) so that

It follows that

(ker(V2f(ff))) +/-- {0}.

(ker(V2f(5:))) +/- c_ span (Vf())+ N(x IS) Vx e ,
so by Theorem 3.2, (13) has a weak sharp minimum. []

As was done in Theorem 3.4, we can generalize this result to the case where S is
not assumed to be polyhedral.

Remark. It is tempting to consider parametric results for weak sharp minima.
In fact, the following example shows that this is not too fruitful. Consider the linear
programs P(i), for i 1,..., oc, given by

minimize xl/i + x2
subject to x _> 0

Then, as shown above, each of these problems has a weak sharp minimum. However,
it is easy to show that there is no constant a > 0 that will work for all of them.

As a simple application of this result, we have the following corollary.
COROLLARY 3.6. Suppose f" Rn -. R is a proper polyhedral convex function and

the problem

(14) min f(x)
xER

has a nonempty solution set, S. Then S is a set of weak sharp minima for (14).
Proof. It follows from the defintion of a polyhedral convex function that

f(x) h(x) + (x C),

where

h(x)" max{(x, bl) , (x, bk)

and

C: {x (x, bk+l) <_/k+,..., (x, bm} <_ lm}.

It is clear that (14) is equivalent to

(15) minimizex h(x)
subject to x E C,

which in turn is equivalent to the linear program

minimize(x,)
(16.) subject to >- (x,b) i 1,...,k

x E C

and that the solution set of (16) is S x {h(2)} for any 2 S. Theorem 3.5 implies
the existence of a > 0 such that- h() >_ adist ((x,) x {h()})

>_ adist (x IS)
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1353

for all (x, ) feasible for (16). It then follows that

h(x)

for all x E C since (x, h(x)) is feasible for (16). Thus (15) has a weak sharp minimum
as required.

3.3. Sharpness for linear complementarity problems. We will use the anal-
ysis given previously to show that nondegenerate monotone linear complementarity
problems have weak sharp minima. This was proved in [13].

The linear complementarity problem is to find an x z 0 with Mx/q >_ 0 satisfying
Ix, Mx / ql O. To study this we consider the related optimization problem

(17) minimize x, Mx / q/
subject to Mx + q >_ 0, x _> 0.

Given any feasible point x for (17), we define the sets

I(x) {i Mix + qi O } and J(x) {j xj O }

It is clear that any solution of (17) satisfies

I(x) U J(x) {1, n}

We make a convexity(monotone) assumption that M is positive semidefinite and a
nondegeneracy assumption that there is a solution of (17), , which satisfies

I(2c) N J(2c .
Under these assumptions, it can be shown that any other solution of (17) satisfies
I(2) C_ I(x) and J(2) C_ J(x), (see for instance [13, Lemma 2.2]).

THEOREM 3.7. The solution set of a nondegenerate monotone linear complemen-
tarity problem (17) is a set of weak sharp minima .for the problem (17).

Proof. Let x be any solution of (17) and let 2 be the nondegenerate solution. By
Theorem 3.2 we must show

(Vf(2)) +/- NT(x IS) c_ ker(V2f(2)),

which, for this problem, means

((M + MT) + q, d) O,

We note that

Mi(x)d >_ 0 >dj(x) >_ 0 (M + MT)d O.

0 ((M + MT)2c + q, d)
(M& + q, d} + (5, Md)

(M&+q)idi+ &j(Md)y.
iej() I()

Since I(&) c_ I(x) and J(&) c_ J(x) and Mi()d >_ 0 and dj(x) >_ 0 we see that

E (M+q)idi=O and E 2j(Md)j=O.
ieJ() ()
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1354 J.V. BURKE AND M. C. FERRIS

It now follows that dj() 0 and (Md)i() 0 so that (d, Md) O. This is equivalent
to (M + MT)d 0 as required.

Note that in this result, we asume that the related optimization problem (17) has
a weak sharp minimum, as opposed to an assumption of the form

(18) M&-q e intN(&[R_)

as made in [1]. Using Theorem 3.7 it is easy to construct examples that are sharp in
the sense given above, but do not satisfy (18).

4. Finite termination of algorithms. In this section we study the convergence
properties of algorithms for solving problems of the form

(19)
minimize f(x)
xES

where it is assumed that f: R’ - R is differentiable and S is a nonempty closed
convex subset of Rn. Under the assumption that the solution set for (19), , is a set
of weak sharp minima, we will examine certain tools for identifying an element of S
in a finite number of iterations. Our approach is based on the techniques developed
in [6]. Consequently, we need to introduce some elementary facts concerning the face
structure of convex sets.

Recall that a nonempty convex subset C of a closed convex set C in Rn is said to
be a face of C if every convex subset of C whose relative interior meets C is contained
in C (e.g., see [21, 18]). In fact, the relative interiors of the faces of C form a partition
of C [21, Thm. 18.2]. Thus every point x E C can be associated with a unique face of
C denoted by F(x[C) such that x e ri (F(x[C)). A face C of C is said to be exposed
if there is a vector x* Rn such that C E(x* C) where

E(x* [C): argmax{<x*,y}’y e C}.

The vector x* is said to expose the face E(x* [C). It is well known and elementary
to show that every face C of a polyhedron is exposed and that the exposing vectors
are precisely the elements of ri (N(xlC)) for any x e ri C.

With these notions in mind, we have the following key result.
THEOREM 4.1. If S i8 a set of weak sharp minima for problem (19) that is regular,

then the set

K := N [T(x IS)N N(x I)]

has nonempty interior and for each z int K we have the inclusion E(z[ S) C S.
If it is further assumed that the function f is convex, then S is an exposed face of S
with exposing vector -Vf(2) for any e S.

Proof. The fact that the set K has nonempty interior follows immediately from
Corollary 2.7, in particular, -Vf(2) int K for any 2 S. Let z int K and choose
5>0sothatz+hBcK. Then for each2ES

(z + 5B, d) <_ 0 for all d e T(21S NN(2[)’
or, equivalently,

(z,d) _< -5 [Id[[ for all d e T(2[S)NN(2[)"
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1355

Hence, given x E S and p P(x S) we have

since (x- p) e T(p S N(p S). Consequently, E(z IS) c S.
It only remains to show that if f is convex, then E(-Vf()IS) S for any
S. First observe that

(20) Vf(x) Vf(y) for every x, y e S

by Theorem 3.1. Moreover, it has been established that E(-Vf(Y)IS c S. Hence
the result will follow if we can show that (Vf(x),x) (Vf(x), y) for any choice of
x, y S. But this follows immediately from Theorem 3.1.

Remark. In Theorem 4.1, the nonemptiness of the set int K followed from the
differentiability hypothesis on f. In the absence of such a differentiability hypothesis,
the result would, in general, be false. Indeed, we need only consider the case f(x) :=
dist (x S), where S is any nonempty closed set and S is any set that properly contains
S in its interior.

In [10], the notion of minimum principle sufficiency was introduced. Assuming
E , we define

: arg min {Vf()x Ix e

Minimum principle sufficiency (MPS) is the equality of the sets and . Note that
in the notation above E(-f(Z) l). Solodov [22] pointed out the following
interesting corollary to Theorem 4.1.

THEOrtEM 4.2. Suppose f is convex and differentiable and S c R’ is a closed
convex set. If S is a set of weak sharp minima for (19) then MPS is satisfied. If S is
polyhedral, then MPS is equivalent to S being a set of weak sharp minima for (19).

Proof. The first statement of the theorem follows from Theorem 4.1. For the
second part, note that for all x S

f(x) f(P(x [))_> Vf(P(x ))(x P(x [))
Vf()(x P(x S))
Vf()(x- P(x ))

> x- P(

by convexity of f,
by Theorem 3.1,

by MPS,
by Theorem 3.5,

by MPS,

where a > 0 as required.
The following simple example shows that the assumption of polyhedrality cannot

be removed in the above.
Example 4.3. The problem

minimize
subject to (xl- 1)2 + x22 < 1

has a unique solution (0, 0). It is easy to see that MPS is satisfied. However, for the
problem to have a weak sharp minimum would require the existence of a > 0 such
that

x > V/ +x
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1356 J.V. BURKE AND M. C. FERRIS

for all feasible points x. If we consider points x on the boundary of the circle, then it
follows that

which is not true for X sufficiently small.
Another simple application of Theorem 4.1 results in the following strong upper

semicontinuity result for linear programs that was first proven in [19, Lemma 3.5].
COROLLARY 4.4. Let S be a polyhedral convex set in Rn. Let c E Rn and

S: arg maxxs (5, x). Then there is a neighborhood U of such that if c U then

arg maxxs (c, ) argmax# (c, z).

Proof. If S 0, the result follows from the fact that a polyhedral set has a finite
number of faces and the graph of the subdifferential of a closed proper convex function
is closed. Otherwise, it follows from Theorem 3.5 that is a set of weak sharp minima
for

max (5, x).

By Theorem 4.1, it follows that S E(5IS and that for all c in a neighborhood
of 5 that E(c IS) c E(5 S). The required equality E(c IS) E(c IS) now follows
easily.

As another immediate consequence of Theorem 4.1, we obtain the following gen-
eralization of a result found in [1].

COROLLARY 4.5. Suppose S is a set of weak sharp minima for the problem (19)
and let {xt } c Rn. If either

(a) f is convex and {xk} is any sequence for which dist (xk ) -- 0 and Vf is
uniformly continuous on an open set containing {xk}, or

(b) the sequence {xk} converges to some , Vf is continuous and is
regular,
then there is a positive integer ko such that any solution of

minimize (Vf xk x)21 xS

solves (19).
Proof. Let us first assume that (a) holds. By Theorem 2.6,

(22)

for every S, where c > 0 is the modulus of weak sharp minimization for the set S.
Also, by Theorem 3.1, Vf(x) Vf(y) for all x, y E . Consequently, the hypotheses
imply the existence of an integer k0 such that ]lVf(xk) Vf()l < c for all k _> k0.
Therefore, by Theorem 4.1, E(Vf(xk) lS)= S.

If (b) holds, then (22) is still valid for every point S. The result follows just
as it did under assumption (a) since IIVf(xk) Vf()l - 0. U

The proof of this result only requires the assumption (22) to hold. Part b) of the
above corollary can then be proven under the hypothesis that (22) holds only at .
This is a weakening of the hypotheses that -Vf() int N(clS in [1, Whm. 2.1].
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WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING 1357

Assuming that we can solve (21), Corollary 4.5 can be employed to construct
hybrid iterative algorithms for solving problem (19) that will terminate finitely at
weak sharp minima. All that needs to be done is to solve the problem (21) occasionally
and if an optima is found, then stop. However, some algorithms do not require such a
"fix" to locate weak sharp minima finitely. We show that when the objective function

f is convex, we can characterize those algorithms that can identify weak sharp minima
finitely. We begin with a result that relates the optimality condition given in Theorem
2.6 to the structure of convex subsets of the constraint region S.

LEMMA 4.6. Let F be any nonempty closed convex subset of the closed convex
set S c Rn. Then

(23) F + N [T(x IS)NN(x F)] c U Ix + N(x S)] =" K.
xEF xEF

Proof. Let E F. We need only show that

k + N [Tx is)n g(x F)] c g.
xEF

Let y E K and let be the projection of P(Yl S) onto F. Since y
z e [T( S n Y( F)] such that y + z. Hence

o (y y, P(yl S) )
(P(y] S) + (y- P(yiS)) - z,P(ylS)
((P(Yl S) ) + (Y P(yl S)) + ( ) z,

2IIP(y s) 911 + (y- P(y s), P(y s)
+ (- , P(ylS)- )+ (-z, P(ylS)- ).

Observe that each of the terms in the final sum is nonnegative. The second term is non-
negative since (y-P(y S)) e N(P(y S) S and -(P(y S)-) e T(P(y S) S).
The third term is nonnegative since 2- E T(9 F while (P(Y S)- ) N( F).
Finally, the fourth term is nonnegative since (P(y S)
Hence each term is zero so.that P(ylS); that is, y

Remarks. 1. It should be noted that one can easily generate examples in which
the inclusion (23) is strict.

2. In the fully convex and differentiable case, it was shown in Theorem 4.1
that the set of weak sharp minima S is an exposed face of the constraint region S.
Consequently, the set F in the above lemma may be taken to be the set S. In this
case we may write

K U [F(x IS) + N(x Is)].

Lemma 4.6 is now employed to show that the characterization given in [6] of
those algorithms that identify the optimal face of S in a finite number of steps also
characterizes those algorithms that identify weak sharp minima finitely.

THEOREM 4.7. Suppose f is convex and let S c S be a set of weak sharp minima

for (19). If {xk} c S is such that dist (xk ) --. 0 and Vf is uniformly continuous
on an open set containing {xk }, then xk for all k sufficiently large if and only if

(24) P(-Vf(xk) T(xk IS)) -- O.
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1358 J.V. BURKE AND M. C. FERRIS

Proof. If xk E for all k sufficiently large, then -Vf(xk) E N(xklS) for all
k sufficiently large so that (24) holds trivially. On the other hand, suppose (24) is
satisfied. The Moreau decomposition of-Vf(x) yields

-Vf(xk) P(-Vf(xk) T(xk IS))+ P(--Vf(xk) N(xk IS)).

From Theorem 3.1, we have that Vf is constant on S.
hypotheses imply that

Thus for any 2 , the

JlVf(2) + P(-Vf(xk) lN(xk s))ll 0,

so

dist (x + P(-Vf(xk) lN(xk S))I - Vf(2)) - 0.

However, by Theorem 2.6,

S- V/(2) cint + N [T(x IS)n N(x ]
Thus Lemma 4.6 implies that

xk+p(_Vf(x)lN(xk[S))int [+ N[T(x[S) NN(xI)]o]
C U Ix + N(x

for all k sufficiently large. Therefore,

xk P ( xk + P(-Vf(xk) N(xk S))l s)

c U
=S

for all k sufficiently large. []

In [6], it was shown that the condition (24) is simple to check in certain cases.
In particular, it was established that the standard sequential quadratic programming
method and the gradient projection method both satisfy (24) and so will automatically
generate sequences that terminate finitely at weak sharp minima. We should also
note that Polyak[18, Exer. 2, p. 209] indicates that the gradient projection method
terminates finitely at weak sharp minima.
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