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Abstract

We develop an iterative descent algorithm for minimizing the pointwise maxi-
mum of a finite collection of convex thrice-differentiable functions;

minx{F (x) := maxi=1,...,n fi(x)}.
The proposed algorithm begins each iteration with a number R and an inexact
‘analytic center’, xR, of the lower level set {x ∈ Rm : F (x) ≤ R}; it then sets
R := (1 − α)F (xR) + αR, with α an arbitrarily chosen constant in (0, 1), and
recomputes xR accordingly. The resulting sequence of inexact analytic centers
is a descent sequence for F and it is shown that the F value along this sequence
comes within ε of minx F (x) after at most

2(1− α)−1[n ln(1/ε) + ln(
∏n
i=1(R0 − fi(x0)))] + 3/2

iterations, where x0 and R0 are the initial values of xR and R, respectively, and
ε is the termination tolerance.

To recompute xR after each update of R, we propose to use a global newton
procedure of [3]. We show that, under a certain nondegeneracy assumption
on F and assuming infinite precision arithmetic, the number of newton steps
required to recompute xR is at most a constant plus log2 log2(1/ε).

Keywords: Complexity, mini-max optimization, global Newton method, ana-

lytic center.
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1 Introduction

Motivated by interior-point algorithms, several researchers recently studied ways of
capturing the combinatorial structure of a convex polytope using a potential function
(see [7], [8]). For example, it is shown in [8] that the max-potential of a convex
polytope, where the polytope is given as

the intersection of halfspaces, is reduced by a factor of at least e, the base of the
natural logarithm, when any of the hyperplanes defining the polytope is translated
through the analytic center of the polytope [6]. In this paper we extend this result
to convex sets that are given as the intersection of the lower level sets of a finite
collection of convex thrice-differentiable functions; and, by using the extended result,
we develop a translational-cuts algorithm for finding the minimum of the pointwise
maximum of the given functions.

Let fi , i = 1, ..., n, be given convex thrice-differentiable functions defined on the
m-dimensional Euclidean space IRm. Let F be the function on IRm defined to be the
pointwise maximum of the fi’s, that is,

F (x) := max{fi(x) : i = 1, ..., n}.

We are interested in the problem of finding a minimum point of F , i.e., an x∗ ∈ IRm

satisfying F (x∗) = R∗, where for notational convenience we let

R∗ := min
x
F (x).

This is a classical problem in optimization [2]. For the moment we make only the
following assumption on F .

Assumption A The set of minimum points of F , i.e., {x : F (x) = R∗}, is nonempty
and compact.

Additional assumptions will be introduced as needed.
As an immediate consequence of the compactness assumption on the minimum

points of F , we have that for every R > R∗, the lower level set

levR := {x : F (x) < R}

is nonempty and bounded. Then, the ‘logarithmic potential’ function φR defined by

φR(x) :=
n∑
i=1

ln(R− fi(x)),

which is strictly concave and differentiable on levR, attains its maximum on levR.
Following the standard practice, we call any maximum point of φR the analytic

center of levR. As R approaches R∗, the analytic center of levR approaches the set
of minimum points of F . This motivates an iterative method for finding a minimum
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point of F whereby, at each iteration, an analytic center of levR is computed and
R is moved some fraction of the distance towards R∗. However, it is impractical to
compute an analytic center exactly and, to resolve this difficulty, we introduce below
a notion of an inexact analytic center.

Let g : [0,∞) 7→ [0,∞) be any continuous function satisfying g(θ) > 0 for all
θ > 0 and g(0) = 0. Relative to g, we say that a point xR in levR is an inexact
analytic center of levR if

||∇φR(xR)|| ≤ min{R− F (xR), 1}g(R−R∗)
R−R∗

. (1)

Notice that, in contrast to previous notions of an inexact analytic center (see [6]), the
preceding notion is based on the gradient of the potential function being ‘small’ (i.e.,
an inexact root of ∇φR). We have adopted this novel notion because the method
which we will use to compute an inexact analytic center (for a fixed R) is based on
reducing the norm of this gradient and the work is determined by the total reduction
in norm. Suitable choices for g will be discussed shortly (see (3), (10)).

Below we formally describe our algorithm for finding a minimum point of F :

Translational-Cuts Algorithm.
0. Fix a parameter α ∈ (0, 1) and a termination tolerance ε > 0. Start with any
R0 > R∗ and any inexact center of levR0 . Let R = R0 and go to Step 1.
1. Given an R > R∗ and an inexact analytic center of levR, say xR, check to see if
the termination criterion

F (xR) ≤ R∗ + ε

is met. If yes, stop the algorithm; otherwise go to Step 2.
2. Set

R′ := (1− α)F (xR) + αR

and apply the global newton method of [3] to find an inexact center of levR′ , say x′R,
with xR as the starting point for the method. Go to Step 3.
3. Set

xR := x′R, R := R′

and return to Step 1.

A few words on the parameter α are in order. This parameter controls the decrease
in the size of the lower level set or, equivalently, the amount by which the inequalities
fi(x) ≤ R, i = 1, ..., n, are translated (in going from R to R′). If α = 0, then at
least one inequality will be translated so to cut through the current inexact center
xR; if α = 1, then no inequality will be translated; if α = 1/2, then at least one
inequality will translate halfway to xR. The reason for introducing the parameter α
is so that one can initiate the computation of the new inexact analytic center x′R from
the current inexact analytic center xR.
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The translational-cuts algorithm is most closely related to the ‘large-step’ non-
parametric logarithmic barrier method of [4], applied to the following nonlinear pro-
gramming formulation of minx F (x):

(NLP ) min γ

subject to fi(x)− γ ≤ 0, i = 1, . . . , n .

However, the method of [4] uses a different notion of inexact analytic center and
requires a relative Lipschitz condition on ∇2fi for all i. It also uses a different termi-
nation criterion and requires an objective value lower bound for initialization.

In the remainder of this paper, we analyze the complexity of the translational-cuts
algorithm under additional assumptions on the fi’s (see Assumptions B–D). Notice
that F (xR) < R and hence the value ofR is monotonically decreasing in the algorithm.
Also, although it appears that termination of the algorithm and the computation of
an inexact center require knowledge of the optimal objective value R∗, we will show
that, under mild assumptions on the fi’s, this difficulty can in fact be circumvented
(see discussion at the end of Sections 2 and 3).

2 Iteration count for the translational-cuts algo-

rithm

We will call each repetition of Steps 1-3 in the translational-cuts algorithm an itera-
tion. In this section we estimate the number of iterations used in the algorithm.

By Assumption A, there exists a scalar C0 > 0 such that

||x− x′|| ≤ C0 ∀x, x′ ∈ levR0 . (2)

In the following lemma, we estimate the reduction in the potential after each iteration
of the translational-cuts algorithm.

Lemma 2.1 Fix an α ∈ (0, 1). For any R ∈ (R∗, R0] satisfying g(R−R∗)/(R−R∗) ≤
(1− α)/(2C0), any inexact analytic center x of levR and any inexact analytic center
x′ of levR′, where R′ = (1− α)F (x) + αR, we have

φR′(x
′) ≤ φR(x)− (1− α)/2.

Proof Since x is an inexact analytic center of levR, we have from (1) and the defi-
nition of φR that ∥∥∥∥∥

n∑
i=1

∇fi(x)

R− fi(x)

∥∥∥∥∥ ≤ g(R−R∗)
R−R∗

.

Let x̄′ be an analytic center of levR′ . For each i = 1, · · · , n, let βi = (R−R′)/(R−fi(x))
and let β =

∑n
i=1 βi. Observe that each βi satisfies 0 < βi ≤ 1 − α with at least one

4



βi equal to 1−α. Thus, β ≥ 1−α. Then, the convexity of the fi’s and the preceding
relation yield:

n∑
i=1

R′ − fi(x̄′)
R− fi(x)

=
n∑
i=1

R− fi(x̄′)− βi(R− fi(x))

R− fi(x)

=
n∑
i=1

−fi(x̄′) + fi(x) + (1− βi)(R− fi(x))

R− fi(x)

=
n∑
i=1

−fi(x̄′) + fi(x)

R− fi(x)
+ n− β

≤
n∑
i=1

−∇fi(x)T (x̄′ − x)

R− fi(x)
+ n− β

≤
∥∥∥∥∥
n∑
i=1

∇fi(x)

R− fi(x)

∥∥∥∥∥ ‖x̄′ − x‖+ n− β

≤ g(R−R∗)
R−R∗

‖x̄′ − x‖+ n− β

≤ g(R−R∗)
R−R∗

C0 + n− β ≤ n− β/2,

where the fourth inequality follows from (2) and the last inequality follows from the
inequality g(R − R∗)C0/(R − R∗) ≤ (1− α)/2 ≤ β/2. Dividing both sides by n and
taking the logarithm, we obtain

ln(1− β

2n
) ≥ ln

(
1

n

n∑
i=1

R′ − fi(x̄′)
R− fi(x)

)

≥ 1

n

n∑
i=1

ln

(
R′ − fi(x̄′)
R− fi(x)

)
=

1

n
(φR′(x̄

′)− φR(x)),

where the second inequality uses the concavity of the logarithm function. Upon
observing that the lefthand side is bounded above by −β/(2n), which in turn is
bounded above by −(1 − α)/(2n), and then using φR′(x̄

′) ≥ φR′(x
′) to bound the

righthand side, the result follows.

By using Lemma 2.1, we can now estimate the number of iterations required to
reduce the objective value F (xR) to within ε of the optimal objective value R∗.

Theorem 2.2 Assume that g is chosen so that

g(θ)/θ ≤ (1− α)/(4C0) ∀θ ∈ (0, R0 −R∗]. (3)

Then, the translational-cuts algorithm terminates in at most

2

1− α
[φR0(xR0) + n ln(

1

ε
)] +

3

2

iterations.
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Proof Lemma 2.1 assures us that, after k iterations of the translational-cuts algo-
rithm, we have

φR(xR) ≤ φR0(xR0)− k(1− α)/2.

Thus, for k ≥ 2[φR0(xR0)− n ln ε]/(1− α) + 1/2, we have

φR(xR) ≤ n ln ε− 1− α
4

. (4)

Let x̄R be any analytic center of levR. Then, using the concavity of φR and the fact
that xR is an inexact analytic center of levR yields

φR(x̄R) ≤ φR(xR) +∇φR(xR)T (x̄R − xR)

≤ n ln ε− 1− α
4

+ ||∇φR(xR)||||x̄R − xR||

≤ n ln ε− 1− α
4

+
g(R−R∗)
R−R∗

C0

≤ n ln ε,

where the last inequality follows from (2) and (3). Therefore,

φR(x∗) ≤ φR(x̄R) ≤ n ln ε,

where x∗ is any minimum point of F . Dividing both sides by n yields

ln ε ≥ φR(x∗)

n
=

n∑
i=1

ln(R− fi(x∗))
n

≥ min
i

ln(R− fi(x∗)) = ln(R−R∗)

and thus R ≤ R∗ + ε. Since F (xR) < R trivially, this completes the proof.

One possible choice for g that satisfies (3) is the linear function

g(θ) = θ(1− α)/(4C0).

With this choice, determining whether a point is an inexact analytic center does not
require any knowledge of R∗.

Also, it can be seen from the analysis that a sufficient condition for terminating
the translational-cuts algorithm is (4) and the iteration count given in Theorem 2.2
is that for satisfying this condition. Thus, we can instead use (4) as a termination
condition. This condition has the advantage that it does not require knowledge of
the optimal objective value R∗.

3 Work per iteration for the translational-cuts al-

gorithm

In this section we estimate, under additional nondegeneracy and sharp-minimum
assumptions (see Assumptions B–D), the work per iteration in the translational-
cuts algorithm. This estimate, together with the iteration count obtained in the
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previous section, will then yield an overall complexity estimate for the translational-
cuts algorithm.

The work per iteration is dominated by Step 2 in which the global newton method
of [3] is applied to find an inexact analytic center of levR′ , starting from xR. Thus,
our analysis will focus on estimating the work for this method.

We start our analysis by applying directly Claim 1 in [3] to obtain a preliminary
estimate of the work in Step 2: Let R, R′ and xR be as in Step 2 and let

SR′ := { x ∈ levR′ : ||∇φR′(x)|| ≤ ||∇φR′(xR)|| },
λR′ := max

x∈SR′
{ largest eigenvalue of −∇2φR′(x) },

µR′ := min
x∈SR′

{ smallest eigenvalue of −∇2φR′(x) },

LR′ := max
x∈SR′

‖∇3φR′(x)‖.

According to Claim 1 in [3], the number of steps required by the method of [3] to find
an approximate root of ∇φR′ (i.e., reducing ‖∇φR′‖ to less than βR′ := (µR′)

2/4LR′),
starting from an inexact analytic center xR of levR, is at most

(‖∇φR′(xR)‖ − βR′)/4δ2βR′ , (5)

where δ is chosen from the interval (0, 1/
√

8]. Moreover, the number of steps required
by the method of [3] to find an inexact analytic center x′R of levR′ (i.e., x′R satisfies
‖∇φR′(x′R)‖ ≤ min{R′−F (x′R), 1}g(R′−R∗)/(R′−R∗)), starting from an approximate
root of ∇φR′ , is at most

log2 log2

(
µR′λR′(R

′ −R∗)
LR′ min{R′ − F (x′R), 1}g(R′ −R∗)

)
. (6)

In the remainder of this section, we focus on estimating the four quantities:

‖∇φR′(xR)‖, λR′ , µR′ , LR′ (7)

in terms of the problem parameters. We will estimate the latter three quantities by
replacing the set SR′ in their definition with the following set

TR′ :=

{
x ∈ levR′ : ||∇φR′(x)|| ≤ 2n

√
nB1

α(R′ −R∗)

}
, (8)

where B1 is any positive scalar satisfying

||∇fi(x)|| ≤ B1 ∀x ∈ levR0 , i = 1, ..., n (9)

(B1 exists by Assumption A).
Our first order of business is to show that SR′ ⊂ TR′ . To show this, we make the

following simplifying assumption, namely, −∇2φR is positive definite uniformly over

7



levR and over all R ∈ (R∗, R0]. This assumption will also be needed for bounding µR′
from below.

Assumption B There exists a scalar µ > 0 such that

(smallest eigenvalue of −∇2φR(x)) ≥ µ ∀x ∈ levR, ∀R ∈ (R∗, R0].

Assumption B is actually quite mild. For example, Assumption B holds when any
one of the fi’s is strongly convex. Alternatively, in view of Assumption A, we can
enforce that Assumption B holds by choosing a sufficiently large number L so that
the box

{ x ∈ <m | x ≤ (L, ..., L) }
contains the set of minimum points of F , and then set

fn+j(x1, ..., xm) := xj − L−R0, j = 1, ...,m.

It is straightforward to verify that maxi=1,m+n fi(x) has the same set of minimum
points as F (x) (so that Assumption A and Assumptions C and D, which are to come,
hold for f1, ..., fn+m whenever they hold for f1, ..., fn) and that Assumption B holds
with φR(x) replaced by

∑n+m
i=1 ln(R− fi(x)).

We show below that SR′ ⊂ TR′ through a sequence of three lemmas.

Lemma 3.1 For any R ∈ (R∗, R0] and any analytic center x̄R of levR, we have

R−R∗ ≤ n(R− F (x̄R)).

Proof By definition of an analytic center, we have

0 = ∇φR(x̄R) =
n∑
i=1

∇fi(x̄R)

R− fi(x̄R)
,

so that
n∑
i=1

R− fi(x̄R)−∇fi(x̄R)(x− x̄R)

R− fi(x̄R)
= n ∀x ∈ levR.

For each i and each x ∈ levR, we have from the convexity of fi that R ≥ fi(x) ≥
fi(x̄R) + ∇fi(x̄R)(x − x̄R) and hence every term in the above sum is nonnegative.
Thus, we conclude that

R− fi(x̄R)−∇fi(x̄R)(x− x̄R)

R− fi(x̄R)
≤ n ∀x ∈ levR, i = 1, ..., n.

[This relation can also be inferred from observing that x̄R is an analytic center of the
polytope {x : ∇fi(x̄R)(x− x̄R) ≤ R− fi(x̄R), i = 1, ..., n} and invoking a containing-
ellipsoid property for this polytope.] Let x∗ be any minimum point of F . Since
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x∗ ∈ levR, we obtain, upon using the convexity of the fi’s and invoking the above
relation with x = x∗, that

R− fi(x∗) ≤ R− fi(x̄R)−∇fi(x̄R)(x∗ − x̄R) ≤ n(R− fi(x̄R)), i = 1, ..., n.

Thus,
R−R∗ ≤ n(R− fi(x̄R)), i = 1, ..., n,

and the result readily follows.

Lemma 3.2 Let Assumption B hold. Suppose that g is chosen so that

g(θ)/θ ≤ µ/2B1 ∀θ ∈ (0, R0 −R∗]. (10)

Then, for any R ∈ (R∗, R0] and any inexact analytic center xR of levR, we have

R−R∗ ≤ 2n(R− F (xR)).

Proof Let x̄R be an analytic center of levR. By using ∇φR(x̄R) = 0 and Assumption
B and the concavity of φR(.), we have

(µ/2)‖x̄R − xR‖2 ≤ φR(x̄R)− φR(xR) ≤ ∇φR(xR)(x̄R − xR),

which implies

‖x̄R − xR‖ ≤
2

µ
||∇φR(xR)||.

Also, for each i ∈ {1, ..., n}, we have

R− fi(x̄R)− (R− fi(xR)) =
∫ 1

0
−∇fi(xR + t(x̄R − xR))T (x̄R − xR)dt.

Upon combining the above two relations, we obtain∣∣∣∣∣R− fi(x̄R)

R− fi(xR)
− 1

∣∣∣∣∣ =
|
∫ 1
0 ∇fi(xR + t(x̄R − xR))T (x̄R − xR)dt|

R− fi(xR)

≤
∫ 1
0 ‖∇fi(xR + t(x̄R − xR))‖‖x̄R − xR‖dt

R− fi(xR)

≤
∫ 1
0 B1‖x̄R − xR‖dt
R− fi(xR)

≤ 2B1‖∇φR(xR)‖
µ(R− fi(xR))

≤ 2B1g(R−R∗)(R− F (xR))

µ(R− fi(xR))(R−R∗)

≤ 2B1g(R−R∗)
µ(R−R∗)

≤ 1,
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where the second inequality follows from (9), the fourth inequality follows from (1),
the fifth inequality follows from the relation 0 < R − F (xR) ≤ R − fi(xR), and the
last inequality follows from (10). This inequality together with Lemma 3.1 yields

2(R− fi(xR)) ≥ R− fi(x̄R) ≥ R−R∗

n
, i = 1, ..., n,

and the result readily follows.

Lemma 3.3 Let Assumption B hold and suppose that g satisfies (10). Then, for any
α ∈ (0, 1), any R ∈ (R∗, R0], and any inexact analytic center xR of levR, we have

||∇φR′(xR)|| ≤ 2n
√
nB1

α(R′ −R∗)
,

where R′ := (1− α)F (xR) + αR.

Proof From the definition of R′, we have R′−F (xR) = α(R−F (xR)) and so Lemma
3.2 yields

R′ − F (xR) ≥ α

2n
(R−R∗).

Then, using the fact xR ∈ levR0 and (9), we conclude

‖∇φR′(xR)‖ =

∥∥∥∥∥
n∑
i=1

∇fi(xR)

R′ − fi(xR)

∥∥∥∥∥ ≤
√
nB1

R′ − F (xR)

≤ 2n
√
nB1

α(R−R∗)
≤ 2n

√
nB1

α(R′ −R∗)
,

where the last inequality follows from R ≥ R′.

Lemma 3.3 shows that SR′ ⊂ TR′ , provided that g is chosen to satisfy (10). We
will now estimate the quantities (7) by replacing SR′ in their definition with the larger
set TR′ . To do this, we need to make the following assumption on F .

Assumption C The function F has a strongly unique minimum x∗, that is, F (x∗) =
R∗ and there exists a scalar σ > 0 such that

F (x) ≥ R∗ + σ‖x− x∗‖ ∀x.

The notion of a strongly unique minimum (or ‘sharp minimum’ [5]) was first exten-
sively studied in [1], where its connection to the convergence behavior of algorithms
was reviewed. Notice that Assumption C superceeds Assumption A.

Let
I∗ := {i ∈ {1, ..., n} : fi(x

∗) = R∗}. (11)
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A key part of our analysis lies in showing that (see (19))

lim inf
R↓0

min
x∈TR

{
R− F (x)

R− fi(x)

}
> 0 ∀i ∈ I∗ .

To show this, we need to make one further assumption on F .

Assumption D For any set of nonnegative scalars λi, i ∈ I∗, satisfying∑
i∈I∗

λi∇fi(x∗) = 0 and
∑
i∈I∗

λi = 1 , (12)

there holds λi > 0 for all i ∈ I∗.
It can be seen that Assumption C implies |I∗| ≥ m + 1 and that Assumption D

implies |I∗| ≤ m + 1. (To see the former, note that if |I∗| ≤ m, there would exist
a nonzero d ∈ IRm satisfying ∇fi(x∗)Td ≤ 0 for all i ∈ I∗, implying limθ↓0(F (x∗ +
θd) − R∗)/θ ≤ 0 and thus violating Assumption C.) Thus, Assumptions C and D
together imply |I∗| = m+ 1. The condition specified in Assumption D is a standard
nondegeneracy condition used in the convergence analysis of algorithms for mini-max
optimization. In fact, this condition corresponds to two separate conditions often
employed in nonlinear programming: linear independence of the active constraint
gradients and strict complementary slackness. To see this, recall that the problem
minx F (x) is equivalent to the nonlinear program (NLP ). Then, Assumption D is
equivalent to the assumption that the gradients of the constraint functions in (NLP )
that are active at x∗, namely{(

∇fi(x∗)
−1

)
: i ∈ I∗

}
,

are linearly independent and that there exists a set of strictly complementary La-
grange multipliers at x∗, i. e., there exist scalars λi > 0, i ∈ I∗, satisfying (12).

Lemma 3.4 Suppose that Assumptions B through D hold. Fix any α ∈ (0, 1). Then
there exist scalars C1 > 0 and C2 > 0 satisfying

R− F (x) ≥ C1(R−R∗) ∀x ∈ TR, ∀R ∈ (R∗, R0) (13)

R− F (x) ≥ C2(R− fi(x)) ∀x ∈ TR, ∀R ∈ (R∗, R0), ∀i ∈ I∗, (14)

where TR and I∗ are given by (8) and (11), respectively.

Proof We will argue (13) by contradiction. Suppose that (13) does not hold for any
C1 > 0. Then, there would exist a sequence {(xk, Rk)} satisfying

F (xk) < Rk < R0 and ||∇φRk(xk)|| ≤ 2n
√
nB1

α(Rk −R∗)
∀k, (15)
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and yet
Rk − F (xk)

Rk −R∗
→ 0. (16)

These two relations together imply

(Rk − F (xk))→ 0 (17)

and

||∇φRk(xk)||∑n
i=1 1/(Rk − fi(xk))

≤ ||∇φRk(xk)||
1/(Rk − F (xk))

≤ 2n
√
nB1(R

k − F (xk))

α(Rk −R∗)
→ 0 (18)

as k → 0. Let ((λ1, ..., λn), R∞, x∞) be any cluster point of the sequence{
((1/(Rk − f1(xk)), ..., 1/(Rk − fn(xk)))∑n

i=1 1/(Rk − fi(xk))
, Rk, xk

}
,

and let I∞ := {i ∈ {1, ..., n} : fi(x
∞) = F (x∞)}. The relation (18) implies that

n∑
i=1

λi∇fi(x∞) = 0,
n∑
i=1

λi = 1, λi ≥ 0, i = 1, ..., n.

Since R∞ ≥ F (x∞) > fi(x
∞) for all i 6∈ I∞, we know from (17) that λi = 0 for all

i 6∈ I∞. Therefore, x∞ satisfies the sufficient conditions for a minimum point of F .
Since x∗ is the unique minimum point of F , this implies x∞ = x∗ and I∞ = I∗, so
(17) yields R∞ = F (x∞) = R∗ and Assumption D yields λi > 0 for all i ∈ I∗. Thus,
we conclude that there exist positive scalars ηi, i ∈ I∗, such that

Rk − F (xk)

Rk − fi(xk)
> ηi ∀i ∈ I∗, ∀k. (19)

Fix any k. By using the concavity of φRk , relation (15), and Assumption C, we
have

φRk(x∗) ≤ φRk(xk) + 〈∇φRk(xk), x∗ − xk〉
≤ φRk(xk) + ||∇φRk(xk)||||x∗ − xk||

≤ φRk(xk) +
2n
√
nB1

α(Rk −R∗)
||x∗ − xk||

≤ φRk(xk) +
2n
√
nB1

ασ
.

Upon combining this with (19), we conclude that

|I∗| ln(Rk −R∗) +
∑
i 6∈I∗

ln(Rk − fi(x∗))
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= φRk(x∗)

≤ φRk(xk) +
2n
√
nB1

ασ

=
∑
i∈I∗

ln(Rk − fi(xk))

+
∑
i 6∈I∗

ln(Rk − fi(xk)) +
2n
√
nB1

ασ

≤ |I∗| ln(Rk − F (xk))−
∑
i∈I∗

ln(ηi)

+
∑
i 6∈I∗

ln(Rk − fi(xk)) +
2n
√
nB1

ασ
.

Also, by continuity of the fi’s, there exists a scalar θ > 0 such that

Rk − fi(xk) ≥ θ ∀i 6∈ I∗ , ∀k.

Upon combining the above two relations and using the fact that ln(·) is an increasing
function, we obtain that

|I∗| ln(Rk −R∗) + (n− |I∗|) ln(θ)

≤ |I∗| ln(Rk − F (xk))−
∑
i∈I∗

ln(ηi) +
∑
i 6∈I∗

ln(B2) +
2n
√
nB1

ασ
,

where B2 is any positive scalar satisfying

R0 − fi(x) ≤ B2 ∀i ∈ I∗, ∀x ∈ levR0

(such a B2 exists by the compactness of levR0). Dividing both sides by |I∗| and then
taking the exponential yields the inequality

Rk −R∗ ≤ C ′(Rk − F (xk)) ∀k,

where C ′ is some suitable positive scalar. This contradicts (16) and thus (13) must
hold for some C1 > 0.

Finally, we show that there exists a scalar C2 > 0 such that (14) holds. By the
preceding argument, there exists a scalar C1 > 0 such that (13) holds. Consider any
R ∈ (R∗, R0) and any x ∈ TR. For each i ∈ I∗, we have from fi(x

∗) = R∗ and the
convexity of fi that

fi(x) ≥ R∗ −B1||x− x∗||,
so Assumption C yields

R− fi(x) ≤ R−R∗ +B1||x− x∗||

≤ R−R∗ +
B1

σ
(R−R∗).
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Combining this with (13) and we obtain

R− F (x) ≥ C1

1 +B1/σ
(R− fi(x)) ∀i ∈ I∗.

Set C2 := C1/(1 +B1/σ).

Armed with Lemmas 3.3 and 3.4, we can now proceed to bound, in terms of the
problem parameters, the four quantities (7) used in the complexity estimates (5) and
(6). In what follows, we assume that Assumptions B–D hold and that g is chosen to
satisfy (10).

First, we bound from above λR′ . For each R, straightforward calculation shows
that

−∇2φR(x) =
n∑
i=1

∇fi(x)∇fi(x)T

(R− fi(x))2
+

n∑
i=1

∇2fi(x)

R− fi(x)
.

Since levR0 is bounded (by Assumption A), it follows that the largest eigenvalue of
−∇2φR(x) is bounded above by some constant divided by (R−F (x))2 for all x ∈ TR
and all R ∈ (R∗, R0). By (13) in Lemma 3.4, the quantity R−F (x) is bounded below
by a constant times R−R∗; hence we conclude that (also using the fact SR′ ⊂ TR′)

λR′ ≤ C3/(R
′ −R∗)2,

for some scalar C3 > 0.
Next, we bound from below µR′ . By Assumption C, the smallest eigenvalue of∑

i∈I∗
∇fi(x)∇fi(x)T

is bounded below by some positive constant, uniformly over all x in some neighbor-
hood of x∗. (Otherwise there would exist a d ∈ IRm satisfying ∇fi(x∗)Td = 0 for all
i ∈ I∗, implying limθ↓0(F (x∗ + θd) − R∗)/θ = 0 and thus violating Assumption C.)
This observation together with (14) in Lemma 3.4 implies that the smallest eigenvalue
of ∑

i∈I∗

∇fi(x)∇fi(x)T

(R− fi(x))2

is bounded below by some positive constant divided by (R − F (x))2, uniformly over
all x in TR and all R sufficiently close to R∗. Since F (x) ≥ R∗, we can replace
F (x) in the preceding bound by R∗. Summarizing the above results, we see that the
smallest eigenvalue of −∇2φR is bounded below by some positive scalar C4 divided
by (R − R∗)2, uniformly over TR and over all R sufficiently close to R∗. In view of
Assumption B (and by taking C4 sufficiently small if necessary), we can extend this
bound to hold over TR and over all R < R0. Since SR′ ⊂ TR′ , this yields

µR′ ≥ C4/(R
′ −R∗)2.
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Finally, we determine a suitable value for LR′ . For each R, straightforward calcu-
lation shows that

‖∇3φR(x)‖ ≤ 3
n∑
i=1

‖∇fi(x)‖‖∇2fi(x)‖
(R− fi(x))2

+
n∑
i=1

‖∇3fi(x)‖
R− fi(x)

+ 2
n∑
i=1

‖∇2fi(x)‖3

(R− fi(x))3
.

Since levR0 is bounded, this implies that ‖∇3φR(x)‖ is bounded above by some con-
stant divided by (R − F (x))3, uniformly over all x ∈ TR and all R < R0. By (13)
in Lemma 3.4, we can in turn bound R − F (x) from below by C1(R − R∗). Since
SR′ ⊂ TR′ , this implies that we can take

LR′ := C5/(R
′ −R∗)3

for some suitable scalar C5.
Thus

βR′ =
(µR′)

2

4LR′
≥ (C4/(R

′ −R∗)2)2

4(C5/(R′ −R∗)3)
=

(C4)
2

4C5(R′ −R∗)
,

which together with Lemma 3.3 yields that the quantity in (5) is bounded above by
some positive constant independent of R′−R∗. Similarly, using the trivial observation
µR′ ≤ λR′ , we have that the quantity in (6) is bounded above by

log2 log2

(
(C3)

2

C5 min{R′ − F (x′R), 1}g(R′ −R∗)

)
.

Since x′R is an inexact analytic of levR′ , we can apply (13) with x and R replaced by
x′R and R′′ := (1− α)F (x′R) + αR′, respectively, to obtain

R′ − F (x′R) ≥ R′′ − F (x′R) ≥ C1(R
′′ −R∗) ≥ αC1(R

′ −R∗).

Combining the preceding observations and we obtain the following key complexity
estimate for Step 2 of the translational-cuts algorithm.

Theorem 3.5 Let Assumptions B–D hold and assume that g is chosen to satisfy
(10). Then, the total number of steps required by the method of [3] to find an inexact
analytic center of levR′, starting from an inexact analytic center xR of levR (and with
R′ := (1−α)F (xR)+αR), is at most a constant plus log2 log2(1/(R

′−R∗)g(R′−R∗)).

Suppose furthermore that g is an increasing function. Then, since the termination
criterion in Step 1 is not met each time we visit Step 2, we know that R′ − R∗ =
(1− α)(F (xR)−R∗) + α(R−R∗) ≥ F (xR)−R∗ > ε; hence the complexity estimate
in Theorem 3.5 is in turn bounded above by some constant plus log2 log2(1/εg(ε)).

Finally, we note that a similar estimate can be made if (4) is used as the termi-
nation criterion. In particular, observe that

φR(xR) ≤ (n− 1) ln(B2) + ln(R− F (xR))
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for any R ∈ (R∗, R0) and any xR in levR, where B2 is defined as in Lemma 3.4. Thus,
if in addition (4) is not satisfied (so that φR(xR) > n ln ε− (1−α)/4), we would have

R−R∗ ≥ R− F (xR) ≥ εn

e(1−α)/4(B2)n−1

and so R′ − R∗ (which is bounded below by α(R − R∗)) is bounded below by some
scalar C6 times εn. Thus, in this case (and assuming that g is an increasing function),
the total number of steps required by the method of [3] to find an inexact analytic
center of levR′ , starting from an inexact analytic center xR of levR, is at most a
constant plus log2 log2(1/ε

ng(C6ε
n)).
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