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EXPOSING CONSTRAINTS*

JAMES V. BURKEt AND JORGE J. MORIOn:
Abstract. The development of algorithms and software for the solution of large-scale optimiza-

tion problems has been the main motivation behind the research on the identification properties of
optimization algorithms. The aim of an identification result for a linearly constrained problem is to
show that if the sequence generated by an optimization algorithm converges to a stationary point,
then there is a nontrivial face F of the feasible set such that after a finite number of iterations, the
iterates enter and remain in the face F. This paper develops the identification properties of linearly
constrained optimization algorithms without any nondegeneracy or linear independence assumptions.
The main result shows that the projected gradient converges to zero if and only if the iterates enter
and remain in the face exposed by the negative gradient. This result generalizes results of Burke and
Mor obtained for nondegenerate cases.

Key words, nondegeneracy, strict complementarity, projected gradient, active constraints,
linearly constrained problems
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1. Introduction. The development of algorithms and software for the solution
of large-scale constrained optimization problems,

(1.1) min{f(x) x e

has been the main motivation behind the research on the identification properties of
optimization algorithms. Much of this research has been done under the assumption
that the set is a general convex set and that the stationary points of the optimization
problem (1.1) are nondegenerate. In this work we show that it is possible to develop
the identification properties of linearly constrained optimization algorithms without
any nondegeneracy or linear independence assumptions.

The aim of an identification result is to show that if {xk is a sequence in that
converges to a stationary point x*, then there is an index k0 > 0 and a nontrivial face
F(x*) of with xk E F(x*) for all k _> k0. These results are important because they
show that eventually the behavior of the algorithm is determined by the properties of
f on the face F(x*). For recent work on the identification properties of optimization
algorithms, see, for example, Cons, Gould, and Toint [7], Duns [11], Wright [26],
Burke [3], Burke, Mor, and Toraldo [5], Lescrenier [17], Kelley and Sachs [16], and
Wright [27].

In linearly constrained problems an identification result can also be expressed
in terms of the indices of the active constraints. For example, if has the specific
representation

={xetn" {cj,x} >_ij, l<_j<_m},

for some vectors cj Rn and scalars 5j, then all faces F of are of the form

F {x e ’(cj,x} , j e A(F)}
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574 J.v. BURKE AND J. J. MORI

for some index set ji(F). Thus, identification results can be given in terms of an
index set that defines the face F(x*). In this paper we obtain results in terms of
the face structure of 12; results in terms of index sets of active constraints are direct
consequences of these results.

An important consequence of the assumption that the stationary point x* is
nondegenerate is that F(x*) is the unique face of 12 that contains x* in the relative
interior. Thus, it follows that x E ri {F(x*)} for all k _> k0, where ri (.} denotes the
relative interior. One of the main difficulties in extending identification results to the
degenerate case is that there may be no face F(x*) such that x e ri (F(x*)} for all k
sufficiently large. However, we show that there is a face F(x*) such that xk F(x*)
for all k sufficiently large.

The approach in this paper is reminiscent of the approach of Burke and Mor in
[4]. In particular, the approach depends on the concept of an exposed face, and on
the facial geometry of a convex set 12. These results are developed in 2 and 3. The
definition of an exposed face and several important properties of exposed faces are
presented in 2, while 3 contains a key result on the existence of a partition of lRn

based on the face structure of .
The main result of this paper is found in 4. This result is a characterization

of the identification properties of a sequence (xk} in terms of the projected gradient
and the face E[-Vf(x*)] of exposed by -Vf(x*). If f" ]n 1 is continuously
differentiable on the polyhedral set , and (x} is a sequence in that converges to
a stationary point x* of (1.1), then we show that

(1.3) lim PT(x) [--Vf(Xk)] 0

if and only if there is a k0 > 0 such that

(1.4) xk e E[-Vf(x* )], k >_ ko.

This result has important ramifications because optimization algorithms for linearly
constrained problems tend to satisfy (1.3). This can be seen by noting that if the
polyhedral set 12 has the representation (1.2), then the projected gradient is

PT() [-Vf(x)] -Vf(x)+ Ajcj,

where ,4(x) is the set of active constraints at x , and Aj is a nonnegative estimate

(a precise definition is given in 6) of the Lagrange multiplier for the ith constraint.
The identification property (1.4) can be expressed in terms of Lagrange multipliers

at the solution because we show that E[-Vf(x*)] is defined in terms of the active set
by

x e Z[-Vf(x*)] == {i e A(z*) A}* > 0} C A(z), x e

where A is the Lagrange multiplier for the ith constraint. This result depends on the
choice of Lagrange multipliers.

The identification property (1.4) has an equivalent formulation that is clearly
independent of the choice of Lagrange multipliers. Section 5 shows that it is possible
to define a set of strictly binding constraints B at a stationary point x* independent
of the choice of Lagrange multipliers, and that

x e E[-Vf(x*)] ==> B* C A(x), x e

D
ow

nl
oa

de
d 

11
/1

4/
17

 to
 2

05
.1

75
.1

18
.1

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EXPOSING CONSTRAINTS 575

This leads, in particular, to a version of the results of 4 in terms of B*.
Section 4 also contains a discussion of the connection of these results to the

identification results of Burke and Mor6 [4], and to the convergence results for the
class of trust region methods for bound constrained optimization problems proposed
by Corm, Gould, and Woint [7], [8]. The connection between these results and the
class of trust region methods for general linearly constrained methods analyzed by
Mor [18] and Burke, Mor, and Woraldo [5] will be reported in a later paper.

We end the paper with two applications of these identification results. Section 6
examines the influence of degeneracy on the standard second-order sufficiency con-
ditions. In particular, we show that if x* is degenerate, a satisfactory convergence
analysis can be obtained if we assume that V2f(x*) is positive definite on the affine
hull of E[-Vf(x*)]- x*. Section 7 examines the implication of the identification
results to the GPCG algorithm of Mor6 and Toraldo [19]. In particular, we show that
the convergence condition of the GPCG algorithm is satisfied in a finite number of
iterations even when the solution is degenerate.

2. Exposed faces. The geometric approach to the identification properties of
optimization algorithms requires an understanding of the face structure of a convex
set . In this section we provide some of the necessary results and background from
convex analysis.

Recall that the a]flne hull aft {f} of a convex set in ]Rn is the smallest affine
set that contains f, and the relative interior ri (f) of f is the interior of f relative
to aft {f}. In all cases we assume that f is not empty.

A nonempty subset F of a convex set f is a face of f if every convex subset of
whose relative interior meets F is contained in F. Thus, if x and y are in f and

Ax + (1 A)y lies in F for some A in (0, 1), then both x and y must belong to F. A
basic result on the face structure of a convex set is that the relative interiors of the
faces of f form a partition of f. For future reference, we state this result formally.

THEOREM 2.1. If is the collection of all faces of the convex set f, then the
collection

{ri (F): F e -}

is a partition of f.
This result can be found, for example, in Rockafellar [24, Thm. 18.2]. Note that

this result shows that every point x E f can be associated with a unique face F(x)
of 12 such that x E ri (F).

We are concerned with faces of f that are exposed by a given vector d in lRn.
A nonempty subset F of a convex set f is exposed by a vector d ]Rn if F E(d),
where

E(d) arg max{ (d, x/: x

for some inner product (., .) of pn. A computation shows that E(d) is a face whenever
E(d) is not empty.

Every face of a polyhedron is exposed (see, for example, Theorem 2.4.12 of Stoer
and Witzgall [25]), but this is not the case for general convex sets. For example, in
the convex set 12 defined by

(2.1) ft {(:, 2)" -1 <_ :2 _< (1 :12) 1/2, 0 <_ :1 _< 1},
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576 J.v. BURKE AND J. J. MORt

FIG. 2.1. Convex set defined by (2.1).

the point (1, 0) is a face of Ft that is not exposed by any vector. This can be seen
clearly in Fig. 2.1.

The concept of an exposed face is closely related to the concept of a normal cone.
For a convex set gt, the normal cone at x in Ft is defined by

N(x) (u e Rn (u,y- x) <_ O, y e

The tangent cone T(x) is the dual of the normal cone. Thus v E T(x) if and only if
(v, u)

_
0 for all u e N(x). The tangent cone T(x) can also be defined as the closure

of all vectors v ]Rn such that x / av 2 for all a > 0 sufficiently small. Figure 2.1
can be used to illustrate these definitions. For example,

N(1,2) {v e R2"vl 0}, T(1,2) {v R2"Vl _< 0}
for -1 < 2 _< 0.

Exposed faces and normal cones are related by the observation that x E(d) if
and only if d N(x). We make use of this observation throughout this section.

The concept of an exposed face is also related to the standard first-order optimal-
ity conditions for problem (1.1). Recall that the standard first-order conditions for a
stationary point x* of problem (1.1) are that

(vf(z*),x- x*) > 0,

In terms of normal cones, this is equivalent to requiring that

-Vf(x*)eN(x*).

The following result shows the connection between stationary points and exposed
faces.

LEMMA 2.2. If in Rn is a closed convex set, then x* is a stationary point for
problem (1.1) if and only if x* e E[-Vf(x*)].

The proof of this result is a direct consequence of the observation that x E(d)
if and only if d N(x).

Lemma 2.2 shows that any stationary point x* belongs to the exposed face
E[-Vf(x*)]. The stationary point x* may belong to other faces of gt, but in 4
we show that optimization algorithms tend to generate sequences {xk} with xk
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EXPOSING CONSTRAINTS 577

E[-Vf(x*)] for all k sufficiently large. In this section we develop part of the neces-
sary machinery for this result.

We extend the concept of normal and tangent cones at a point x E t by defining
a normal cone N(F) and a tangent cone T(F) for each F E 9v by

N(F) =_ N(x), T(F) =- T(x), x e ri (F).

This definition relies on the result of Burke and Mor [4] that normal and tangent
cones are independent of x ri (F) for any F 9.

The intersection of an arbitrary collection of faces is easily shown to be a face, but
the union of faces is not necessarily a face. On the other hand, the following result
shows that the union of all faces F $" such that d E N(F) is the face exposed by d.

LEMMA 2.3. I] f in I:tn is a closed convex set, then

for any d e Rn, where (d) is the collection of faces F . such that d N(F).
Proof. Assume first that x E(d). Then d N(x), and since Theorem 2.1

guarantees that x e ri (F) for some F ’, we have d e Y(x) Y(F). This shows
that

E(d) C U F.

We complete the proof by showing that if F ’(d) then F C E(d). Assume that
x e F for some F e ’(d). We can choose a sequence (xk } with xk ri (F) such that
(xk} converges to x. Since xk e ri (F) and d e N(F), we have d e N(xk), and hence,
xk E(d). Since the exposed face E(d) is closed and (xk} converges to x, we obtain
that x E(d) as desired. 0

The proof of Lemma 2.3 yields the stronger result that (ri (F) F ’(d)} is a
partition of E(d). This result, however, is not needed in this paper.

Lemma 2.3 also shows that if d N(F) for some F E , then F C E(d). For a
general convex set , it is difficult to characterize the vectors d N(F) that expose
a face F. On the other hand, the following result of Burke [3, Thin. 4.1] provides a
complete characterization for polyhedral .

THEOREM 2.4. Let gt be a polyhedral set in Rn.
If x f, then x ri {E(d)} /f and only if d ri {N(x)}.
If F e jr, then F E(d) if and only if d e ri {N(F)}.

Burke [3] proved only the first claim in Theorem 2.4, but it is not difficult to show
that both claims are equivalent.

Theorem 2.4 fails if f is a general convex set. For example, if f is the set in
Fig. 2.1, and F {(1, 0)}, then F is not exposed by d (1,0), but d e ri {N(F)}.
Moreover, if F E(d) for d (0, 1), then d exposes F, but d ri {N(F)}. This
example shows that the assumption of polyhedrality is required in Theorem A.1 of
Burke [3].

The above example also shows that a face may not be exposed by a vector d in
ri {N(F)}. In the remainder of this section we show that F is exposed by a vector
d ri {N(F)} if F is a quasi-polyhedral face. This result is interesting because it
leads to a connection with the identification results of Burke and Mor [4] for general
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578 J.V. BURKE AND J. J. MORI

convex sets. However, note that the remainder of this section is not needed for the
main results in this paper.

Burke and Mor [4] defined quasi-polyhedral faces in terms of the lineality of the
tangent cone T(x). Recall that for a cone K in n, the lineality lin {K} of the cone
K is the largest subspace contained in g. Hence, lin {K} K C (-K).

DEFINITION. A face F of a convex set f is quasi-polyhedral if

aft {F} x + lin {T(x)}, x e ri (F).

The convex set gt in Fig. 2.1 can be used to illustrate the difference between
exposed faces and quasi-polyhedral faces. This set has an infinite number of faces,
but the only face that is not exposed by a vector d E ri {N(F)} is F {(0, 1)}. Also
note that ft has six quasi-polyhedral faces and that these faces are exposed by any
vector d e ri {N(F)}.

Burke and Mor6 [4] show that the lineality of the tangent cone is the orthogonal
complement of the normal cone; that is,

lin {T(x)} N(x) +/-,

where the orthogonal complement S+/- of a set S is the subspace of vectors v such that
(v, w) 0 for all w S. This implies that

lin {T(x)}+/- aft {N(x)}.

These results lead to the decomposition

T(x) lin {T(x)} @ lin {T(x)} +/-
Cl T(x)

of the tangent cone. This result is valid if T(x) is replaced by a general convex cone
K. See, for example, Stoer and Witzgall [25, Thm. 2.10.5].

THEOREM 2.5. A quasi-polyhedral face F of a convex set f is exposed by any
d e ri {N(F)}.

Proof. The bulk of the proof consists of proving that if x 6 Ft, then

(2.3) E(d) Ft C Ix + lin {T(x)}], d e ri {N(x)}.

Given this result, we complete the proof by noting that F Ft C aft{F} for any face
of ft, and thus

F a C’l Ix + lin {T(x)}1, x e ri{F},

for a quasi-polyhedral face. Hence (2.3) yields that F E(d) if d e ri {N(x)}
ri {g(F)}.

We now prove that (2.3) holds; we first show that gt gl Ix + lin {T(x)}] is a subset
of E(d). Choose any y in gt C Ix + lin {T(x)}]. Then y x e lin {T(x)} N(x) +/-, and
since d N(x), we obtain that {d, y-x} 0. Since y e Ft, this implies that y e E(d).

We now show that E(d) is a subset of ftn [x / lin {T(x)}]. Choose any y in E(d).
Then y ft, and thus y- x e T(x). The decomposition (2.2) of the tangent cone

T(x) shows that we can write

y x vl + v2, vl e lin {T(x)} v2elin{T(x)}+/-AT(x).
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EXPOSING CONSTRAINTS 579

If we show that v2 0, then y x vl E lin {T(x)} as desired. We first show that
<d, v2> 0. Note that <d, y- x/- 0 because both y and x belong to E(d), and that
/d, Vl> 0 because d e N(x) and Vl e lin {T(x)} N(x) +/-. Hence, <d, v2/- 0.

We claim that v2 0 since d e ri{N(x)}, v2 e lin {T(x)}+/- aff{N(x)}, and
Id, v21 O. The proof of this claim is not difficult. Since d
aff{N(x)}, we obtain that d + ev2 e N(x) for e > 0 sufficiently small. We now use
that v2 T(x) to obtain that <d / ev2, v2> <_ 0. Since <d, v2> 0, this implies that
V2 0, as desired.

3. Face geometry. The main result of this section is an extension of Lemma
3.3 of Burke and Mor [4]. As we shall see, this extension is crucial to the results on
exposing constraints. We present two different proofs of this result. The first proof is
based on the following result of Robinson [22].

THEOREM 3.1. Let be a polyhedral set in Stn. For any d* ]:tn there is a
neighborhood S(d*) of d* such that

E(d) C E(d*), d e S(d*).

Proof. The proof is by contradiction. Assume, on the contrary, that there is a
sequence {dk} that converges to d*, and that E(dk) is not a subset of E(d*) for any
k >_ 0. Since a polyhedral set has a finite number of faces (this result can be found,
for example, in Rockafellar [24, Thm. 19.1]), there is a face E of fl and a subsequence
{dk,} such that E E(dk,).

We now show that E C E(d*). If z
The convergence of {dk} to d* implies that (d*,z) >_ (d*,x> for all x e fl, and thus,
z E(d*) as desired. This contradicts our assumption that E(dk) is not a subset of
E(d*) for any k >_ 0. [:]

Robinson [22, Lemma 3.5] proves a stronger result than Theorem 3.1. However,
we only need the above result to establish the main result of this section.

THEOREM 3.2. Let be a polyhedral set in Rn. Assume that {x}} and {dk}
are sequences in l:tn with Xk 12 and dk Y(xk). If {Xk} converges to x* and {dk}
converges to d*, then xk E(d*) for all k sulCficiently large.

Proof. This result is an immediate consequence of Theorem 3.1 because xk is in
E(dk).

Theorem 3.2 fails if is a general closed convex set even if we assume that
x* ri {F} for a quasi-polyhedral face F. For example, consider the set fl shown in
Fig. 2.1. The sequence {xk} defined by

xk (sin (),cos ())
belongs to D for k > 1, and dk xk N(xk). However, {dk} converges to d* (0, 1),
and E(d*) ((0, 1)}. Thus, xk E(d*) for any k > 1.

Burke and Mor6 [4, Lemma 3.3] proved Theorem 3.2 for general D by assuming
that x* ri {F} for a quasi-polyhedral face F and d* e ri {N(F)}. The assumption
that d* ri {N(F)} is a nondegeneracy assumption that is avoided in Theorem 3.2
by assuming that D is polyhedral. In the nondegenerate case, the key to Theorem 3.2
is to show that

x* + d* e int(F + N(F)},

where F is the unique face of D with x* ri (F). This result fails if we drop the
assumption d* ri {N(F)}. However, we claim that Theorem 3.2 can be obtained if
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580 J.V. BURKE AND J. J. MORI

we show that

(3.1) IF -t- N(F)]/’
where 9V(d*) is defined in Lemma 2.3 and d* N(x*). In the remainder of this section
we establish (3.1), and then show that (3.1) leads to another proof of Theorem 3.2.

Our development requires a few basic properties of projection operators. The
projection P" ln t into a closed convex set t is defined by

P(x) argmin {IlY xll: Y e

where I1" is an inner-product norm. If the dependence of P on t is not clear from
the context, we will use Pn to denote the projection into

The definition of the projection operator P can be characterized in terms of the
inner product (., "/by requiring that

(x- P(x), y- P(x)) <_ O,

In terms of normal cones, this characterization requires that

(3.2) x- P(x) e NIP(x)].

In particular, note that this characterization implies that

(3.3) P(x + z) x, x e fl, z e N(x).

We extend this result by proving that

(3.4) P(x + z) x, x e F, z e N(F)

for any face F ’. We prove (3.4) by noting that if {xk} is a sequence in ri (F) that
converges to x, then z e N(F) N(xk), and thus (3.3) implies that P(xk + z) xk.
The result now follows from the continuity of the projection operator.

The proof of (3.1) requires the observation that the collection {F+N(F) F .T}
covers Rn. Note that x P(x)+ Ix- P(x)]. Certainly P(x) e ri (F) for some F e ’,
and thus the characterization (3.2) of the projection operator implies that

x- P(x) e N[P(x)] N(F).

Hence, x P(x)+ Ix P(x)] belongs to ri (F) + N(F), and thus

]Rn U [ri (F)+ N(F)].
Fe.T"

The following result is not needed to establish (3.1), but is presented here because
ofthe recent interest in partitions of Rn in terms of the faces of a convex set. See,
for example, Goffin [15, Thm. 4.1] and Robinson [23, Prop. 2.2].

THEOREM 3.3. If is a polyhedral set in Rn, then the collection

{F + ri {N(F)} F e ’}

forms a partition of Rn.
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EXPOSING CONSTRAINTS 581

Proof. If we define F E[x- P(x)], then Theorem 2.4 shows that x- P(x) is in
ri {N(F)}. Moreover, since x- P(x) e NIP(x)], we obtain that P(x) e E[x P(x)];
that is, P(x) E F. Hence,

x P(x) + Ix P(x)] e F + ri {N(F)}.

This proves that

tn U IF + ri{N(F)}].

We now prove that this decomposition of tn is a partition. Assume that xi Fi and
z ri {N(F)} satisfy xl + zl x2 + z2 for some F and F2 in . Then (3.3) implies
that

Xl P(x + z) P(x2 + z2) x2.

Thus, zl z2. Since z ri {N(F)}, Theorem 2.4 shows that Fi E(z), and thus
Zl z2 implies that F1 F2 as desired. [:l

Theorem 3.3 does not hold for general convex sets Ft. For example, if t is the
convex set shown in Fig. 2.1, then any point of the form (0, ) with > 1 does not
belong to a set of the form F / ri {N(F)} for F

We proved Theorem 3.3 because of our interest in partitions of ln in terms of
the faces of a convex set. The proof of (3.1), however, only needs the result that if
is poyhedral, then the collection {F + N(F) F E 2"} covers Rn. Clearly, Theorem
3.3 yields this result.

We now prove (3.1). For this result we make use of the result that if ft is poly-
hedral then has a finite number of faces. This result can be found, for example,
in Rockafellar [24, Thin. 19.1]. We also need to know that if t is closed and convex,
then any face of gt is closed. For this result, see Stoer and Witzgall [25, Thm. 3.6.6].

LEMMA 3.4. Assume that is a polyhedral set in l. If x and d N(x),
then

x + d e int{K(d)},

where

K(d)- U [F+N(F)],
Fee’(d)

and Z(d) is defined in Lemma 2.3.
Proof. The first step in the proof is to show that if F ’, then F + N(F) is

closed. The definition of a normal cone shows that N(F) is closed, and since t is

closed, each face F is closed. Now let {yk } be a sequence in F+ N(F) that converges,
and let Yk xk + zk, where xk E F and zk N(F). Since (3.4) implies that

xk P(xk + zk) P(Yk),

and {Yk } converges, it follows that {xk} converges. Moreover, since Yk Xk + Zk, the
sequence {zk} also converges. We now use that xk F and zk N(F), to conclude
that {xk} converges to some x e F and {zk} converges to some z e g(F). Hence,
{y} converges to x / z in F / N(F). This shows that F / N(F) is closed.
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582 J.v. BURKE AND J. J. MORI

The next step in the proof is technical; we need to show that x-l-d does not belong
to the set

L(d) U [F / N(F)].
’(d)

Theorem 3.3 shows that x / d E F / N(F) for some F E ’. Let y F and z e N(F)
be such that x -- d y -t- z. Then (3.4) implies that

x P(x + d) P(y -- z) y,

and thus d z e N(F). Hence, F e ’(d). This shows that x + d L(d) as desired.
We have shown that F / N(F) is closed for each F E ’. Since is polyhedral,

there is a finite number of faces, and thus L(d) is closed. Moreover, since x-C-d L(d),
there is an open set U such that x-C-d U and UNL(d) J. Now note that Theorem
3.3 implies that g(d) U L(d) I:tn, and thus V c g(d). Hence,

x --d e U C int(K(d)},

as desired. [1

Lemmas 2.3 and 3.4 can be used to give another proof of Theorem 3.2. Indeed,
Lemma 3.4 implies that x* --d* int(K(d*)} so that xk --dk e K(d*) for all k
sufficiently large. Since dk N(xk),

x P(x --dk) e P[K(d*)]

by virtue of (3.3). Now note that (3.4) and Lemma 2.3 imply that

Fe:(d*) FE.7(d F) =E(d*),

and thus xk E(d*) for all k sufficiently large.

4. Exposing constraints. Previous results on the identification properties of
algorithms in the neighborhood of a stationary point either assumed linear indepen-
dence of the active constraint normals or nondegeneracy of the stationary point. In
this section we avoid these restrictions.

DEFINITION. Given a convex set f, a stationary point x* is nondegenerate if

(4.1) Vf(x*) e ri {N(x*)}.

This nondegeneracy condition is due to Dunn [10]. An advantage of this definition
is that it does not make any linear independence assumptions on the constraints. Also
note that Burke and Mor6 [4] proved that if f is polyhedral, then x* is nondegenerate
if and only if there is a set of positive Lagrange multipliers. This result implies that
this definition of nondegeneracy can be viewed as a generalization of the standard
strict complementarity condition.

The main result of this section is an extension of the following identification result
of Burke and Mor6 [4]. For this result recall that F(x) is the unique face of f that
contains x in the relative interior.
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EXPOSING CONSTRAINTS 583

THEOREM 4.1. Let f Rn --. R be continuously differentiable on the closed,
convex set f. If {xk} is a sequence in that converges to a nondegenerate stationary
point x* of (1.1), then

(4.2) lim PT(x) [--Vf(xk)] 0

if and only if there is a ko > 0 such that

xk e ri {F(x*)}, k >_ k0.

An advantage of Theorem 4.1 is that it is independent of the representation of 12.
For applications, however, it is necessary to express Theorem 4.1 in terms of a specific
representation of Ft. Note, in particular, that if f is the polyhedral set defined by the
set of linear constraints

(4.3)

for some vectors cj E ]Rn and scalars 5j, then Calamai and Mor [6] proved that the
projected gradient that appears in (4.2) can be expressed in the familiar form

(4.4) PT(x) [--Vf(x)] --Vf(x)+ E Ajcj,
eA()

where the set of active constraints is defined by

{j. x)

and A for j E Jr(x) solves the bound constrained linear least squares problem

Also note that representation (4.4) of the projected gradient is unique even if the
active constraints cj with j A(x) are linearly dependent.

Theorem 4.1 characterizes the limiting behavior of many algorithms with respect
to the face structure of Ft. For example, Burke and Mor [4] prove that the sequential
quadratic programming algorithm and the gradient projection algorithm generate se-
quences that satisfy (4.2). Consequently, if the stationary point x* is nondegenerate,
the sequences generated by these algorithms eventually enter and remain in the rela-
tive interior of the face F(x*). This can be extremely useful knowledge in the design
of algorithms for the solution of (1.1).

Note that Theorem 4.1 gives information on the identification of the active con-
straints. This is based on the observation of Burke and More! [4] that

ri{F(x*)} {x e f" (cj,x) 5, j e A(x*), (cj,x) > 5, j A(x*)}.

Thus, Theorem 4.1 shows that if {xk} is a sequence in that converges to a nonde-
generate stationary point x* of (1.1), then the sequence {PT(x)[--Vf(xk)]} converges
to zero if and only if there is a k0 > 0 such that

A(z,) A(z*), k > k0.
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584 J.V. BURKE AND J. J. MORI

The following example of Stephen Wright shows that this result fails in degenerate
cases.

Example. Define f:]R2 --* R by

s(,)= 1/2 ( +)
for some # > 1, and define C R2 by

U {(,) e n’ ,, -}.
Note that f is a strictly convex quadratic and that x* 0 is the globM minimizer in. A computation shows that the steepest descent iterates (with exact line searches)
are generated by

This implies, in particular, that all the iterates are feible and that

+:) .
Hence, every other iterage of the steepest descent method lies in the same ray from
ghe origin. Thus, if the initial iterate satisfies either the constraint (1 ( or the
eonsgraing ( -(, the ierates of the sgeepest desceng method oscillate between
the gwo consgrains ghag define . Since ghese iterages are legible, the steepest de-
scent iterates coincide with the gradient rojection iterates. This implies that in this
example,

(+1) (), () (*), 0.

Of course, in ghis case * is degenerate because Vf(*) O.
We now consider the ce when * is degenerage and show that ghe nondegeneracy

sumpgion in heorem 4.1 can be dropped if we replace ri {F(*)} by E[-Vf(*)].
THEOREM 4.2. Let f N be continuously differentiable on the polyhedral

set , and assume that (xk} is a sequence in that converges to a stationary point
* oS (.). Then

lim PT() [--Vf(xk)] 0

if and only if there is a ko > 0 such that

e E[-V/(*)], k k0.

Proof. The proof depends on the Moreau decomposition (see, for example, Lemma
2.2 of Zarantonello [28]) and Theorem 3.2. The Moreau decomposition of-Vf shows
that

In particular,

-vf(x) -Pr(,)[-v:(x)] + P(.,)[-vf()].
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EXPOSING CONSTRAINTS 585

where dk e N(xk). Hence, if the sequence {PT(xk)[--Vf(xk)]} converges to zero, then
{dk} converges to --Vf(x*), and thus Theorem 3.2 shows that xk e E[-Vf(x*)] for
all k sufficiently large.

Conversely, assume that xk E E[-Vf(x*)] for all k sufficiently large. Since x is
in E(d) if and only if d N(x), we have that there is a k0 > 0 such that -Vf(x*)
belongs to N(xk) for all k >_ k0. Since the Moreau decomposition implies that

we obtain that

IIPT<  ) [-Vf(xk)]ll <_ IlVf(xk) Vf(x*)ll.

This yields the desired result. [3

In the remainder of this section we examine various consequences of Theorem 4.2.
We first use Burke’s result (Theorem 2.4) to show that Theorem 4.2 is an extension
of Theorem 4.1 for polyhedral f.

THEOREM 4.3. If is a polyhedral set, then x* is a nondegenerate stationary
point for problem (1.1) if and only if x* e ri {E[-Vf(x*)]}.

Proof. This result is a direct consequence of Theorem 2.4. [3

We can show that Theorem 4.2 is an extension of Theorem 4.1 by noting that
if x* is a nondegenerate stationary point for problem (1.1), then Theorem 4.3 shows
that x* is in ri {E[-Vf(x*)]}, and thus any x e E[-Vf(x*)] sufficiently close to x*
also belongs to ri {E[-Vf(x*)]}.

We now show that if the polyhedral set f has the specific representation (4.3),
then the face E[-Vf(x*)] can be expressed in terms of the positive Lagrange multi-
pliers at x*.

THEOREM 4.4. If f is the polyhedral set in Rn defined by (4.3) and

(4.5) Vf(x*) Acj, >_ O,

for some stationary point x* of problem (1.1), then

E[-V/(*)] {x e a. (,)= 5, i > 0}.

Proof. Note that

jA(*) jeA(*)

for any x e . Thus, we have that (Vf(x*),x) is minimized only when (cj,x) 5
for A > 0. [3

If the active constraint normals are linearly dependent then there is an infinite
set of Lagrange multipliers that satisfy (4.5). Nevertheless, Theorem 4.4 shows that
the set

{z e . (,)= , ; > 0}
is independent of the choice of Lagrange multipliers.

THEOREM 4.5. Let f" In -- l be continuously differentiable on the polyhedral
set f defined by (4.3). Assume that x* is a stationary point of (1.1) and that the
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586 J.v. BURKE AND J. J. MORI

Lagrange multipliers A satisfy (4.5). If {xk} is a sequence in ft that converges to x*,
then

lim PT(x)[-Vy(xk)] 0

if and only if there is a ko > 0 such that

(4.7) {i E A(x*) A > 0} C A(xk), k >_ ko.

Proof. Theorem 4.4 shows that

x e E[-Vf(x*)] == {i e A(x*) A > 0} c A(x), x e Ft.

Thus, the result is a direct consequence of Theorem 4.2.
This result has immediate applications to several algorithms. For example, Cala-

mai and Mor [6] show that the gradient projection method generates sequences that
satisfy (4.6). Hence, Theorem 4.5 implies that if the sequence {xk} generated by the
gradient projection method converges to x*, then (4.7) holds.

Closely related convergence results for the gradient projection method are due
to Bertsekas [1], [2], Gafni and Bertsekas [12], [13], and Dunn [9]. However, in these
papers it is not shown that (4.6) holds; instead, it is shown that any limit point of
the sequence {Xk} is stationary.

Theorem 4.5 also has application to the class of trust region methods for bound
constrained optimization problems proposed by Conn, Gould, and Toint [7], [8]. For
this algorithm, Lescrenier [17] proved that (4.7) holds. Hence, Theorem 4.5 implies
that (4.6) holds. This result is of interest because the measure

(4.8) ’(; f)

is a natural criterion for terminating the algorithm. This is clear from expression (4.4)
for the projected gradient. Moreover, note that v(x; .) is scale invariant in the sense
that v(x; af) a(x, f) for any a > 0. Other criteria, for example,

(; f) IIP[x Vf(x)]

do not have this important property.
Finally, Theorem 4.5 has implications to the class of trust region methods for

general linearly constrained methods analyzed by Burke, Mor, and Toraldo [5].
5. Strictly binding constraints. We have stressed the geometric viewpoint

of Theorem 4.2 because this viewpoint leads to results that are independent of the
representation of Ft. On the other hand, the viewpoint of Theorem 4.5 is needed
because it is closely related to computational issues. In this section we show that it
is possible to define a set of strictly binding constraints B at x*, independent of the
choice of Lagrange multipliers. This leads, in particular, to a version of Theorem 4.5
in terms of B.

We will show that the set of strictly binding constraints B can be defined in
terms of the active set of the exposed face E[-Vf(x*)].

DEFINITION. If is a polyhedral set and F is a face of t, then

A (F) A(x), x e ri {F}
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EXPOSING CONSTRAINTS 587

is the active set of F.
We justify this definition by showing that the active set Jr(x) is independent of

x in ri {F}. Assume that is defined by (4.3), and choose any x E ri (F}. If y E F,
then

x: x + (y- x) F

for some A < 0. Hence, if A(x), then

Since A < 0, this implies that (c, y} <_ 5. Thus, Jr(y). We have shown that
A(x) C A(y) if x ri {g} and y E F. Hence, A(x) A(y) if x and y belong to
ri {F}.

This definition of 4(F) is direct and intuitive. We now establish an alternative
characterization of jr(F). For the proof of this result, we need to know that

(5.1) -deri{N(x)} d= E Aic, A>0.

This characterization of ri {Y(z)} is due to Burke and Mor( [4, Lemma 3.2].
LEMMA 5.1. If i8 a polyhedral set, then

F {x e Ft: (c, x) 5, i e A(F)}

for any face F of .
Proof. Every face of a polyhedron is exposed (see, for example, Thm. 2.4.12 of

Stoer and Witzgall [25]), and thus F E(-d) for some d Rn. Hence, Theorem
2.4 implies that -,i e ri {N(F)}, and thus d e ri {Y(x)} for any x e ri {f}. We now
appeal to the ch .:acterization (5.1) and conclude that there are Ai > 0 such that

d= E Aci,

A computation now shows that

E[-d] {x e a: (ci, x> 5i, e A(z)}.

Since ,4(x) ,4(F) and F E[-d], this establishes the result.
This result characterizes jr(F) as the set of active constraints that are essential

for F. In view of this result, it is natural to investigate the properties of the active
set of the exposed face E[-Vf(x*)].

DEFINITION. If is a polyhedral set and x* is a stationary point of (1.1), then

is the set of strictly binding constraints at x*.
This definition requires justification because strictly binding constraints are usu-

ally associated with positive Lagrange multipliers; the following result provides this
justification.

THEOREM 5.2. Let f :Rn R be continuously differentiable on the polyhedral
set defined by (4.3). If x* is a stationary point of (1.1) then

Vf(x*) > 0,
B*
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588 J.V. BURKE AND J. J. MOl:tl

for some set of positive Lagrange multipliers
Proof. Theorem 2.4 implies that -Vf(x*) e ri (N(F)} for F E[-Vf(x*)].

Hence, -Vf(x*) e ri {g(x)} for any x e ri {f}. Since A(x) B for x e ri {f}, the
characterization (5.1) yields the result.

Theorem 5.2 justifies the definition ofB as the set of strictly binding constraints.
This result is interesting because it does not make any nondegeneracy or linear inde-
pendence assumptions. Note that if x* is nondegenerate then Theorem 4.3 shows that
x* e ri {E[-Vf(x*)]}, and thus B* Ji(x*). Hence, for nondegenerate x*, Theorem
5.2 is a direct consequence of (5.1) and the definition of nondegeneracy.

THEOREM 5.3. Let f In --, : be continuously differentiable on the polyhedral
set f defined by (4.3). If x* is a stationary point of (1.1) and {A} is any set o.f
Lagrange multipliers, then the following three statements are equivalent.

1. x e E[-Vf(x*)].

3. B: C A(x) for x e
Proof. Theorem 4.4 shows that the first two statements are equivalent. The

equivalence of the first and third statements is obtained by noting that Lemma 5.1
implies that

This result shows that Theorem 4.5 can be phrased in terms of B. Another inter-
esting consequence of Theorem 5.3 is obtained by choosing any x e ri {E[-Vf(x*)]}
in the second statement in Theorem 5.3. This shows that

for any set of Lagrange multipliers {A }. Hence, the indices in B identify a maximal
set of positive Lagrange multipliers.

6. Second-order sufficiency conditions. We have shown that optimization
algorithms tend to generate iterates such that

xk e E[-Vf(x*)]

for all k sufficiently large. Another important component in the analysis of an op-
timization algorithm is to show that the iterates converge under suitable conditions.
This type of result usually requires the assumption that the iterates {xk} have an
isolated limit point x*. This assumption is satisfied, for example, if x* is an isolated
stationary point; that is, there is a neighborhood S(x*) such that x* is the only sta-
tionary point in S(x*) f f. In this section we show that if the Hessian is positive
definite in the cone generated by E[-Vf(x*)]- x*, then the stationary point x* is
isolated.

The assumption that x* is an isolated stationary point can be guaranteed by
imposing second-order conditions on f. The following result uses a version of the
second-order sufficiency conditions that is appropriate for problem (1.1) with a general
convex set

THEOREM 6.1. Let f tn be continuously differentiable on a closed convex
set f and twice differentiable at a point x* in f. If x* is a stationary point ofproblem
(1.1) and

(6.1) (Vf(x*), w) O, w e T(x*), w = 0 == (w, V2f(x*)w) > O,
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EXPOSING CONSTRAINTS 589

then x* is an isolated stationary point of f
Theorem 6.1 is a special case of a result of Robinson [21, Thm. 2.4]. The proof

of Theorem 6.1 is not difficult in our setting. Note that if x* is not an isolated
stationary point, then there is a sequence {xk } of stationary points converging to x*.
In particular,

(6.2) (Vf(x*), Xk X*)

_
0, (VI(x), x* x) >_ 0

This implies that

(6.3) <vy() Vy(x*), *> < 0.

Hence, if w is a limit point of the sequence {wk) defined by

Wk
Xk X*

then (6.2) shows that (Vf(x*), w> 0, while (6.3) shows that (w, V2f(x*)w> g O.
Moreover, since wk e T(x*) and Ilwkll 1, we also have that w e T(x*) and that
Ilwll-" 1. This contradicts (6.1).

For a polyhedral Ft, condition (6.1) coincides with the standard second-order
sufficiency conditions. This observation follows by noting that if D is the set defined
by (4.3) and

then

{w e ]Rn" (Vf(x*), w) 0, w e T(x*)}
{ e {. (,) > 0, y e A(x*), (,) o, ; > 0}.

For a general convex , condition (6.1) has an advantage over the standard second-
order sufficiency conditions because it is independent of the representation of . On
the other hand, an example of Burke, Mor, and Toraldo [5] shows that condition
(6.1) does not take into account the curvature of , and thus differs from the standard
second-order sufficiency conditions.

If x* is a nondegenerate stationary point, then (6.1) can be expressed in terms of
N(x*)+/-, where for any set S the orthogonal complement S+/- of S is the subspace of
vectors v such that (v, w) 0 for all w e S. Indeed, Burke, Mor6, and Toraldo [5]
prove that if x* is a nondegenerate stationary point, then

(6.4) N(x*) +/- {w e T(x*) (Vf(x*), w) 0}.

These results are familiar when f is the polyhedral set defined by (4.3) because

N(x*) +/- {v e Rn (cj, v> O, j e A(x*)}.

We now show that the second-order sufficiency condition can be expressed in terms
of the exposed face E[-Vf(x*)]. In this result, cone{S} is the cone spanned by the
set S, that is, the set of vectors aw for some a _> 0 and w E S.
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590 J.v. BURKE AND J. J. MORI

THEOREM 6.2. Let f Rn --, ]R be continuously differentiable on a polyhedral
12 and twice differentiable at a point x* in . If x* is a stationary point of problem
(1.1), then

(6.5) (w e T(x*) (Vf(x*),w) O) cone(E[-Vf(x*)]- x*).

Moreover, if

(6.6) w e cone(E[-Vf(x*)] x*}, w 0 == (w, V2f(x*)w) > O,

then x* is an isolated stationary point of f
Proof. The result follows from Theorem 6.1 if we establish (6.5). We first show

that

cone {E[-Vf(x*)] x*} C (w e T(x*) (Vf(x*), w) 0}.

If w e cone(E[-Vf(x*)]-x*}, then w a(x- x*) for some x e E[-Vf(x*)].
Thus, since (Vf(x*), .) is constant on E[-Vf(x*)], we obtain that (Vf(x*), w) 0.
Moreover, since x E g/, it is clear that w T(x*). For the reverse inclusion assume
that (Vf(x*),w) 0 for some w e T(x*). Since w e T(z*) and 2 is polyhedral,
x* + aw for all a > 0 sufficiently small. Moreover, since (Vf(x*),w) 0, it
follows that x* / awe E[-Vf(x*)]. Thus, we have w e cone(E[-Vf(x*)]- x*} as
desired. F1

We have already noted that if x* is nondegenerate, then (6.4) holds. This implies,
in particular, that

{w e T(x*) (Vf(x*), w) 0}

is a subspace. In view of (6.5), we have shown that if x* is nondegenerate then
the second-order condition (6.1) reduces to the assumption that V2f(x*) is positive
definite on the subspace aff{E[-Vf(x*)]- x*}. In the context of algorithms, the
fact that (6.5) is a subspace is extremely helpful. However, the same effect can be
obtained without assuming nondegeneracy if one is willing to strengthen the second-
order sufficiency condition.

DEFINITION. Let f ]Rn --, be twice differentiable at x* f. The strong
second-order sufficiency condition for problem (1.1) is satisfied at a stationary point
x* if V2f(x*) is positive definite on the subspace aff {E[-Vf(x*)] x*}; that is,

(6.7) w e aff(E[-Vf(x*)]- x*}, w # 0 (w, V2f(x*)w) > O.

If the strong second-order sufficiency condition (6.7) holds, then the standard
second-order sufficiency condition (6.1) must also hold because

cone{E[-Vf(x*)] x*} C aff (E[-Vf(x*)] x*}.

The following example shows that the converse can fail even if f is quadratic.
Example. Let f :R2 -, ]R be given by

and let 12 c ]R2 be given by

fl e > 0, >_ 0}.
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EXPOSING CONSTRAINTS 591

For this problem x* (0, 0) is the global minimum of f over Ft. Note that Vf(x*) 0,
and thus E[-Vf(x*)]- . Hence,

cone{E[-Vf(x*)] x*} R2+, aff{E[-Vf(x*)] x*} n2.

A computation shows that the standard second-order sufficiency condition (6.1) holds
at x*. However, it is clear that the strong second-order sufficiency condition (6.7) is
not satisfied at x* because 72f(x*) is not positive definite.

Other authors have used the term strong second-order sufficiency condition to
mean that

(6.8) (cj, w) 0, ) 0, W # 0 := (W, V2f(x*)w) ) O.

For example, Gay [14], Lescrenier [17], and Robinson [20] use this condition in their
analysis of the convergence behavior of algorithms. A disadvantage of condition (6.8)
is that it depends on the representation of 2 and the choice of multipliers. The
following example shows that condition (6.8) is stronger than (6.7) even if f is a
quadratic.

Example. Let f :R3 ]R be given by

and let t (x E R3

where
(ci, x) >_ O, 1

_
<_ 4} be the cone with vertex at the origin,

C1 el, c2 e2, C3 e3 el, a4 e3

For this problem x* (0, 0, 0) is the global minimum of f over 2. A computation
shows that E[-Vf(x*)] {x*}, and thus the strong second-order condition (6.7)
holds. However, condition (6.8) does not hold if we choose 0.

This example shows that condition (6.8) is stronger than (6.7) for some set of
multipliers. On the other hand, the following result shows that there is a set of
multipliers such that condition (6.8) is equivalent to (6.7).

THEOREM 6.3. Let f n __, ]R be continuously differentiable on the polyhedral
set 2 defined by (4.3). If x* is a stationary point of (1.1), then

aff {E[-Vf(x*)] x*} {v e Rn (cj, v) O, j e B*}

where B* is the set of strictly binding constraints defined in 5.
Proof. If v e E[-Vf(x*)]- x*, then (Vf(x*),v} 0, because (Vf(x*),.} is

constant on E[-Vf(x*)]. Moreover, since v is a feasible direction, (cj,v) >_ 0 for
j A(x*). Now recall that Theorem 5.2 guarantees that (5.2) holds. Hence,

0 (v/(x*), v) ; (c, v) >_ 0.

This implies that (cj, v) 0 when j B. Thus, we have shown that

E[-Vf(x*)] x* C {v e nn (cj, v) O, j e B*s}

Hence,

(6.9) aff(E[-Vf(x*)]- x*} C (v e nn. (c, v) 0, j e B}.
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592 J.v. BURKE AND J. J. MOR

For the reverse inclusion choose any x0 e ri {E[-Vf(x*)]}. If (cj, v) 0 for j
then v is a feasible direction because B*s A(xo). Hence xo + av E f for all a > 0
sufficiently small. Moreover, (5.2) implies that

(Vf(*), +) (Vf(x*), ).

This shows that xo + cv e E[-Vf(x*)]. We have established that

{v e rt : 0, j e c

Hence,

dim {v e l=tn" (cj, v} 0, j e B} _< dim {E[-Vf(x*)]}.

Since we have already established (6.9), this completes the proof. [:]

7. Algorithms. Theorem 4.5 is an important tool for the convergence analysis
of optimization algorithms. In this section we examine the use of Theorem 4.5 in the
GPCG algorithm of Mor6 and Toraldo [19]. In particular, we show that the conver-
gence condition of the GPCG algorithm is satisfied in a finite number of iterations
even when the solution is degenerate.

The GPCG algorithm uses a combination of the gradient projection algorithm
and the conjugate gradient algorithm to solve large-scale problems of the form

(7.1) min{q(x)" <_ x <_ u}.

The GPCG algorithm uses the conjugate gradient method to explore the active set

(.)

defined by the current iterate. Once this exploration is completed, the gradient pro-
jection method is used to choose a new active set. The convergence properties of the
GPCG algorithm are summarized in the following result of Mor and Toraldo [19].

THEOREM 7.1. Let q Rn --, R be a strictly convex quadratic. If {x} is
the sequence generated by the GPCG algorithm for problem (7.1), then either {Xk}
terminates at the solution x* in a finite number of iterations, or {xk} converges to
the solution x* of problem (7.1). /f the solution x* of problem (7.1) satisfies the
nondegeneracy condition

Oiq(x*) # O, e A(x*),

then the GPCG algorithm terminates at the solution x* in a finite number of itera-
tions.

This convergence result is not entirely satisfactory when the solution x* is degen-
erate, because it does not show that the convergence test is satisfied in a finite number
of iterations. Given a starting point x0 in the feasible region ft {x e IRn _< x _< u}
and a tolerance T > O, the convergence test of the GPCG algorithm requires that

(7.3) IlVaq(x )[I <_

where Vnq is defined by

Oiq(x)
[Vaq(x)l min{Oq(x), 0}

max{Oiq(x), 0}

if xi E (l, ui),
if xi li,
if xi ui.
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EXPOSING CONSTRAINTS 593

This convergence test is closely related to (4.6) because

Vq(x) --PT() [-Vf(x)].

In particular, if (4.6) holds, then the convergence test (7.3) is satisfied after a finite
number of iterations. In the remainder of this section we show that (4.6) holds.

Given the current iterate xk, the GPCG algorithm explores the active set defined
by the current iterate by computing an approximate minimizer of the subproblem

(7.4) min{q(xk + d): di 0, i e A(xk)}.

Given an approximate minimizer dk of subproblem (7.4), the GPCG algorithm uses
a projected search to choose a search parameter ak such that q(xk+l) < q(xk), where

xk+ P(xk + akdk)

and P is the projection into the feasible region . Details on the projected search
can be found in the paper of Mor6 and Toraldo [19]. For this paper it is necessary to
note only that since the ith coordinate of dk is zero when E 4(xk), we obtain that

(7.5) A(x ) c

holds whenever the GPCG algorithm explores the active set defined by the current
iterate.

The approximate minimizer dk of subproblem (7.4) is obtained by first noting
that if 1,..., im are the indices of the free variables, that is, those variables with
indices outside of A(xk), then subproblem (7.4) is equivalent to the unconstrained
subproblem

(7.6) min{qk(w) w e Rm},

where qk ]Rm --* R is defined by qk(w) =-- q(zk + Zkw), and Zk is the matrix in
:nm whose jth column is the ijth column of the identity matrix in ]Rnxn. Given the
starting point w0 0 in ]Rm the conjugate gradient algorithm generates a sequence
of iterates {wj }. The approximate solution of subproblem (7.4) is then dk Zkwj
for some jk >_ O.

If the iterate xk+l generated by the conjugate gradient method appears to have
identified the active set defined by the solution, then the GPCG algorithm explores
this active set further. The decision to continue the conjugate gradient method is
based on the observation that if A(x) A(x*), then the binding set

B(x) {i: xi l and Oiq(x) >_ O, or xi u and Oiq(x) <_ 0}

agrees with the active set A(x). Thus, if the conjugate gradient method produces an
iterate xk+l such that B(xk+) A(xk+), then the GPCG algorithm continues to
use the conjugate gradient method to explore this active set. The finite termination
properties of the conjugate gradient algorithm show that at most mk iterations are
needed before the conjugate gradient algorithm finds a solution of subproblem (7.4);
at this point there would be no need to explore this active set further.

Once the conjugate gradient algorithm has explored an active set, the GPCG
algorithm uses the gradient projection method

yk+ P [Yk kVq(Yk)]
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594 J.v. BURKE AND J. J. MORI

with Yo Xk to select a new active set. The GPCG algorithm sets Xk+l Yjk for
some jk

_
O. Additional details on the implementation of the gradient projection

method can be found in the paper of Mor and Toraldo [19].
We now use Theorem 4.5 to prove that (4.6) holds for the iterates generated by

the GPCG algorithm. The proof consists of showing that condition (4.7) holds. For
the bound constrained problem (7.1), condition (4.7) is just that

B* {i e A(x*) Oiq(x*) O} C A(xk), k >_ ko,

where B is the set of strictly binding constraints at x* defined in 5.
THEOREM 7.2. Let q" Rn --, be a strictly convex quadratic. If (xk} is

the sequence generated by the GPCG algorithm for problem (7.1), then either
terminates at the solution x* in a finite number of iterations, or there is an index ko
such that the convergence test (7.3) is satisfied for all k >_ ko.

Proof. Theorem 7.1 shows that either (xk) terminates at the solution x* in a
finite number of iterations or that (xk) converges to x*. The result follows if
terminates at the solution x*, so we assume that (x) converges to x*. Let ]GP be
the set of indices k such that xk+l is generated by the gradient projection method.
Theorem 5.2 of Calamai and Mor [6] shows that

lim PT(xk+,) [--Vq(xk+)] O.

Hence, Theorem 4.6 shows that

if k E GP and k is sufficiently large. Moreover, since (7.5) holds whenever the
conjugate gradient method is used to explore the current active set, we immediately
obtain that

G c A(x )

holds for all sufficiently large indices k. Hence, (4.7) holds, and thus Theorem 4.5
shows that (4.6) holds as desired. D
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