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A UNIFIED ANALYSIS OF HOFFMAN’S BOUND VIA FENCHEL
DUALITY*

JAMES V. BURKEt AND PAUL TSENGt

Abstract. In 1952, Hoffman showed that the distance from any point to the solution set of a
linear system is bounded above by a constant times the norm of the residual. Subsequently, this
bound has been studied extensively and has found many practical uses. In this paper, we consider an
extension of Hoffman’s bound to a partially infinite-dimensional setting in which the norm defining
the distance is replaced by a positively homogeneous convex function and the linear system is replaced
by a convex inclusion of the form Ax a E K, where A is a continuous linear operator from some
normed linear space into Rm, a is an element of the range space of A, and K is a nonempty closed
convex cone in Rm. When specialized to the finite-dimensional case, we unify and extend many
existing results on Hoffman’s bound. Our analysis is based on the use of Fenchel duality to express
the distance as the supremum of a certain concave function over a bounded subset of the polar of K.
Much of our analysis also extends to the case where K is a nonempty closed convex set, not only a
convex cone.

Key words. Fenchel duality, error bound, linear system, positively homogeneous convex func-
tion, convex cone, semidefinite programming
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1. Introduction. In 1952, A. Hoffman [14] published a very interesting result
showing that the distance, measured in some/p-norm (p _> 1), from any point x to
the solution set of a linear system

A<_a,

where A is a real matrix and a is a real vector, is bounded above by some constant
(depending on the matrix A only) times the norm of the residual

lAx a]+,

where Ix]+ denotes the positive part of x. A local version of this bound was discovered
slightly earlier by Rosenbloom [36]. Why is Hoffman’s bound interesting? First, many
iterative methods for solving linear systems have the property that they decrease the
residual to zero. Hoffman’s bound guarantees that the iterates generated by these
methods are approaching the solution set. Second, Hoffman’s bound is a key to the
sensitivity analysis of linear/integer programs (see [9], [31], [33]), the computation of
local error bounds (see [25], [31]), and the convergence analysis of descent methods
for linearly constrained minimization (see [10], [11], [1.6], [25], [37]-[39]).

In the original work of Hoffman [14], an explicit formula for the constant was
also given for the cases p 1, 2, cx. In [36], this was done for p 2. Subsequently,
much research has focused on sharpening this constant and on extending the bound
to lp spaces for other values of p. First Robinson [31], using LP duality, derived a
new estimate of the constant for the case p 2. Mangasarian [26] and Mangasarian
and Shiau [29], also using LP duality, derived simpler estimates for the case p c
(although their argument readily extends to the case p 1). An estimate similar to
that of [29] was also obtained by Cook et al. [9] in the context of integer programming
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266 JAMES V. BURKE AND PAUL TSENG

although, as was pointed out in [29, Remark 2.5], the latter estimate is weaker than
that given in [29] (also see [18]). More recently, Hoffman’s bound has been refined and
extended to the case of arbitrary p by Li [22] and by Giiler, Hoffman, and Rothblum
[13], to the case of an infinite system of linear inequalities by Hu and Wang [15],
and to the infinite-dimensional case under the /-norm by Bergthaller and Singer
[3]. In particular, a sharp estimate of the constant was given in [22] which, as was
remarked in [22], can also be inferred from the analysis in [3]. A simplified proof
of Hoffman’s original bound was given by Giiler [12] and, very recently, Klatte and
Thiere [20] showed that the sharp estimate of the constant given in [22] is equal to
the estimate given in [19] and in [31]. Finally, we note that Hoffman’s bound has also
been extended to convex programs and systems of convex inequalities [2], [7], [27],
[32], to systems of analytic equalities/inequalities [24], and to the extremal solutions
of linear programs [21]. However, such extensions are beyond the scope of the present
paper and will not be treated any further.

In this paper, we consider the general setting in which A is a continuous linear
operator from some real normed linear space X to another real normed linear space
Y, a is an element of Y, and "<_" denotes a partial ordering on Y induced by some
nonempty closed convex cone K in Y. (Extensions of our results to the case where
K is a convex set are discussed in 6.) Special attention will be given to the par-
tially infinite case in which Y is finite-dimensional (see 3-5). Here, we identify the
normed space Y with the pair (R", I1"1]), where I1"11 is a given norm on RTM. The par-
tially infinite case arises in a number of emerging applications, including constrained
interpolation, spectral estimation, and semi-infinite linear programming (see [5] and
references therein). Applications to the case in which the cone K is not polyhedral
arise in the study of positive semidefinite programming [1], [6], [30].

Our two main contributions are (1) to unify and extend previous results on Hoff-
man’s bound (for a linear system) to the partially infinite case and (2) to extend
the theory of Hoffman bounds to closed convex sets and, in particular, the case of
nonpolyhedral convex cones such as the cone of real positive semidefinite matrices.
In particular, we derive general conditions under which the distance, measured in the
norm on X, from any point x in X to the solution set of the convex cone inclusion

A-aEK

is bounded above by some constant (depending on A and K only) times the distance,
measured in the norm on Y, from Ax- a to K. We give an estimate of the constant
in this bound which, in the case where X is an lp (Lp) space for some 1 < p < ec,
is as sharp as existing estimates. We also show that, in many cases, the norm used
to measure the distance on X can be replaced by a gauge function [34, 15], i.e., a

nonnegative positively homogeneous convex function. These results unify and extend
existing results on Hoffman’s bound (see [3], [9], [13], [22], [29]) which consider only
the case in which K is the Cartesian product of closed intervals (see 5).

There are two key elements to our analysis. First, we use a version of Fenchel’s
duality theorem for convex programs with generalized constraints to express the dis-
tance from x to the solution set of A- a E K as the supremum of a certain concave
function over K, the polar cone of K (see (1)). Second, we construct a cone W c K
that is large enough so that the preceding supremum is unchanged when K is re-
placed by W (see (2)) and yet is small enough so that W N (A*)-IB is bounded,
where B denotes the dual ball in Y*. Then, by observing that this supremum is
unchanged when W is further intersected with (A*)-IB, the desired bound readily
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HOFFMAN’S BOUND 267

follows (see 2 for a detailed argument). We note that there are typically several pos-
sible choices for the cone W and that different choices of W yield bounds that may
be very different in nature. Moreover, for some choices of W, the set W C (A*)-IB
is intimately related to the extreme points of K C? (A*)-IB (see Lemma 5).

Following [34] and [35], we adopt the following notation throughout. We denote
by Rr the m-dimensional real space. All vectors in R are column vectors and the
superscript T denotes transpose. For any subspace S of R", we denote by S+/- the
orthogonal complement of S. For any real normed linear space X, we denote by I1"11
the norm on X and by X* the vector space of continuous linear functionals on X.
For each x E X and x* E X*, we denote by (x*,x} the value of the function x* at x
(so the bilinear form (., .} is a pairing of X* and X). It is well known that X* is a
Banach space when endowed with the dual norm ][x*[[, supllxll_< {x*, x) defined for
all x* X*. We will use B to denote the unit ball on X (i.e., B {x X: IIxll <_ 1})
and use B to denote the dual unit ball on X* (i.e., B {x* X* IIx*ll, _< 1}).
For each nonempty closed convex set C in X, we let c denote the indicator function
for C, i.e.,

f 0 if x C,Co(x) x else,

and let

dist (x C) inf Ilx ll
(c

for all x E X. The recession cone of C, denoted rec (C), is the set of directions y such
that C + y c C. When X is finite-dimensional, we denote by ri C the relative interior
of C.

In this paper we simultaneously deal with two normed linear spaces X and Y
and, for simplicity, we use I1"11 to denote the norm on either X or Y and use I1"11. to
denote the dual norm on either X* or Y*. Analogously, we use (., .} to denote the
bilinear form on either X x X* or Y x Y*, use B to denote the unit ball on either
X or Y, and use B to denote the dual unit ball on either X* or Y*, etc. For any
convex function f: X H R t2 {+oc}, we denote by f* the conjugate of f, i.e.,

f*(x*) sup{(x*, x} f(x)}
X

for all x* X*. The effective domain of the function f, denoted dom (f), is the set
of points x X for which f(x) < +oe. For any nonempty closed convex cone K in
Y, we denote by lin (K) K N (-K) the lineality of K, by span (K) the linear span
of the elements of K, and by K the polar of K, i.e.,

K { y* V*’(y*,y) <_ 0 for all y e K }.

For any linear operator A from X to Y, we denote by A*" Y* H X* the adjoint of A.
We also denote by ran (A) the range of A and by ker A* the kernal of A*.

2. Extensions of Hoffman’s bound. Let X and Y be two real normed linear
spaces. Let f be a real-valued convex function on X whose conjugate f* is nonnegative
everywhere, i.e., f*(x*) >_ 0 for all x* E X*. (We can think of f as a generalization
of the norm function on X.) Let K be a nonempty closed convex cone in Y and let A
be a linear operator from X to Y. Our goal is to determine conditions under which
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268 JAMES V. BURKE AND PAUL TSENG

the "generalized distance" from a point x E X to the solution set of the convex cone
inclusion A- a E K, given by

inf f(x ),
A-aEK

is bounded above by some constant times

dist (Ax a K)

uniformly in x and in a. In the case where X Rn, Y R" for some m and n, f is
the norm function on X, and K is the nonpositive orthant in Y, this bound reduces
to Hoffman’s original bound.

In our analysis, we use a version of Fenchel’s duality theorem and certain prop-
erties of convex sets to express the above generalized distance as the supremum of
the dual norm over a bounded subset of K. More precisely, we first use a version of
FenChel’s duality theorem to express the "generalized distance" from x to the solution
set of A- a K as the supremum of a concave function over K:

(1) inf f(x- ) sup {(y* Ax- a} f*(A*y*)}.
A-aEK y.K

Then we find a cone W C K (independent of x) such that the above supremum is
unchanged when K is replaced by W, i.e.,

(2) sup {(y*,Ax a} f*(A*y*)} sup {(y*,Ax a} f*(A*y*)}.
y*K y*W

Finally, we use the nonnegativity of f* and a basic property of the dual norm to
bound the right-hand side of (2) by dist (Ax- a K) times the constant

y*EWn(A*)-D

where D is the "generalized dual unit ball" given by D { x* X* f*(x*) <_ 1 }.
Thus the two relations (1) and (2) are key to extending Hoffman’s bound to our
problem setting. To ensure that the bound is not trivial (i.e., the above constant is
not equal to c), we will further choose W so that

W M (A*) D is bounded.

(Thus, if K (A*)-D is bounded, we can simply choose K to be W.) We defer
the discussion of when the strong duality relation (1) holds to 3 and the discussion
of when the desired cone W exists to 4 and 5.

We show below that if (1) and (2) hold, we immediately obtain a nontrivial ex-
tension of Hoffman’s bound to our problem setting (also see [12, p. 3] for a related
derivation for linear systems). We will refine this extended bound shortly (see Theo-
rem 2).

THEOREM 1. Let X and Y be real normed linear spaces. Let f be a real-valued
convex function on X whose conjugate f* is nonnegative everywhere, let K be a
nonempty closed convex cone in Y, let A be a continuous linear operator from X to
Y, let a ran(A)- K, and let x X. Suppose that (1) holds and there is a cone
W c K satisfying (2). Then

(3) inf f(x ) < #dist (Ax a K)
A-aEK
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HOFFMAN’S BOUND 269

where 1 e (-oo} U [0, oo] i8 given by

(4) #1 sup IlY*II,
y*EW

A** edom (f*)

(We use the convention that oo. 0 (-oo) 0 0 and #1 --00 if the supremum in
(4) is taken over an empty set.)

Proof. Using (1) and (2), we obtain

f(x ) sup { (y*, Ax al f* (A’y*) }

<_ sup (y*, Ax a
y*W

A’y* dom (f*)

<_ sup
y*W

A** edom (]*)

#ldist (Ax a K),

IlY*II, dist (Ax- a K)

where the first inequality follows from the nonnegativity of f* and the second inequal-
ity follows from the inequality

(5) (Y*, Y} [lY*I[, dist (y[K) Vy e Y, y* e K,
which in turns follows from the observation (cf. the definition of the dual norm and the
polar cone)that (y*,y} <_ (y*,y- Y’I <-IlY*II, IlY- Y’II for all y E Y, y* E K, y’ K.
(In fact, it follows from the minimum norm duality theorem of functional analysis (see
[23, 5.13]) that equality in (5) is attained for some y* K or, equivalently, that
dist (ylK) (BOnKo)*(y) (see [8, Thm. 3.1]).) [:1

In some literature, the bound (3) is stated with the right-hand quantity dist (Ax-
a K) replaced by dist (- a K) or by I1- all where is any element of Ax- K.
However, these modified bounds are equivalent to (3) in the sense that one holds if
and only if the others hold. To see this, note that for any Ax- K we have

dist (Ax a K) <_ dist (Ax t K) + dist ( a K)
=dist(-alK)_< II-all

with equality holding throughout when is an element of Ax- K nearest to a in the
norm on Y.

In many cases, we can choose the cone W so that in addition

(6) A*W {0} whenever W : {0}

(see Lemma 5). This has the advantage that when f is positively homogeneous, the
bound given in Theorem 1 can be further refined, as we show in the next two theorems.

First, we consider the case where f is real-valued positively homogeneous convex
of degree 1 and positive except at the origin. We refine the bound given in Theorem
1 by applying the theorem to this case and then showing that the supremum in (4)
can be taken over a smaller set. In what follows, we denote by f the polar of f on
X* [34, p. 128], i.e.,

f(x*) := sup
(x*, x}

xo f(x)"
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270 JAMES V. BURKE AND PAUL TSENG

THEOREM 2. Let X, Y, K, A, a, and x be as in Theorem 1 and let f be a
real-valued positively homogeneous convex function on X of degree 1 that is positive
except at the origin. Suppose that (1) holds and there is a cone W C K satisfying
(2). Then

(7) inf f(x ) <_ #2diEt (Ax a K),
A-aEK

where #2 e {-oc} U [0, oc] is given by

(8) #2 := sup I1 *11,
y*W

f(A*y*)<_l

(We use the convention that oc. 0 (-oc). 0 0 and #2 -oc if the supremum
in (8) is taken over an empty set.) If in addition W satisfies (6), then the inequality
sign in (8) can be replaced by an equality sign.

Proof. Since f(0) 0 so that f*(x*) >_ 0 for all x* E X*, we have, upon applying
Theorem 1, that (3) holds with #1 given by (4). Since f is positively homogeneous of
degree 1 so that f*(x*) < oc if and only if f(x*) _< 1, we see that #2 =/-tl and hence
(7) holds (with #2 given by (8)). Now, suppose that W also satisfies (6), and we will
show that the inequality sign in (8) can be replaced by an equality sign.

First, consider the case where W {0} and A’y* 0 for all nonzero y* E W.
Then the supremum in (8) is unchanged when y* is further restricted to satisfy A’y*
0. Since W is a cone and, as is easily checked, fo is positively homogeneous of degree
1 and positive except at the origin, multiplying any such y* by 1/f(A*y*) would
yield a new y* in W that satisfies f(A*y*) 1 and whose dual norm is no less than
before. This shows that the supremum in (8) is unchanged when the inequality sign
is replaced by an equality sign.

Second, consider the case where W : {0} and A’y* 0 for some nonzero y* W.
Then the supremum in (8) is taken over an unbounded set, so the supremum equals
oc. Suppose that we replace the inequality sign in (8) by an equality sign. Then,
since A*W {0} by (6), the supremum in (8) would be taken over a nonempty set
which, by the existence of y*, is unbounded. Thus, the supremum in (8) would still
equal

Third, consider the case where W {0}. Then, since f is positive except at the
origin so that f*(0) 0, we have that the right-hand side of (2) equals zero, and so

(1) and (2) imply that the left-hand side of (7) equals zero. Since f is zero only at
the origin, we have Ax a K, implying diEt (Ax a K) 0, so both sides of (7)
equal zero (under the convention (-oc). 0 0) regardless of whether the inequality
sign in (8) is replaced by an equality sign.

Next, we consider the case where f isreal-valued positively homogeneous convex
of degree 1 < p < c and positive except at the origin. We will refine the bound
given in Theorem 1 by suitably modifying the proof of this theorem and of Theorem
2. This refined bound is closely related to the bound given by (7) when X is an gp
space and will be used in 4 to unify existing results on Hoffman’s bound.

THEOREM 3. Let X, Y, K, A, a, and x be as in Theorem 1 and let f be a
real-valued positively homogeneous convex function on X of degree p (1, c) that is
positive except at the origin. Suppose that (1) holds and there is a cone W c K
satisfying (2) and (6). Then

(9) inf f(x ) <_ #3diEt (Ax a K),
A-aEK
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HOFFMAN’S BOUND 271

where #3 e {-oc} U [0, oc] is given by

f*(A*y*):l

with q E (1, c) satisfying lip + 1/q 1. (We use the convention that oc. 0
(-ec) 0 0 and #3 -oc if the supremum in (10) is taken over an empty set.)

Proof. We divide the proof into three cases as in the proof of Theorem 2. First,
suppose that W = {0} and A’y* 0 for all nonzero y* E W. Since f is real-vMued
and positively homogeneous convex of degree p > 1, we also have that f*(x*) > 0 for
all x* # 0. (To see this, note that x* # 0 implies the existence of an x X with
(x*,x) > 0. Then (x*, Ox}- f(Ox) 0 (x*,x) -OPf(x) > 0 for all 0 > 0 sufficiently
small.) Then, it follows that f*(A*y*) > 0 for all nonzero y* W. By combining (1)
with (2) and then using the preceding observation, we obtain the following chain of
equalities and inequalities"

f(x ) sup {(y*,Ax a) f*(A*y*)}

_< sup {[[y*[[, dist (Ax- a [K)- f*(A*y*)}
y*EW

y’ewSUp { suPo>_ {11*11, dist (Ax- a K)- f*(A**)} }
I*(A*)= *=ov

sup { sup { o I1 ’11, dist (Az a K) 0q} },
vew 0>0

I*(a*v)=l

where the inequality follows from (5). The second equality follows from the observa-
tions that W is a cone which is not simply the origin and that 0 < f*(A*y*) for all
nonzero y* W. The final equality follows from the fact that f* is positively homo-
geneous of degree q. Now, for any positive number t, the supremum of the function
0 0t 0q (also using q > 1) is attained at 0 (t/q)1 with a value of

q-l(1)q ()P/qtq/(q_l) 1 tp
P

where the equality follows from the fact that p q/(q- 1). Using this in the above
relation and then taking the pth root of both sides yields (9) with #3 given by (10).

Second, suppose that W : {0} and A’y* 0 for some nonzero y* W. Then,
since A*W :/: {0} by (6), the supremum in (10) is taken over a nonempty set which,
by the existence of y*, is unbounded. Thus, #3 oc and so (9) holds trivially.

Third, suppose that W {0}. Then since f* is positively homogeneous so that
f*(0) 0, we have that the right-hand side of (2) equals zero and so (1) and (2)
imply that the left-hand side of (9) equals zero. Since f is zero only at the origin, we
have Ax- a K, implying that dist (Ax- a IK 0 and hence both sides of (9)
equal zero (under the convention (-). 0 0).

In the case where X is an p (Lp) space with 1 < p < oc, we can apply (7)
with #2 given by (8) and f taken to be the norm function on X, for which we have
f(x*) -][x*l[ ,. We can also apply (9) with #3 given by (10) and f taken to be the
norm function on X raised to the pth power, for which we have

f*(x*) II/*11,.D
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272 JAMES V. BURKE AND PAUL TSENG

Then note that #2 #3, so the two bounds (7) and (9) are in fact equivalent in this
case.

Although the bounds given in Theorems i, 2, and 3 are attractive for their gener-
ality and simplicity, their utility is still in question since we have yet to identify con-
ditions under which the strong duality relation (I) holds and to find a cone W c K
such that (2) and (6) hold with the corresponding constants #, #2, #3 finite. We will
address these and related issues in the remaining sections.

3. Checking for strong duality. In this section we assume that Y RTM for
some m and we identify a constraint qualification under which the strong duality
relation (I) holds.

LEMMA 4. Let f be a real-valued convex function on a real normed linear space
X, let A be a continuous linear operator from X to Rm for some m, and let K be a
nonempty closed convex cone in Rm of the form K K1 ;3 K2 for some closed convex
polyhedral set K1 and some closed convex set K2. Then, for every a E ran (A) (K1 f3
ri K2) and every x X, the strong duality relation (1) holds.

Proof. Fix any a e ran (A)-(K f3riK2) and any x e X. Upon applying a recent
result of Borwein and Lewis [4, Cor. 4.6] to the primal problem

inf {f(x ) +
AK+a

and using the observation that (K+a)* is the pointwise sum of (K)* CKo and
the linear function y* (y*, a}, it readily follows that the strong duality relation (1)
holds. [:i

The above duality result and its relatives are extremely powerful tools in convex
analysis. Interested readers are referred to [4, 17, 34, 35] for further discussions of
their applications.

4. Choosing the cone W: General case. In this section we assume that
Y Rm for some m, and we propose a choice for the cone W C K and identify
conditions under which (2) and (6) hold with the corresponding constants #2, #3
finite. Then, by applying the results of previous sections with this choice of W, we
obtain the desired extension of Hoffman’s bound to the cone inclusion case.

Let K be a nonempty closed convex cone in R" and let A be a continuous linear
operator from the normed linear space X to R". Let S c R be the subspace

(11) S := ker A* N lin (K)

define the cone

(12) k K + S,

and consider the following subset W of/o given by

(13) W1 "-{ y* /" There des nt exist nnzer z* / }with A’z* 0 and y* z* E/.

/\[/ + [(ker A* N/)\{0}]],
where we adopt the convention that the Minkowski sum of any set with the empty
set is itself the empty set. Roughly speaking, W comprises the minimal elements of
/o under the partial ordering: y* - y if y = y*, A*y A’y*, and y- y* /o.
It is readily seen that W is a cone (although in general nonconvex) and, in the case
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HOFFMAN’S BOUND 273

where ker A* g/ = {0}, is contained in the boundary of/. Also, notice that (see
[34, Cor. 16.4.2])

o K S+/-,

and so W1 c /o c S+/-. The purpose of restricting W1 to the subspace S+/- is to
ensure that its intersection with ker A* contains no line (since it can be seen that
S+/- ran (A) 4-span (K)), which in turn is needed to ensure that the set over which
the supremum in (8) or (10) (with W set to W1) is taken is bounded.

We state and prove the first main result of this section, showing that the choice
W W1 indeed satisfies (2) and (6), among other things.

LEMMA 5. Let A be a continuous linear operator from the normed linear space X
to Rm. Let K be a nonempty closed convex cone in Rm. Let S, , and W1 be given
by, respectively, (11), (12), and (13). Then the following hold.

(a) Let f be a real-valued convex function on X. For every a e ran (A) K and
every x E X,

(14) sup {(y*,Ax a) f*(A*y*)} sup {(y*,Ax a) f*(A*y*)}.
y*EK y*EW1

(b) Let D be any convex set in X* for which (A*)-ID is closed and has ker A* as
its recession cone. Then W1N (A*)-D is contained in the convex hull of the extreme
points of the closed convex set

G.-- ( (A*)-ID.

(Thus, W1N(A*)-ID is bounded whenever the extreme points ofG are bounded, which
in particular holds when G is polyhedral or when G is bounded.)

(c) W1 {0} if and only if A*W {0} if and only if ran (A) C K.
Proof. For every x* E A*/, let us define the nonempty closed convex set

C(x*) := { y* e A*y* x* }.

Since

lin (rec (C(x*))) ker A* N lin (K) N S+/- S N S+/- {0},

where rec (C(x*)) denotes the recession cone of C(x*), we conclude that C(x*) con-
thins at least one extreme point [34, Cor. 18.5.3].

We claim that for every x* A*/, the extreme points of C(x*) are in W1. To
see this, fix a^ny extreme point y of C(x*). If y were not in W1, there would exist a
nonzero z K such that y-z /o and A*z -O. Then both y 4- z and y- z would
be in/o with x* A* (y- z) A* (y + z), implying that both y + z and y z are
in C(x*). But since y (1/2)(y + z) + (1/2)(y- z), this would show that y is not an
extreme point of C(x*), which is a contradiction.

(a) Fix any a E ran (A) K and any x X. Let 2 be any element of X satisfying
A2 a K. (Such an 2 exists since a ran (A) K.)

First, we claim that

(15) sup {(y*,Ax a} f*(A*y*)} sup {(y*,Ax a) f*(A*y*)}.
y* EK y. EIo

D
ow

nl
oa

de
d 

09
/2

8/
13

 to
 1

28
.9

5.
10

4.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



274 JAMES V. BURKE AND PAUL TSENG

To see this, consider any y* E K. Since S a lin (K) so that K S+ [K Cl S+/-], we
can write y* as y* y + y for some y E S and some y K 1 S+/-. Consequently,

{y*, Ax a} f* (A’y*) (y, Ax a f* (A*y) + (y’, -a}
(y, Ax a f* (A*y)

where the second equality follows from -a ran (A) + K c ran (A) + span (K) S+/-.
Second, we claim that for every x* A*,

(16) sup (y*,Ax a} sup (y*,Ax a}.
y*EC(x*) y*EC(x*)ClW1

To see this, observe that for every y* C(x*) we have

{y*, Ax a} {y*, A(x 2)} + {y*, A2 a}
<_ {y*, A(x

(x*,x

where the inequality follows from the fact that A2- a K and y* K (cf. C(x*) c
/ c K). Thus, the supremum on the left-hand side of (16) is finite. Since y* H
lY*, Ax- a} is linear, this supremum is unchanged when we further restrict y* to the
extreme points of C(x*). By the claim shown earlier, all extreme points of C(x*) are
in W1.

Upon using (15) and (16) and the observation that

ko= U C(x*),
x*A*ko

we obtain

sup {(y*,Ax a> f*(A*y*)} sup {(y*,Ax a} f*(A*y*)}
y*K y*ER

{ su,
x.n.IO y*C(x*)

sup { sup
x. EA./22o y*EC(x*)nW1

<y*, Ax a} f* (x }
{<y*,Ax a> f*(A*y*)}

sup {<y*,Ax a> S*(A*y*)},
y* EWI

where the last equality follows trivially from the fact that W1 C/o.
(b) If (7 is the empty set, then so is W (3 (A*)-ID (since W1 c k) nd the

claim follows trivially. Suppose that (7 . Since the lineality of (7 is the same as
that of C(0), which we have already shown to be {0}, it follows that (7 is a closed
convex set containing no lines. Then, by a fundamental representation theorem for a
closed convex set in Rm (see [34, Thm. 18.5]), any point y* in (7 may be represented
as

y* y’ + z*
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HOFFMAN’S BOUND 275

for some y in the convex hull of the extreme points of G and some z* in the recession
cone of G. Since the recession cone of G is precisely ker A* N/, then, whenever y* is
not in the convex hull of the extreme points of G, the z* in the previous representation
of y* must be nonzero and satisfy z* E ker A* N/ and y* z* E G c/. This in
turn shows that y* W1.

(c) Clearly if A’W1 {0}, then W1 {0}. Conversely, if A’W1 {0}, it is
easily checked that W1 {0}. (Since for any nonzero y* K with A’y* 0, we
have that z* := y* is in/ and satisfies A’z* 0 and y* z* /, so y* W1.)

Since/ K + [ker A* N lin (K)] (see (11), (12)), we have

ran (A) K ,== ran (A)
e= A* =/= {0}.

Hence, if ran (A) K, there is a nonzero x* in A*/2/ so, by an earlier claim, C(x*)
contains at least one extreme point, say y*, which is in W. Since A’y* x* 7/: 0,
this shows that A’W1 7/= {0). Conversely, suppose that ran (A) C K or, equivalently,
A*/2/ {0}. Since W c K, it follows that A*W {0}.

Remarks.
1. We remark that the converse of Lemma 5(b) also holds in the sense that every

extreme point of G is an element of W C? (A*)- D. This follows from the observation
that every extreme point y* of G is an extreme point of C(A*y*), which in turn, as
was argued in the preceding proof, is an element of W1. Thus, maximizing a concave
function over W1 N (A*)-ID is equivalent to maximizing the same function over the
extreme points of G.

2. Part (c) of Lemma 5 provides a simple check of when (6) with W W1 holds,
namely, ran (A) K or, equivalently (since ran (A) is a subspace), ran (A) lin (K).
Thus whether (6) with W W holds depends on K through lin (K) only. And if (6)
with W W does not hold or, equivalently, ran (A)
K has a solution if and only if -a K, in which case the distance dist (Ax- a K)
equals zero for all x E X.

Using Lemmas 4 and 5, we are now in a position to state conditions on A, K,
a, and x under which the hypotheses of Theorems 2 and 3 with W W hold. We
also give conditions on A and K under which the associated constants #2 and #3 are
finite. We summarize the results in the next theorem.

THEOREM 6. Let X, A, K, Rm be as in Lemma 5 and let W be the cone W1
given by (11), (12), and (13). Assume that K K K2 for some polyhedral cone

K1 and some closed convex cone K2 in Rm. Then the following hold.
(a) Let f be a real-valued positively homogeneous convex function on X of degree

1 that is positive except at the origin. For every a ran (A) (K1 ri K2) and every
x e X, the bound (7) with #2 given by (8) holds. Moreover, if ran (A)

_
K, then the

inequality sign in (8) can be replaced by an equality sign, and if either K is polyhedral
or ran (A) + K R", then #2 is finite.

(b) Let f be a real-valued positively homogeneous convex function on X of degree
p (1, cx) that is positive except at the origin. For every a ran (A) (K1 N riK2)
and every x e X, the bound (9) with #3 given by (10) holds. Moreover, if ran (A) : K
and either K is polyhedral or ran (A) + K Rm, then #3 is finite.

Proof. We prove part (b) only. Part (a) can be similarly proved by replacing/*,
p3 and Theorem 3 in the argument below with, respectively, f, P2 and Theorem 2.
Fix anya ran(A)-(KiNriK2) and anyx X. If ran(A) C K, then-a K
and it follows that Ax- a K for all x E X, and so the bound (9) holds trivially
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276 JAMES V. BURKE AND PAUL TSENG

(since both sides of (9) equal zero). If ran (A) K, then parts (a) and (c) of Lemma
5 yield that (2) and (6) with W W1 hold. Since (1) holds by Lemma 4, it follows
from Theorem 3 that the bound (9) also holds.

Suppose that ran (A) K and either K is polyhedral or ran (A)+ K Rr.
We will show that #3 is finite. Since ran (A) K, Lemma 5(c) yields that (6) with
W W1 holds and so either #3 is finite or #3 oc. By the choice of f, there exists
a scalar a > 0 such that

(17) {x* e X* f*(x*) < 1} CaB.
Choose any xl,... ,xk in X such that Axe,..., Ax span ran (A) and normalized so
that IIAxlll IIAxkll 1. Let

D-- {x* X* -a _< (x*,x) a, i= 1,...,k}.

Then D contains aB and the set

(A*)-D {y* R -a (y*,Ax) , i= 1,...,k}

is polyhedral with recession cone ker A*. Let G be as defined in Lemm 5(b). If K is
polyhedral, then G is Mso polyhedral. If ran (A) + K R so that Sx Rm, then

G=K(A*)-XD,
which must be bounded since its recession cone is ker A*K (ran (A)+K) {0}.
Thus, in either case the extreme points of G form a bounded set so, by Lemma
5(5), W1 (A*)-ID is bounded. Since D contains aB, it follows from (17) that

3.
A few remarks bout the condition rn (A) + K Rm re in order. First, this

condition implies S Rm and hence K + S K. Second, this condition is

equivMent to the solwbility of the inclusion Ax a K for all choices of the vector
a. T ir , t is condition (an assumin ran (A) K) sumces to  uarantee
the finiteness of and of 3, it is fr from necessary since K being polyhedrM Mso
Suces.

5. Choosing the cone W: Cartesian product case. As we hd remarked
in i, most previous extensions of Hoffmn’s bound consider only the case in which
Y Rm for some m and K is the Cartesian product of closed intervals. Moreover, the
constants are typically expressed as the supremum of the dual norm tken over ll y* in
KO(A*)-IB such that the the "rows" of A corresponding to the nonzero components
of y* are linearly independent. In this section we consider this Crtesian product case
and show that these extensions can alternatively be deduced from Theorem 6, so
that Theorem 6 unifies and further extends previous extensions of Hoffman’s bound.
To fcilitate the comparison, we need the following key lemma showing that the
forementioned supremum is unchanged if it is instead tken over Ml y* in W

LEMMA 7. Let X, A, Rm be as in Lemma 5. Let A...Am be the unique
elements o/X* satisfying

(is) x.

Let K be a nonempty closed convex cone in R o/the/o

K
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HOFFMAN’S BOUND 277

where I1, I, are closed intervals, each of which is either (-c, 0] or {0} or [0,
Let27 { e {1,..:,m} I {0} } and assume that A, e 27, are linearly
independent. Let S, K, and W1 be given by, respectively, (11), (12), and (13), and
let W2 be the cone given by

W2"-{y*EK" The elements A, with either i 27 or the ith
component of y* nonzero, are linearly independent

Then, for any convex set D in X* such that the right-hand supremum below is finite,
we have

Proof. Since A, 27, are linearly independent, it is readily seen that S+/-, which
equals ran (A) + span (K), is all of R". Thus, g g. Consider any y* W1 with
A’y* D. Suppose that y* is not in W2, so there exists a nonzero vector z* Rm
with A’z* 0 and whose support (i.e., {i e {1,..., m}: z 0}) is contained in the
union of 27 with the support of y*. Let L be the line segment

L:={y*+0z* 0GR}NK.
Then, for any y L, the support of y is contained in the union of 27 with the support
of y*, so y is in W1 (since y* is in W and/ K is the Cartesian product of closed
intervals); moreover, y satisfies A*y A’y* D. Hence we conclude that L is a
subset of W n (A*)-D which, by the assumption that the right-hand supremum in
(20) is finite, is bounded. Then the convex function y’- IlY’II, attains its maximum
over L at an endpoint of L. Let y be such an endpoint. Then y W, A*y D,
IlY’II, >- IlY*II,, and, since y’ is an endpoint of L, the union of 27 with the support of y’
is strictly contained in the union of 27 with the support of y*. If y is not in W2, then
we repeat the above reduction procedure with y in place of y*, etc. After at most m
repetitions, we would obtain a y* satisfying in addition y* G W2. Since the choice of
y* was arbitrary, the equality (20) must hold. []

Remarks.
1. The cone W2 has been employed in the literature to replace the cone K in

the reduction (2). However, such a reduction is applicable only in the case where K
is the Cartesian product of closed intervals (so that W2 is defined).

2. When A is expressed in the form (18), its adjoint can be expressed analogously
in the form

A*y* yAl + + Rm.ymA, Vy* (y, y,)T e

In the case where X Rn for some n and A is represented as a matrix, the A’s are
simply the columns of AT.

3. Under the preceding assumption that A, with i 27, are linearly independent,
we in fact have

To see this, recall that S+/- R" in this case, so if there were some y* W2 not in
W1, there would exist a nonzero z* K with y* z* K and A’z* 0. Then the
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278 JAMES V. BURKE AND PAUL TSENG

first two relations would imply that the union of Z with the support of z* is contained
in the union of Z with the support of y*, which together with A’z* 0 would show
that Ai, with either E Z or the ith component of y* nonzero, are linearly dependent,
thus contradicting the hypothesis that y* is in W2.

By applying Theorem 6(a) with f(.) [1.[1 and Lemma 7, we have the following
extension of Hoffman’s bound, which can be readily compared with previous exten-
sions of this bound.

THEOREM 8. Let X, A, K, Rm be as in Lemma 7. Assume that A and K have
the form (18) and (19), respectively, and {Ai: I {0}} are linearly independent. Let
W2 be as in Lemma 7. Then, for every a ran (A)- (K1 ri K2) and every x X,
we have

(21) inf IIx 11 < #ddist (Ax a K),
A-aEK

where #4 e {-cxz} U [0, oc] is given by

(22) #4 := sup
y* GW

Moreover, if ran (A)

_
K, then #4 is finite.

We note that in the case where A and K have the form (18) and (19), respectively,
the assumption that {A / {0}} be linearly independent can be made without
loss of generality. This follows from the observation that an a (hi,..., am)T and an
x X satisfy Ax a K if and only if they satisfy (A, x) a EIi for all 27\27’,
where 27= {i {1,... ,rn}: I {0}} and 27’ is any subset of 27 such that {A: 27’}
are linearly independent and span the space spanned by {A :i 27}.

Below we relate Theorem 8 to existing extensions of Hoffman’s bound. First,
consider the special case in which

X--Rn, K-- (-oo,0]

and the norms on X and R" are, respectively, lp- and/r-norms for some p [1, ]
and some r E [1, c]. Then the set G defined in Lemma 5(b), with D taken to be the
/-ball in Rn, is precisely the set or(A) defined by Giiler, Hoffman, and Rothblum [13],
and it follows from Lemma 5(b) and the remark following Lemma 5 that #4 given by
(22) is equal to the constant K(A) given in [13]. Hence the bound (21) is equivalent
to that given in [13] (see Theorem 2.1 and Corollary 2.3 therein) for p r and
is at least as sharp as the latter for all other values of p and r. Second, consider the
special case in which

c

for some k n matrix B and some n matrix C of full row rank (with k + m).
Since K has the form (19) and C has full row rank, we can replace W1 in the definition
Of #4 (cf. (22)) with W2 and (21) would still hold. Then it is readily seen that #4
is equal to the constant au,(A C) given by Li [22] for every choice of the norm on
X. Hence (21) is equivalent to the bound given in [22] (see Theorem 2.4 therein).
(The bound in [22] is stated with dist (Ax- a K) replaced by I1- all, where is
any element of Ax- K. However, as we noted in 2, this change does not affect the
sharpness of the bound.) Also, when the norm on X is the/-norm and the norm
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HOFFMAN’S BOUND 279

on R" is the/r-norm for some r E [1, ], it may be seen that (21) is equivalent to
the bound given by Mangasarian and Shiau [29, Thm. 2.2]. If the norm on R" is
monotone, further simplification of the right-hand side in the bounds is possible (see
[26] and [29]). In general, the constant in Hoffman’s bound (and its extensions) is
quite difficult to compute. Studies of the computational issues are given in [19], [28].

6. Extension to convex set inclusion. For simplicity, we have restricted the
preceding discussion to the case of a convex cone inclusion. However, our approach
readily extends to the more general case of a convex set inclusion of the form

(23) B b e C,

where B is a continuous linear operator from some real normed linear space X to
another real normed linear space Y, b is an element of Y, and C is some nonempty
closed convex set in Y. The idea of the extension is to apply a standard lifting trick
to recast the set inclusion (23) as a cone inclusion of the kind studied in previous
sections, and then to adapt the results of previous sections to the cone inclusion. We
illustrate this idea below.

The following two convex cones associated with the set C will play significant
roles in our analysis" the cone generated by {-1} C given by

cone ({-1} x C)"- UA>0({-1} x C). A

and the recession cone of C denoted by rec (C). A key property of rec (C) is that
rec (C) is the closure of dom () (called the barrier cone of C) [34, Cor. 14.2.1].

Observe that the set inclusion (23) has the same solution set as the following cone
inclusion:

A- a K,

where we let

(24) A- B a=
b

where cl denotes the closure. Let the norm on R Y be defined by (#, Y)II I#1 / IlYlI.
Now, we can apply Theorem 6 directly to the cone inclusion, but the resulting bound
turns out to be far from sharp. Instead, we will suitably modify the proof of Theorem
6 to take into account the structures of A, a, and K and thus obtain a much sharper
bound.

THEOREM 9. Let X, B, C be as given above with Y R for some m. Assume
that C C1 C2 for some closed convex polyhedral set C1 and some closed convex
set C2 in R". Then for every b ran (B) (el ri C2) and every x X, we have

(25) inf [Ix-[[ _< #bdist (Bx-b[C)
B-bC

where #5 e {-c} U [0, c] is given by

su, I1 *11,
(a,y*)ewi

and W1 is given by (11), (12), and (13) with A and K defined as in (24). (We use the
convention that (x. 0 (-c) 0 0 and #5 -c if the supremum in (26) is taken
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280 JAMES V. BURKE AND PAUL TSENG

over an empty set.) Moreover, ifran (B)

_
rec (C), then the inequality sign in (26) can

be replaced by an equality sign, and if either C is polyhedral or ran (B)+rec (C) R",
then #5 is finite.

Proof. Fix any b E ran (B) (C1 A ri C2) and any x E X. Let a be given by (24)
and let K1 el cone ({-- 1} C1), K2 cl cone ({- 1} C2). It is straightforward
to verify that a ran(A)- (K1 C riK2) and hence, by Lemmas 4 and 5(a) (with
f()- IIll), we have

B-bC A-aK
sup {(z*,dx a) Bo(d*z*))

z* EW1

sup
(,y*)w

sup
(a,y*)W
I1** I1.<1

<_ sup
(,u*)EW

{ Bx

{ Bx

IlY* I]. dist (Bx b C)

where the first inequality follows from the fact that W1 c K epi (b) so that
(a, y*) W1 implies c >_ b(y*). The last inequality follows from the observation
that

Cb (Y*) sup (y*, y)
yEC

(y* Bx b} inf (y* Bx b- y}
yC

>_ (y*, Bx-b -IlY*II. dist (Bx-b C

for all y* R".
If ran (B)q rec (C), then ker B* 75 rec (C) and there would exist a y* rec (C)

such that B’y* 0. Then, by an argument analogous to the proof of Theorem 2, we
obtain that the inequality sign in (26) can be replaced by an equality sign.

If C is polyhedral, then so is K and the finiteness of #5 follows from an ar-
gument analogous to the proof of Theorem 6. If ran (B) + rec (C) R", then
(B*)-IB N rec (C) would be bounded since its recession cone is ker B* N rec (C)
(ran (B)+ rec (C)) {0}. Since W1 C K -epi () so that (c,y*) E W1 implies
y* dom (b), we have that

(27) #5 sup }IY* II, -< sup IlY* II, sup I1* II, < c,
(,y* W y* dom(b y* erec(C)
lIB* y* II. 1 ]]B’y* ]]. 1 Y* e(B*) -1B

where the last equality follows from the fact that cl dom () rec (C) [34, Cor.
14.2.1]. El

Remarks.
1. Note that if ran (B) C rec (C), then the inclusion B{ b C has a solution if

and only if -b C, in which case every { X is a solution.
2. Under the condition ran (B)+ rec (C) R", we have

ran (A) + span (K) Rm+l,
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in which case S given by (11) reduces to the origin and #5 can be more simply written
as

# sup I[Y*[[,
y* (W

IIB** II._<

where

W3 :-- {y* E rec (C) There does not exist a nonzero z* E rec (C)
with B’z* 0 and y* z* rec (C) f

Also, under this condition, the right-hand side of (27) is finite and hence can be used
to estimate #5. In general, the bound (25) still holds if we replace W1 in (26) by any
subset of R x rec (C) that contains W1.

3. In the special case where C, C1, and C2 are all cones, Theorem 9 reduces to
Theorem 6(a)with f(.)= I1"11.
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