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Abstract 

We are given multiple data sets and a nonlinear model function for each data value. Each data 
value is the sum of its error and its model function evaluated at an unknown parameter vector. The 
data errors are mean zero, finite variance, independent, are not necessarily normal, and are identically 
distributed within each data set. We consider the problem of estimating the data variance as well as the 
parameter vector via an extended least-squares technique motivated by maximum likelihood estimation. 
We prove convergence of an algorithm that generalizes a standard successive approximation algorithm 
from nonlinear programming. This generalization reduces the estimation problem to a sequence of 
linear least-squares problems. It is shown that the parameter and variance estimators converge to their 
true values as the number of data values goes to infinity. Moreover, if the constraints are not active, 
the parameter estimates converge in distribution. This convergence does not depend on the data errors 
being normally distributed. 

Keywords: Nonlinear least squares; Asymptotic statistics 

1. Introduction 

The problem presented in this paper is motivated by parameter estimation in drug 
and tracer kinetics studies. Often more than one type of  measurements is available 
and the different types of  measurements have different errors. One case of  different 
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types of  measurements is when concentrations of a drug and its metabolite are both 
measured. Another case is when concentrations of a drug can be measured in differ- 
ent biological compartments such as plasma and spinal fluid. A third case is when 
concentrations of  a tracer can be measured in one compartment, and cumulative 
amounts of  the tracer can be measured in another compartment. 

In all these cases, the different data sets have different degrees of  precision relative 
to each other. The resulting estimation problems require not only estimation of the 
structural parameters in the underlying model but also the relative accuracy of the 
various data sets. In Section 2, we define an example model and provide simulated 
data to illustrate this type of  problem. The model has two compartments and is 
used to describe the kinetics when concentrations of a tracer are measured in the 
plasma and cumulative amounts of  the tracer are measured in the urine. The simulated 
measurement sets have variance parameters which differ by two orders of magnitude. 

We now describe our general problem in mathematical terms. We are given mul- 
tiple data sets and we denote the j th  data value in the ith data set by Yl. For each 
data value we are also given a function F{ : ~" ~ R. In our model for the data, 
there is an unknown parameter vector 2 such that 

y / =  F{(2) + e[, (1) 

where {e[} is a doubly indexed sequence of mean zero, finite variance, independent 
random variables. We further assume that el and ~ are identically distributed; i.e., 
that the errors within one data set are identically distributed. (Note that the data 
values y[ and y~ are not necessarily identically distributed.) Our problem is to 
estimate 2 subject to limits for each of  its components. These may either be limits 
within which the model is valid or limits within which 2 is known to reside. 

Define L(x, v) to be the objective function which corresponds to the negative log 
likelihood when the data errors are normally distributed: 

f ( x ,  v) = U ( O  log(2 v,) + - F _ , [ Y / -  F/(x)] • (2 )  
i=l Vi j=l 

Here v denotes the vector (vl, v2 .... , Vm) T, where the ith component v~ corresponds to 
the nominal variance for the ith data set. Given the data values {y/}, our estimates 
for the true value of  the vector of  parameters 2 and the vector of  variances ~ are 
obtained as the solution to the problem 

minimize L(x, v) ; (3) 
subject t o a < x < b ,  0 < v. 

In Section 2, we define the example model in which Eq. (1) is satisfied. In Sec- 
tion 3, we derive a closed form expression for the argument that minimizes L(x, v) 
with respect to v. Substituting this expression into L yields a reduced objective func- 
tion R(x). The reduced objective is then approximated at each point by a weighted 
least-squares objective W(x,d). In Section 4, we present an algorithm for the mini- 
mization of  R(x) that is based on the approximation W(x, d). In Section 5, we derive 
asymptotic statistics for the estimator that minimizes Problem (3). In Section 6, we 
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Table 1 
Notation 

M 

n 

N(i)  

F{(X) 

y~ 
a 

b 

e/ 
Vi 

X 

2 

Problem input 
number of data sets 

number of components in the parameter vector 

number of data points in the ith data set 

model function for the jth data point in the ith data set 

data value for the jth data point in the ith data set 

vector of lower limits for the components of the parameter vector 

vector of upper limits for the components of the parameter vector 

Other notation 

data error for the jth data point in the ith data set 

a nominal variance value for the ith data set 

true value for the variance in the ith data set 

a nominal parameter vector 

true value for the parameter vector 

present the results of  applying the relative weighting method to the example defined 
in Section 2. 

Just as with Gauss-Newton methods, we do not require second-order information 
on the model functions F{. The asymptotics indicate that this does not inhibit rapid 
local convergence for sufficiently large data sets. Indeed, it is shown that the second- 
order terms vanish as the number of  data values becomes infinite (see the remark 
below Lemma 9). 

A word about our notation is in order. The components of  a vector z or vector- 
valued function G ( z )  are denoted by zi and Gi(z ) ,  respectively. Moreover, since the 
discussion of  multiple data sets requires multiply indexed variables, we provide the 
definitions in Table 1 as an aid to the reader. 

2. Example 

The model defined in Section 1 can be motivated by estimation problems in com- 
partmental modeling. In this section we present an example of a two-compartment 
model consisting of  a plasma compartment and a urine compartment. The definitions 
in this section apply here and in Section 6. They do not apply to the rest of  the 
paper. 

A known amount of  tracer, denoted by P0, is injected into the plasma compartment. 
Over time, the tracer transfers from the plasma compartment to the urine compartment 
and the outside world. The unknown parameter vector x has three components (thus 
n in Table 1 is 3). Its first component, x~, is the logarithm of the volume of  the 
plasma. Its second component, x2, is the transfer rate from the plasma to the urine. 
Its third component, x3, is the transfer rate from the plasma to the outside world. We 
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Fig. 1. Compartmental model. 

are given two measurement sets (thus M in Table 1 is 2). The first set, {d I . . . . .  d~°}, 
consists of  20 measurements of  the tracer concentration in the plasma (thus N(1) 
in Table 1 is 20). The second set, {d~ . . . . .  d~°}, consists of  10 measurements of  the 
amount of  tracer added to the urine compartment between measurements (thus N(2) 
in Table 1 is 10). In Fig. 1, compartment 1 is the plasma, compartment 2 is the urine. 

Let ql(t) and q2(t) denote the amount of tracer in compartments 1 and 2 as a 
function of time. It follows that 

ql(t) = Po exp(-(x2 + x3)t), 

q2(t) -- pox2 (1 - exp(--(x2 +x3)t)) .  
X 2 -1- X 3 

The concentration of tracer in compartment 1 at time / is ql(l)/exp(xl). The dif- 
ference between the amount of  tracer in compartment 2 at time l and time s is 
q2(t) - q2(s). 

We assume that, within each data set, the errors in the logarithm of the data are 
identically distributed. The concentration of  tracer in the entire plasma compartment 
is measured using a small sample. On the other hand, we measure the amount of 
tracer that has collected in urine between sample times. Since these two measure- 
ments are fundamentally different, we expect them to have different errors. We are 
given the set of  times {t/} at which the measurements {d, J.} are made. If ~? is the 
true (but unknown) value of the model parameter vector, the logarithm of  the data 
satisfies the following equations: 

y{ = log(d~) = e{ + log(p0) - ( ) f2 -[--~3) tj ---~,, 

y~ = log(d~) = eg + log( _P~2_ ) 
X q- -3 

+ log[exp(-(g2 + x3 )t j -  1 ) _ exp(-(X2 + x3 )t2 j)], 

where {e{} and {e~} are independent samples from distributions with zero means 
and unknown variances v~ and v2 respectively. The value t~ -1, in the equation above, 
is interpreted as zero when j -- 1. For this example, we fit the model functions F~(x) 
and F2(x) to the logarithm of the data where 

F{(x) = log(p0) - (x2 - ' ] - x 3 ) t  j --Xl, (4) 

F~(x) = log( P - - - ~  ~2 ) + log[exp(-(x2 -k-x3)tg-') - exp(-(x2 + x3)t~)]. (5) 
X2 "5- X 3 
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Table 2 
Simulated data 

123 

tl Yl tl y] t2 y2 

o. 10000 -0.19186 1. 10000 - 1.06230 0.20000 -4.61015 

0.20000 -0.21853 1.20000 - 1.29741 0.40000 -2.01673 

0.30000 -0.33233 1.30000 - 1.33147 0.60000 -3.57869 

0.40000 -0.65443 1.40000 - 1.32441 0.80000 -4.20353 

0.50000 -0.68928 1.50000 - ! .60137 1.00000 - 3.12661 

0.60000 -0.57532 1.60000 - 1.77217 1.20000 - 1.89698 

0.70000 -0.64656 1.70000 - 1.86234 1.40000 -2.51455 

0.80000 -0.99292 1.80000 - 1.98450 1.60000 -2.58503 

0.90000 - 1.03121 1.90000 -2.13367 1.80000 -5.86347 

1.00000 - 1.13131 2.00000 -2.05235 2.00000 - 3.37648 

The  true parameter  values  in this s imulat ion are 

21 = 0.1 , 22 = 0.4 , 23 = 0.6 , vl = .01 , /~2 : 1.0. (6)  

The  initial amoun t  o f  t racer  in compar tmen t  1, P0, is 1 for  this simulation. Table  2 

contains  s imulat ion values  for  the log o f  the data. 

The  relative we igh t ing  me thod  is appl ied to this example  and the cor responding  

results are presented  in Sect ion 6. 

3. Reduced objective function 

In this sect ion we  obtain  a c losed fo rm express ion for the vec tor  V(x)  sat isfying 

L[x, V(x)]  _< L(x, v) for  all v > O. 

This enables  us to replace P rob lem (3)  by  a reduced  p rob lem which  no longer  

depends  on  the variable v. 

Define the funct ion V : R" ~ R M to be the sample  var iance that cor responds  to 

the parameter  value x; i.e., 

N(i) 
1 y ~ [ y / _  F[(x)]2. 

Vi(x) -- N ( i )  j=l (7)  

L e m l n a  1 ( R e d u c e d  object ive) .  Let  L : R" ~ RM be as defined in Eq. (2)  and let 
x E R ~. I f  V(x)  > O, then L(x, V(x) )  < L(x, v) for  all v > O. 

P r o o f .  The  partial o f  L wi th  respect  to vi is g iven by  

N ( / )  
,gv, - -  [v ,  - V , . ( x ) ] .  
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It follows that this partial is zero if v~ = V~(x). This is the first-order necessary 
condition for a minimum. The second partial of  L with respect to v~ is given by 

~32L 2N(i) 

It follows that this second partial is positive for vs/2 < V~(x). Because this is true 
for each i, the function L increases as any vs converges to 0. Moreover, it follows 
directly from Eq. (2) that L ---, +e~ as Ilvll Thus, v = V(x) attains the 
global minimum value of  L with respect to v over the domain v > 0. [] 

Substituting V(x) for v in (2) we obtain 

M 

L[x, V(x)] = y~U(i){log(2rc) + log[Vi(x)] + 1}. 
i=1 

This expression can be simplified by dropping the terms that are constant in x. We 
also divide by the total number of  data points 

M 

J = Z N ( i )  (8) 
i=1 

to aid in the discussion of  the asymptotic statistics in Section 4. Thus, the reduced 
objective function is given by 

M 

R(x) = J- '  ~ N(i) log[Vs(x)]. (9) 
i=1 

It follows that a pair (.~, 13) solves Problem (3) if and only if ~ = V(2) and 2 solves 
the problem 

minimize R(x); 
subject to a < x < b. (10) 

Our algorithm uses a weighted least-squares approximation that is related to the 
gradient of  R, where 

M 

VR(x) = j-1 ~_.N(i)V.(x)-IvVi(x) 
i=1 

M N(i) 

= -2J - '  Z V,.(x)-' Z [ y  / -F{(x)IVF/(x). (1 1) 
i=1 j = l  

The weighted least-squares approximation for R at the point x in the direction d is 
defined by 

M N(i) 

W(x,d) = J- '  y~ Vi(x) -1 ~-~[y[ - F{(x) - VF/(x)r dl e. (12) 
i=1 j = l  
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The value W ( x , d ) - W ( x , O )  is a first-order approximation to R ( x + d ) - R ( x )  because 

Vd W(x, O) = VR(x). 

4.  T h e  a l g o r i t h m  

In this section, we modify the algorithm given by Burke (1985) to suit our ap- 
proximation scheme. For this purpose it is convenient to describe the algorithm in a 
somewhat more general setting. Let G : R ~ ~ RMt3 {--o¢~} be such that Dom(G)  = 
{x E R ~ : G(x) > - o o }  is open and G is of  class C 2 on Dom(G).  Moreover, we 
assume that we can associate with G an approximation function A : R" × R" --+ R, 
where for each x E Dom (G) we have 

(i) A(x,d)  is convex in d, and 

(ii) XTd.4 exists and is continuous on D o m ( G )  × R ~ with VdA(X,O)= •G(x). 
(13) 

We describe an algorithm based on the approximation function A that is designed to 
solve the problem 

minimize G(x); (14) 
subject to x E C, 

where C C R" is a nonempty compact convex set. This setup differs from that con- 
sidered by Burke (1985) in two key ways: (1) the function G is allowed to take 
the value - c ~  and (2) the approximation function need not satisfy the equation 
A ( x , 0 )  = G(x). 

For the special case of  Problem (10), the function G(x) is the reduced likelihood 
function R(x), A(x,d)  is the weighted least-squares approximation W(x,d),  and C 
is the set of  x such that a < x < b. If  {F{(x)} are twice continuously differentiable 
functions, R and W satisfy the hypotheses for G and A. 

Let x ° E R" and y, # E (0, 1 ) be given. Having x k, we obtain x k+~ as follows: 
Step 1: If G(x k) = - ~ ,  then stop. 
Step 2: Let d k be such that d = d k attains the minimum value of  A(xk, d) over 

all choices of  d E R ~ satisfying x k + d E C. 
Step 3: If  A(xk, d k) = A(xk, O), then stop; otherwise, set x k+l = x k + 2kd k, where 

2k is the largest value of  : for s = 0, 1 . . . .  satisfying 

G(x k + : d  k) - G(x k) <_ g:[A(xk,  d k) - A ( x k ,  0)]. (15) 

In Step 3, the evaluation of  the step-length 2k can be implemented by trial and 
error. That is, one first tests Inequality (15) with s = 0, if  successful, then 2k = 1; 
otherwise, increment s by 1 and try again. If  this trial and error procedure terminates, 
then it clearly yields the largest value of  7' for s = 0, 1,... satisfying Inequality (15). 
In particular, this procedure is successfully terminated if G(x k + ~d k) = --OO for 
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any trial value x k + { d  k. The following lemma demonstrates that the procedure is 
always finitely terminating. 

Lemma 2. If  A(xk, d k) ¢ A(xk,0), there exists s E {0, 1 . . . .  } such that 

G(x k + v~d k) - G(x k) <_ # { [ A ( x k , d  k) - A ( x k ,  0)]. 

Proof. Since A ( x k , d  k) ¢ A(xk,0), the definition of d k implies that A(xk,0) - 
A(xk, d k) > 0. Since ? < 1 and p < 1, it follows that there is a positive integer s 
such that 

y-S[G(xk + 7~d k) - G(xk)] - XYG(xk)+d k < (1 - #)[A(xk,0) -A(xk ,  dk)] 

or, equivalently, 

?-S[G(xk + ?Sd k) - G(xk)] < ~TdA(xk,O)Tdk ÷ (1 -p) [A(xk ,  O ) -  A(xk, dk)] . 

Using the fact that A(x, d)  is convex in d, we have 

?-S[G(xk ÷ ?~d k ) - G(x k )] < A(x k, d k ) - A(x  k, O) + ( 1 - p)[A(x k, O) - A(x k, d k )] 

or, equivalently, 

G(x k + ?'~d k) _ G(x k) < p?S[A(xk, d k) - A(xk,0)]. 

This completes the proof of  this lemma. If A ( x k , d  k) = A(xk, O), A(xk, O) is the 
minimum o f  A (xk , d )  over d such that x k + d  E C. 

The condition 

A(x,O) = m i n { A ( x , d )  : x + d E C} (16) 

is closely related to first-order optimality conditions for Problem (14). These con- 
ditions are typically stated with the aid of  the normal cone operator from convex 
analysis (Rockafellar, 1970). Recall that the normal cone of  C at x is defined as 

Nc(x)  = {z : zV(x ' - x)  <_ 0 for all x' E C}. 

Moreover, if x E Dom(G)  is a local solution to Problem (14), then 

0 G X T G ( x ) + N c ( x )  or equivalently, 0 E V d A ( x , O ) ÷ N c ( x )  (17) 

(Clarke, 1983). Since A(x ,d )  is convex in d, condition (17) is both necessary and 
sufficient for d = 0 to yield the global minimum value of A(x ,d )  over d such that 
x + d  G C. Therefore, the conditions (17) and (16) are equivalent. 

In our analysis of  the convergence properties of  the algorithm, we make strong 
use of  some elementary properties of  the normal cone operator. In particular, we use 
the fact that if C c R" is a nonempty closed convex set, then the set 

Graph(Nc) = {(x,y) E R n x R" : y E Nc(x)}  
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is closed, i.e., the multi-valued function Nc:C ~ R" is upper semi-continuous 
(Roekafellar, 1970, Theorem 24.4). 

Theorem 3. I f  the algorithm stops at iteration k, either G(x k) = - c ~  or 0 E 
VG(x k) + Nc(Xk). I f  fc is a cluster point o f  the sequence {x k} generated by the 
algorithm, then either G(fc) = - o o  or 0 E VG(~) + Nc(fC). 

Proof. The conclusion in the first sentence of  the theorem follows directly from 
our discussion of  optimality conditions preceding the statement of the theorem. Next 
suppose that the sequence {x k } is infinite and let ~ be a cluster point of  the sequence 
for which G(~) > - o c .  We complete the proof by showing that 0 E VG(~)+Nc(J )  
or, equivalently, that A(2 ,d ) -A(J ,O)>_  0 for all d such that ~ + d  E C. 

Since the sequence G(x k) is monotone decreasing, it has a limit G(~) > -oo .  It 
follows that G(x k+~ ) - G ( x  k) ~ O. Let I be an infinite subset of  the positive integers 

such that x k / ) ~ .  The sequence {d k} is bounded because C is bounded so there is 

a subsequence d c 1  and a 3 such that d k ~ 3. Observe that 3 minimizes A(~,d) 
over d such that ~ + d C C. Indeed, by Step 2 of  the algorithm, we have 

0 E VdA(Xk ,d  k) + N¢(X k + d k) 

for all k. Taking the limit over k C J and using the fact that ~7d.4 is continuous on 
Dom(G)  × ~" and the normal cone is upper semi-continuous, we have 

0 E VdA(~,3) + Nc(~ + 3) .  

Since A(x,d)  is convex in d, this implies that 3 minimizes A(~,d) over d such that 
r e + d E C .  

We can complete the proof by showing that A ( ~ , 3 ) -  A(~,0) _> 0. We split this 
demonstration into two cases. 

Case 1: Suppose that there is a fl > 0 and an infinite subset of  positive integers 
K C J such that 2 k > fl for all k E K. It follows from Step 3 that 

G(x k+l ) - G(x k ) < p2k[A(xk, d k) - A(x k, 0)]. 

Taking the limit over k E K, and noting that 2k > fl, we obtain 

0 _< p/~[A(~, 3) - A(~, 0)], 

which completes the proof for Case 1. 

Case 2: Suppose that 2k J_~ 0. Since x k ~ ~,x k+l -- x k + 2kd k, and the sequence 
{d k} is bounded (because C is bounded), we may assume with no loss in generality 
that there exists an e > 0 such that 

x*,x *+' c (x : II -xll e } c D o m ( G )  for all k EJ. 

By Step 3 of  the algorithm, we may also assume that 2 k < 1 for all k E d. Let ~ be 
a Lipschitz constant for VG(x)  over {x : [l~-xtt  _< e}. By the convexity of A(x,d)  
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in d and Step 3 of  the algorithm, we have 

l~?-12k~T aA(xk, O ) T d k <_ #7-12k [A(x k, d k ) - A(x k, 0)] 

< G(x k + 7-12kd k) _ G(x k) 

< VG(xk)T(?-l)tkdk) + =l?-12dkl 2. 

Dividing by 7-12 k and replacing VG(x  k) by •aA(xk,O) yields 

VuA(x k, O)Td k + ~7-12 k I dk I 2 ~___ ~VdA(X k, 0)Td k 

or, equivalently, 

--~?-12kldk[2 _< (1 - Ig)VaA(xk, O)Td k. 

By taking the limit over k E J ,  we conclude that 

0 < Vdd(~, 0)Td. 

Again, since A(x, d) is convex in d, we obtain 

> V,A( .0)T3 > 0. 

which completes the proof for Case 2. [] 

5. Asymptotic statistics 

In this section, we consider the statistics of  our estimators for £ and t~ as the 
number of  data points increases. Throughout this section, C is the constraint set 
in Problem (10); i.e., C = {x : a~ < xi < bi for i -- 1 , . . . ,n} .  We add the extra 
index k to our notation of  the previous sections. We are given an infinite rectangular 
sequence of  integers, 

{N(i ,k)  : i = 1, . . . ,M,  k = 1 . . . . .  ~ } .  

Define J(k) ,  V k : ~" ~ R M, and R k : R" ~ R by Eqs. (7), (8), and (9) in which 
the integer vector N(i)  is replaced by N(i,k): 

M 

J(k )  = Z N ( i , k ) ,  (18) 
i=1 

1 N(i,k) 

V~k(x) -- N( i ,k )  Z [Y/ - F/(x)]2' (19) 
j = l  

M 

Rk(x) : J (k  )-l Z U(i, k) log[ V/k(x)]. (20) 
i : 1  

In this notation, we determine the asymptotic statistics of  the minimizer of  Rk(x) 
as k ---} cxz (consistency is proved in Theorem 8 and asymptotic normality is proved 
in Theorem 13). In proving these assertions, there are two complicating factors. First, 
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the random variables y/ are independent but not necessarily identically distributed 
(inid). Second, the random variables y /  do not form a "sequence" but instead form 
a "rectangular array". 

There are a number of approaches to the inid case. We mention the general but 
essentially different methods of Gallant (1987, Ch. 3), Caines (1988, Ch. 8), and 
Ibragimov and Has'minskii (1981, Ch. 3). The approach of Ibragimov and 
Has'minskii also handles the rectangular array situation. However the generality of 
these three methods makes it harder to verify the required hypotheses than to give a 
direct proof. Further, the proof given below is more closely adapted to the numeri- 
cal algorithm used in Section 3. Our approach closely follows the logic of Jennrich 
(1969), but now applied to the multiple data set case. 

The next assumption is a regularity condition on the rate at which the individual 
sample sizes tend to infinity. It is used by Lehman (1983, Section 6.6) in proving a 
similar result for the independent and identically distributed case. 

Assumption 4. Let  2~ denote J ( k ) - lN( i , k ) .  We assume that for  each i, N( i , k )  
oo as k --* oo. Furthermore there is a 2 E R M such that 2~ ~ J.i as k ~ oe. 

Given a sequence {w j} of real matrices, define the sequence of tail averages 
{ (wJ) p} by 

1 P 
(wJlp = p wJ 

j= l  

(21) 

Only the superscript j is used to indicate the tail averaging index in this paper. 
If (w J) p converges as p ~ oo, we denote its limit by (w J). (See the notation in 
Table 3.) 

We now introduce two assumptions. The first is an independence assumption. The 
second is an assumption about our sampling strategy as k ~ c~. (Theorem 2 of 
Jennrich (1969) is one possible motivation for the second assumption.) 

Assumption 5. The residuals el and ekp are independent for  j # k or i # p. Further- 

more the sequence {e/ • j = 1, . . . ,  c~} is identically distributed with mean zero and 
variance vi. 

Table 3 
Additional notation 

k 

C 

N(i ,k )  

J(k) 

(wJ)p 

experiment index, as k increases the data set increases 

the set that the minimization is constrained to 

number of data points in the ith data set for experiment k 

total number of data points in experiment k 

the ratio of N(i, k) /J(k)  

the average of the first p elements of {w j} 
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Assumption 6. The functions {F[} are twice cont&uously differentiable and all tail 
averages o f  the form (h(x)g(x')T) p, where h, 9 = F/, XYF{, V2F{, converge uniformly 
over x E C,x' E C as p ~ oo. Furthermore, i f  ( [FJ(g) -FJ(x) ]  2) is zero then x -- ~. 

Remark.  To motivate the assumptions on the tail a v e r a g e s  ( F J ( x )  2) and ( [ F J ( g ) -  
FJ(x)]2), we consider a simple linear scalar example. Let M = 1 and F~(x) = tJx, 
where {t j} is a given sequence of  real numbers. In this case, the minimizer x k of 

K j " " Rk(x) also minimizes ~j=l(Yl - t J x )  2, where y~ = F { ( g ) +  e(. It follows that 

x* = • + (tJe{)k/((tJ)2) *. (22) 

Now ( [ F J ( g ) -  F-/(x)]2) k = ((tJ)2)k(X- ~)2, SO that the last requirement in As- 
sumption 6 is equivalent to the convergence of the tail average ((tJ)z) * to a nonzero 
number. It follows from (22) that this latter condition is sufficient for the strong con- 
sistency of  {x*}. Further, it can be shown (see Wu, 1981, Eq. (1.5)) that a necessary 
and sufficient condition for the strong consistency of {x*} is that k((tJ)2) * ---+ go as 
k --* oo. 

Lemma 7. For almost all residual sequences {e/}, the function Vk(x) converges 
uniformly over x E C to the value ~ + ([F@?) -FJ(x)]2) .  

Proof. It suffices to show that each component function V~k(x) converges uniformly. 
The proof is then equivalent to the one given in Theorem 4 of  Jennrich (1969). It is 
included here for completeness. Using the definition for e / =  y~ - F / ( g ) ,  we obtain 
the following sequences of  equalities: 

U ( x )  = ( [ y /  - F/(x)]2) N(ix) = ( [ y /  - F/(g) + F/(g) - FJi(x)]2) N(i'k) 

= (e/el) + 2 ( e i [ F l ( x )  - Fi(x)]) + - Fi(x)]2) 

By Assumption 4, N(i , k )  --~ c~. It follows from Assumption 6 that the tail averages 
( [F{ (£ ) -  F/(x)]2) N(i'~) converge uniformly to ( [F/( :~)-  F/(x)] 2) as k --~ oo. It also 
follows that for almost every sequence {e/}, the tail averages (e/[F{(g)-F{(x)])  N(i'k) 
converge uniformly to zero as k --~ c~ (Theorem 4 of Jennrich, 1969). It follows 
from the strong law of  large numbers (Theorem 5.4.2 of  Chung, 1974) that the tail 
averages (e{e/) N(i~) converge to vi as k ~ c~. This completes the proof. [] 

Theorem 8 (Strong consistency). Let  Rk(x) be defined by Eq. (20) and let x k be 
a minimizer o f  Rk (x ) fo r  each k. I f  ~ E C, then for  almost all residual sequences 
{e{} the sequence {x k } converges to Y, and the sequence {Vk(xk)} converges to 0, 
as k--* oo. 

Proof. We apply Lemma 7 and Assumption 4. It follows that for almost all se- 
quences {el}, the sequence {Rk(x)} converges uniformly over C to the function 

M 

R(x) = log{   + ( [ F / ( g )  - F{(x)f)}. 
i=1 
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Since uniform convergence implies epi-convergence, the limit points of  the sequence 
{x k } are in the set of  minimizers of R(x) (see Wets, 1980, for a discussion of 
epi-convergence). We note that 2 is a minimizer of R(x) because for each i 

(F[(2) - F{(x)) z >_ 0 

for all x and is zero when x = 2. We further note, by Assumption 6, that 2 is the 
only minimizer of R(x). Hence 2 is the only limit point of the sequence {xk}. This 
completes the proof. 

Lemma 9. For almost all residual sequences {e/}, as k ~ 

Vik(2) ~ 0~, VVik(2) ~ O, V2Vik(2) ---, 2(VF[(2)VF[(2)v).  

Proof. The first conclusion follows directly from Theorem 8. 
Rewriting Eq. (19) using the tail average notation and then differentiating, we 

obtain 

V Vik(x) = - 2 ( [ y / -  F{(x)]VF[(x)) u'k), 

V 2 V~k(x) = 2(VFJ(x)VF{(x)X) u~i'k) - 2([y[ - FJ(x)]V2F{(x)) u~i'k). 

Substituting 2 for x, and e[ for y / -  F{(2), we obtain 

V V~k(.f) = - 2  (eIVFi(2)) N'k>, 
V 2 gik(2) : 2(VFi(2)VFi(2)T)N(i'k) -- 2(eiV2FJ(2)) u(i,k). 

(23) 

(24) 

(25) 

(26) 

By Assumption 6, the tail averages ([VF{(g)T]Z) N°'k) converge. Hence, for almost 
all sequences {el}, (e[VF{(2)) converges to zero (Theorem 3 of Jennrich, 1969). 
This, together with Eq. (23), completes the proof of the second conclusion of this 
lemma. The final conclusion follows from a similar line of reasoning combined with 
Eq. (24). [] 

Remark. The term (eJV2FJ(2)) u(i'k) is the second-order term, which is ignored by 
our algorithm. The proof above demonstrates that this term becomes insignificant as 
the number of  data values increases. A very similar term is ignored in the Gauss- 
Newton method and a similar observation can be made in that case. 

Define the information matrix • by 

M 2, (VF/(2)VF{(2)+). (27) 9 =  E0-; 
i=1 

Lemma 10. Let Rk(x) be defined by Eq. (20) and let t9 be defined by Eq. (27). 
The sequence { ½ ~ V R k ( 2 ) }  converoes in distribution to N( O, t~ ). 

Proof. Taking the derivative of Eq. (20), we obtain 

M 

yR.(x) = Z # 
i=1 

(28) 
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Substituting g for x and using Eq. (25), we obtain 

M 
VRk(Y) = - 2  ~ 2~ V~%~)-t(VF/(£)e/) u'k). 

i=l 

1 Multiplying the above equation by - i  ~ gives 

M 

k / f ( ~ v R k ( f ~ )  = Z ~ i V~}('~)-l ~ ( v F j ( f ~ ) e / ) N ( i ' k , "  
i=1 

(29) 

It follows from Assumption 6 that for each i, m the tail average (VF/(£)~TF~(£)T) N('*) 
converges as k ~ e~. We can therefore apply Corollary 1 of Jennrich (1969) to 
conclude that 

= 

converges in distribution to a normal random variable with mean zero and variance 
Oi(VF{(g) VF{($)T}. For fixed k and varying i, the random variables {u k} are in- 
dependent. We also know that V/~/kV~k(~?) -l  converges to v/--~/~i. We can therefore 
apply the corollary to Theorem 4.6.6 of Chung (1974) to Eq. (29) above to reach 
the conclusion of  the lemma. [] 

Lemma 11. Let Rk(x) be defined by Eq. (20) and let ty be defined by Eq. (27). 
For almost all residual sequences {e{}, 1V2Rk($) ~ kO as k ~ ~ .  

Proof. Taking the derivative of Eq. (28) and substituting £ for x, we obtain 

M 
V2Rk()f) = Z ~k w/k()~)-1 V2 wlk(.l~) __ ~,k wtk(~)-2 v wtk()~)V w/k()~)T 

i=1 

Applying Lemma 9, and the fact that 2~ --~ 2i, we find that, for almost all {e/}, 
V2Rk(~) converges to 

2(VF[(.~)VF/(:f)v), 
i=1 

which completes the proof of  this lemma. [] 

The following lemma is a direct consequence of  Theorem 8, Lemma 11, and 
Assumption 6 which ensure that V2Rk(x) converges uniformly in x. 

Lemma 12. Let Rk(x) be defined by Eq. (20), let • be defined by Eq. (27), and 
let x k be a minimizer of  R k for each k. For almost all residual sequences {e/}, 

l f01 ~TZRk[xk+t(~--Xk)]dt-+~O as k --~ cx~. 
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Theorem 13. Let x k be a minimizer of  R k for each k, let tp be defined by Eq. (27), 
and suppose that tp is invertible. I f  £ is in the interior of  C, then the sequence 
x /J-~(x  k - £ )  converges in distribution to N(O, tp-1). 

Proof. Because £ is in the interior of C and the sequence {x k} converges to £ 
for almost all sequences {e/}, we find that {x k} belongs to the interior of C for 
sufficiently large k. For such k, the gradient VRk(x k) is zero because x k minimizes 
Rk(x) over C. Thus, VRk(£) satisfies 

{/01 } VRk(£) = V2Rk[xk +t(Y--xk)]dt  ( £ - x k ) .  

Define the average Hessian H k by 

f0 
1 

H k = •2Rk[xk + t(£ -- Xk)] dt. 

It follows that 

- x ' )  = 

1 k By Lemma 12, ~H converges almost everywhere to ~. By Lemma 10, ½ ~  
VRk(£) converges to N(0 ,~)  in distribution. Thus, by Lemma 4.1 in Chapter 6 of 
Lehmann (1983), ( £ -  x k) converges to N(0, ~ - i )  in distribution. This completes 
the proof of the theorem. [] 

6. Results 

In this section we apply the relative weighting method to the example defined 
in Section 2. Recall that for this model, the functions {F~(x)} and {U2(x)) are 
defined by Eqs. (4) and (5), respectively, and the values {y/} are defined in 
Table 2. 

The algorithm of Section 4 is applied to minimize the reduced objective function 
R(x) defined in Eq. (9). That is, the objective function G(x), in the algorithm of 
Section 4, is replaced by R(x). The approximation A(x,d) is replaced by W(x,d) 
which is defined in Eq. (12). The set C in the algorithm was set to the entire space; 
i.e., there were no constraints in this example. The iteration procedure was termi- 
nated when the solution to the linear least-squares approximate subproblem, d k in 
Step 2 of the algorithm, was small; to be specific, when the absolute values of both 
components of d k were less than 10 -5. The values 0.5 and 0.01 were used for the 
algorithm line search parameters 7 and p, respectively. Table 4 contains the resulting 
parameter estimates (xl, x2, x3), variance estimates (Vl, v2), reduced likelihood value 
(R), and norm of the gradient of the reduced likelihood function (IIVRII) at each 
iteration. In this simulation, Inequality (15) in Step 3 of the algorithm was satisfied 
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Table 4 
Algorithm iterates 

Iteration x, x2 x3 v, v2 R IIVRII 

1 0.08446 0.37930 0.40304 0.08576 1.52109 -1.49770 8.06530 

2 0.09046 0.45656 0.54709 0.00909 1.63138 -2.97082 1.50672 

3 0.06761 0.47478 0.55063 0.00889 1.64364 -2.98263 0.00498 

4 0.06753 0.47518 0.55030 0.00889 1.64368 -2.98263 0.00001 

with s = 0 at each iteration, and so the step-length, 2 k, was one for each of  the 
iterations. 

The information matrix ~ is defined in Eq. (27). We approximate it using the 
following expression: 

~/ = Zi=IM JV,.(Yc----~N(i) (VF{(.~)VFI(~)T)N(i)---- ffl '~: j~lN(O'= VFj(fc)VFj(fc)T~.(x) , 

where ~ is the parameter estimate corresponding to iteration number 4, M = 2, 
N(1)  = 20, N(2)  = 10, J = N(1)  + N(2) = 30, and Vt(x) is defined by Eq. (7). 
(The notation (wJ) p is defined in Eq. (21).) The corresponding estimate for the 
covariance of  the parameter estimate ~ is (see Theorem 13) 

l -t ( j = 
0.00192 -0.00066 -0.00074 

-0.00066 0.03741 - 0 . 0 3 6 7 8 ) .  

-0 .00074 -0.03678 0.03748 

The square roots of  the diagonal elements in the matrix above are approximations 
for the standard deviation of  the components of  .~. It is significant that [3¢ 1 ---~1[ < 
~ ,  IX2 --X2[ < ~ ,  and [x3 -x3[  < ~ (the simulation values 
for the components of  £ are specified in Eq. (6)). Thus, all the components of the 
estimator ~ are within one standard deviation of the values used for the simulation. 
We also note that the stopping criterion, 10 -5 , is small relative to the standard 
deviations. 

The relative weighting plot in Fig. 2 shows the residuals in the plasma data, 
y ~ -  F~(~), as a function of  t~. The absolute weighting plot shows the residu- 
als, y ( -  F~(x_), where x_ is the estimate for the parameter vector x that corre- 
sponds to the standard least-squares fit of  the entire data as one set. Note that 
the apparent linear trend in the absolute weighting plot is due to an error in the 
corresponding variance model and is not present in the relative weighting 
plot. 
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Fig. 2. Comparison of residuals. 
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