
ON THE LIDSKII–VISHIK–LYUSTERNIK PERTURBATION
THEORY FOR EIGENVALUES OF MATRICES WITH ARBITRARY

JORDAN STRUCTURE∗

JULIO MORO† , JAMES V. BURKE‡ , AND MICHAEL L. OVERTON§

SIAM J. MATRIX ANAL. APPL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 4, pp. 793–817, October 1997 001

Dedicated to V. B. Lidskii and M. I. Vishik on the respective occasions of their 70th and

75th birthdays.

Abstract. Let A be a complex matrix with arbitrary Jordan structure and λ an eigenvalue
of A whose largest Jordan block has size n. We review previous results due to Lidskii [U.S.S.R.
Comput . Math. and Math. Phys., 1 (1965), pp. 73–85], showing that the splitting of λ under a
small perturbation of A of order ε is, generically, of order ε1/n. Explicit formulas for the leading
coefficients are obtained, involving the perturbation matrix and the eigenvectors of A. We also
present an alternative proof of Lidskii’s main theorem, based on the use of the Newton diagram. This
approach clarifies certain difficulties which arise in the nongeneric case and leads, in some situations,
to the extension of Lidskii’s results. These results suggest a new notion of Hölder condition number
for multiple eigenvalues, depending only on the associated left and right eigenvectors, appropriately
normalized, not on the Jordan vectors.
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1. Introduction. Given a square complex matrix A, it is an important ques-
tion from both the theoretical and the practical points of view to know how the
eigenvalues and eigenvectors change when the elements of A are subjected to small
perturbations. The usual formulation of the problem introduces a perturbation pa-
rameter ε, belonging to some neighborhood of zero, and writes the perturbed matrix
as A + εB for an arbitrary matrix B. In this situation, it is well known [1, section
9.3.1], [7, section II.1.2] that each eigenvalue or eigenvector of A + εB admits an
expansion in fractional powers of ε, whose zero-th order term is an eigenvalue or
eigenvector of the unperturbed matrix A.

In this paper we address the question of determining the first-order term of this
expansion or, more precisely, the first nonzero perturbation term. No restriction is
imposed on the Jordan structure of A, although we assume that this Jordan structure
is known from the outset. In section 2 we present two results, due to Lidskii [10], which
provide, under certain nondegeneracy conditions, the leading exponents and leading
coefficients of both eigenvalue and eigenvector perturbations. The central idea of the
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794 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

proof is simply to transform the characteristic equation det (ωI − A − εB) = 0 into
an equivalent one Q(µ, z) = 0 through a change of variables

z = ε1/n,

µ =
ω − λ
z

for a suitable n, where λ is an eigenvalue of A. An appropriate factorization of
Q(µ, 0) leads to the final result.

A specific example may be helpful to give a better idea of these results: take
a 9 × 9 Jordan matrix J with a unique zero eigenvalue and four Jordan blocks
with respective dimensions 3, 3, 2, and 1. Lidskii’s results show that, given a small
perturbation J+εB, every Jordan block of J of dimension n gives rise, generically,
to n eigenvalues of the perturbed matrix with leading term O(ε1/n). In this particular
case, this amounts to six eigenvalues of order ε1/3, two of order ε1/2, and one of
order ε. As for the coefficients of these leading terms, we will show that they depend
exclusively on the elements of B marked with a box in the matrix below:

B =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


.

More specifically, let Φ1 denote the 2× 2 matrix given by the four boxes at the top
left, i.e.,

Φ1 =

[
B31 B34

B61 B64

]
,

and let ξ11 , ξ
2
1 be the eigenvalues of Φ1. Then the perturbed matrix J + εB has six

eigenvalues with leading terms

(ξk1 )1/3ε1/3, k = 1, 2,

using all three cube roots of each ξk1 . Now, let

Φ2 =

 B31 B34 B37

B61 B64 B67

B81 B84 B87


and let ξ2 denote the Schur complement of Φ1 in Φ2, i.e.,

ξ2 = B87 − [B81 B84] Φ−1
1

[
B37

B67

]
.
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 795

Then the two O(ε1/2) eigenvalues of J + εB have leading terms

(ξ2)1/2ε1/2.

Finally, the leading coefficient of the O(ε) eigenvalue is the Schur complement of Φ2

in the 9× 9 matrix formed by all boxes, i.e.,

ξ3 = B99 − [B91 B94 B97] Φ−1
2

 B39

B69

B89

 .
In the most general case when A is not in Jordan form, one must replace the

elements of B marked with the boxes by products yBx, where x (resp., y) is a right
(resp., left) eigenvector of A.

The first results in this direction were obtained by Vishik and Lyusternik [13], mo-
tivated by applications to differential operators. Lidskii [10] generalized their results
in the finite-dimensional case, obtaining simple explicit formulas for the perturbation
coefficients and providing, at the same time, a much more elementary proof (which
is essentially the one we present in section 2). The results in both [13] and [10]
were later refined by Baumgärtel [1, section 7.4] in the sense of dealing not only with
perturbation series for eigenvalues and eigenvectors, but also with the corresponding
eigenprojections as functions of ε. Vainberg and Trenogin [12, section 32], on the
other hand, offer a fairly thorough account of similar results, obtained for Fredholm
operators by applying the techniques of branching theory. Langer and Najman [9]
recently generalized Lidskii’s results to matrix pencils M(λ) +N(λ, ε), using the lo-
cal Smith normal form of parameter-dependent matrices (Lidskii’s results follow from
choosing M ≡ A−λI, N ≡ εB). The fundamental results of Lidskii remain, however,
almost completely unknown in the Western literature. The only references to [10] ap-
pearing in the Science Citation Index are [3] and [9], and both of these continue earlier
work [2], [8] in which the authors were unaware of [10]. The main purpose of this pa-
per is, therefore, to bring Lidskii’s results to the attention of the broad linear algebra
community. See [11] for an application to stability theory for Hamiltonian systems.

Section 2 is devoted to reviewing both the results and the proofs given in [10].
We should stress here that, although Lidskii stated his results as being valid for
analytic perturbations, we will see that they hold in fact for a more general class
of perturbations, including those of class C1 (see Remark 4 in section 2). Lidskii’s
results, however, depend on certain nondegeneracy assumptions, and no information
about the leading exponents or coefficients is available in the degenerate case from
the approach taken in section 2. Consider, for instance, the following example taken
from Wilkinson [14, section 2.22]: let A be a Jordan matrix with two Jordan blocks
of sizes 3 and 2, which is perturbed only in the positions (3,4) and (5,1), i.e.,

A+ εB =


0 1

0 1
0 ε

0 1
ε 0

 .(1.1)

One can easily check that the characteristic polynomial of A+ εB is ε2−λ5. Hence,
the eigenvalues of A+εB are O(ε2/5), an order which Lidskii’s results are unable to
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796 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

predict. We present in section 3 a different approach which will, in particular, reveal
the origin of this exponent. Apart from providing an alternative proof of Lidskii’s
main theorem, the new point of view identifies the difficulties which arise in the
degenerate case and, in some situations, leads to extensions of the results in section
2. This alternative approach is much in the spirit of [12] since our main tool is the
Newton diagram.

We end by proposing in section 4 a new notion of Hölder condition number for
multiple eigenvalues, suggested by Lidskii’s results. Although it is closely related to
previous Hölder condition numbers in the literature [4, p. 156] its main difference
is that it depends only on the associated left and right eigenvectors, appropriately
normalized, not on the Jordan vectors.

2. Lidskii’s perturbation theory. Let A be a complex matrix with Jordan
form

 J

Ĵ

 =

 Q

Q̂

 A [ P P̂
]

(2.1)

with

 Q

Q̂

[ P P̂
]

= I,(2.2)

where J corresponds to a multiple eigenvalue λ and Ĵ is the part of the Jordan
form containing the other eigenvalues of A. Let

J = Diag(Γ1
1, . . . ,Γ

r1
1 , . . . ,Γ

1
q, . . . ,Γ

rq
q ),(2.3)

where, for j = 1, . . . , q,

Γ1
j = · · · = Γ

rj
j =


λ 1
· ·
· ·
· 1
λ


is a Jordan block of dimension nj , repeated rj times, and ordered so that

n1 > n2 > · · · > nq.

The nj are called the partial multiplicities for λ. The eigenvalue λ is semisimple
(nondefective) if q = n1 = 1 and nonderogatory if q = r1 = 1. The algebraic and
geometric multiplicities of λ are, respectively,

m =

q∑
j=1

rjnj and g =

q∑
j=1

rj .
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 797

We further partition

P =

 P 1
1 . . . P r11 . . . P 1

q . . . P
rq
q


conformally with (2.3). The columns of each P kj form a right Jordan chain of A with

length nj corresponding to λ. If we denote by xkj the first column of P kj , each xkj
is a right eigenvector of A associated with λ. Analogously, we split

Q =



Q1
1

...
Qr11

...

Q1
q

...

Q
rq
q


also conformally with (2.3). The rows of each Qkj form a left Jordan chain of A of

length nj corresponding to λ. Hence, if we denote by ykj the last (i.e., njth) row

of Qkj , each ykj is a left eigenvector corresponding to λ. With these eigenvectors we
build up matrices

Yj =

 y1
j
...
y
rj
j

 , Xj = [x1
j , . . . , x

rj
j ],

for j = 1, . . . , q,

Ws =

 Y1

...
Ys

 , Zs = [X1, . . . , Xs],

for s = 1, . . . , q, and define square matrices Φs and Es of dimension fs =
∑s

j=1
rj

by

Φs = WsBZs, s = 1, . . . , q,

E1 = I, Es =

[
0 0
0 I

]
for s = 2, . . . , q,

where the identity block in Es has dimension rs. Note that, due to the cumulative
definitions of Ws and Zs, every Φs−1, s = 2, . . . , q, is the upper left block of Φs.
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798 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

Theorem 2.1 (due to Lidskii [10]). Let j ∈ {1, . . . , q} be given and assume
that, if j > 1, Φj−1 is nonsingular. Then there are rjnj eigenvalues of the perturbed
matrix A+ εB admitting a first-order expansion

λklj (ε) = λ+ (ξkj )1/nj ε1/nj + o(ε1/nj )(2.4)

for k = 1, . . . , rj , l = 1, . . . , nj , where
(i) the ξkj , k = 1, . . . , rj , are the roots of equation

det (Φj − ξ Ej) = 0(2.5)

or, equivalently, the eigenvalues of the Schur complement of Φj−1 in Φj (if j = 1,
the ξk1 are just the r1 eigenvalues of Φ1),

(ii) the different values λklj (ε) for l = 1, . . . , nj are defined by taking the nj
distinct njth roots of ξkj .

If, in addition, the rj solutions ξkj of (2.5) are all distinct, then the eigenvalues
(2.4) can be expanded locally in a power series of the form

λklj (ε) = λ+ (ξkj )1/nj ε1/nj +
∞∑
s=2

akljs ε
s/nj ,(2.6)

k = 1, . . . , rj , l = 1, . . . , nj .
Remark. Two special cases of Theorem 2.1 are well known. In the case in which

λ is semisimple, i.e., q = n1 = 1 with multiplicity r1, equation (2.4) reduces to

λk11 (ε) = λ+ ξk1 ε+ o(ε),

where the ξk1 are the eigenvalues of the r1×r1 matrix Y1BX1 (cf. [7, section II.2.3]).
In the case in which λ is nonderogatory, i.e., q = r1 = 1 with multiplicity n1,
equation (2.4) reduces to

λ1l
j (ε) = λ+ (ξ11)1/n1 ε1/n1 + o(ε1/n1),

where ξ11 = y1
1Bx

1
1. These two cases coincide when λ is simple.

Theorem 2.2 (due to Lidskii [10]). Let Φs be nonsingular for s = 1, . . . , q
and let j ∈ {1, . . . , q} be such that the rj roots of ( 2.5) are different. Then the
corresponding eigenvalues (2.6) of A + εB are simple for ε small enough and the
associated right eigenvectors admit a power series expansion

vklj (ε) = ukj +
∞∑
s=1

wkljs ε
s/nj ,(2.7)

k = 1, . . . , rj , l = 1, . . . , nj , where

ukj =

fj∑
p=1

ckpj xpj , k = 1, . . . , rj
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 799

and the column vector

ckj =

 ck1j
...

c
kfj
j


satisfies

(Φj − ξkj Ej) ckj = 0.(2.8)

Proof of Theorem 2.1. We may suppose, for the sake of simplicity, that A has
only one eigenvalue λ; i.e., Ĵ is empty. The general case may be reduced to this one
using appropriate Riesz projections (we refer to Lidskii’s original paper [10, pp. 83–84]
or [1, section 3.9.1] for the details). Thus, we are interested in the roots ω of the
characteristic equation

det C(ω, ε) ≡ det (ωI − J − εB̃) = 0, B̃ = P−1BP.(2.9)

As announced in section 1, we perform on C(ω, ε) the change of variables

z = ε1/nj ,

µ =
ω − λ
z

,

where nj is the partial multiplicity corresponding to j. This leads to a polynomial
equation

det P(µ, z) = det[(λ+ µz)I − J − znj B̃] = 0

in the new variables, where P(µ, z) = C(λ+ µz, znj ). Since we are mainly concerned
with solutions which are close to z = 0, it will prove convenient to multiply P(µ, z)
by the following diagonal matrices L(z) and R(z), partitioned conformally with J :

L(z) = Diag [L1
1, . . . , L

r1
1 , . . . , L

1
q, . . . , L

rq
q ],

R(z) = Diag [R1
1, . . . , R

r1
1 , . . . , R

1
q , . . . , R

rq
q ],

where

L1
i (z) = · · · = Lrii (z) = diag [z−1, z−2, . . . , z−ni ] if i ≥ j,

L1
i (z) = · · · = Lrii (z) = diag [1, . . . , 1︸ ︷︷ ︸

ni−nj

, z−1, z−2, . . . , z−nj ] if i < j

and

R1
i (z) = · · · = Rrii (z) = diag [1, z, z2, . . . , zni−1] if i ≥ j,

R1
i (z) = · · · = Rrii (z) = diag [1, . . . , 1︸ ︷︷ ︸

ni−nj

, 1, z, z2, . . . , znj−1] if i < jD
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800 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

for i = 1, . . . , q (note that ni ≥ nj if and only if i ≤ j). We now introduce the
matrix F (µ, z) = L(z)P(µ, z)R(z) and define

Q(µ, z) = det F (µ, z).

The nonsingularity of both L(z) and R(z) implies that, for any given z 6= 0,

det P(µ, z) = 0 ⇔ Q(µ, z) = 0,

although of course the condition numbers of L(z), R(z) diverge to ∞ as z → 0.
Let us show that Q is a polynomial in µ and z. For this, we split F (µ, z) =

G(µ, z) +H(z), where

G(µ, z) = L(z) [(λ+ µz) I − J ]R(z)

is block diagonal and

H(z) = −znj L(z) B̃ R(z).

We write Γks = λ I +Ns, k = 1, . . . , rs, where

Ns =


0 1
· ·
· ·
· 1

0


for s = 1, . . . , q, and use two straightforward properties of the matrices Lki and Rki ,
namely, that

Lki (z)NiR
k
i (z) = Ni, i = 1, . . . , q, k = 1, . . . , ri,

Lki (z)Rki (z) = z−1 I whenever ni ≤ nj ,

to check that the diagonal blocks Gki (µ, z) = Lki (µz I −Ni)Rki of G(µ, z) are

Gki (µ, z) =


µ I −Ni if i ≥ j,

diag [µz, . . . , µz︸ ︷︷ ︸
ni−nj

, µ, . . . , µ]−Ni if i < j.(2.10)

Hence, all powers of z in G are nonnegative, and the same applies to H since no
negative powers appear in either znj Lki or Rki . This proves our claim that Q(µ, z)
is a polynomial.

Let us now examine F (µ, 0) = G(µ, 0)+H(0). The block diagonal matrix G(µ, 0)
is given by equations (2.10) with z = 0. To give a careful description of H(0) we

need to partition B̃, F , and H conformally with J. We denote by

B̃ k1k2
j1j2

, ji = 1, . . . , q, ki = 1, . . . , rji , i = 1, 2
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 801

the nj1 × nj2 block of B̃ lying on the same rows as Γk1j1 and on the same columns

as Γk2j2 (the corresponding blocks of H and F are defined likewise). Following this
notation, we have

Hk1k2
j1j2

(z) = −znjLk1j1 (z) B̃k1k2j1j2
Rk2j2 (z),

which implies, in the first place, that

Hk1k2
j1j2

(0) = 0 if nj1 < nj(2.11)

due to the vanishing of znj Lk1j1 at z = 0. On the other hand, if j1 ≤ j and j2 ≤ j,
an elementary calculation shows that

Hk1k2
j1j2

(0) =


0 0 · · · 0 0 · · · 0
· · · · · · · · · · ·
0 0 · · · 0 0 · · · 0

−βk1k2j1j2
∗ · · · ∗ 0 · · · 0

 ,(2.12)

where the nj2−nj elements marked with an asterisk are irrelevant to our argument and

βk1k2j1j2
is the element in the lower left corner of the block B̃k1k2j1j2

. The same structure
(2.12) applies to the case j1 ≤ j, j2 > j, but with zeros instead of asterisks. The
main point of (2.12) is that every βk1k2j1j2

= yk1j1 B x
k2
j2

is an element of Φs = YsBXs

for s=max{j1, j2}. In other words, we may find all the elements of the matrix Φj by
looking at the lower left corners of the blocks (2.12) for j1, j2 ≤ j (or, equivalently,
for nj1 , nj2 ≥ nj).

Before our final examination of Q(µ, 0), let us briefly turn to the diagonal blocks
of F (µ, 0) of size nj , i.e.,

F kkjj (µ, 0) =


µ −1 0 · · · 0
0 µ −1 · · · 0
· · · · · · ·

−βkkjj 0 0 · · · µ

 .
The determinant of this block does not change if we add to its first column the
products of its second column by µ, of its third column by µ2, . . . , and of its last
column by µnj−1. Neither does the whole determinant Q(µ, 0) if we perform identical
operations on the same columns of the whole matrix F (µ, 0) since, according to (2.11)
and (2.12), the nj−1 columns of F which are being multiplied by powers of µ have
no nonzero elements outside F kkjj . This amounts to replacing every block F kkjj with
the block


0 −1 0 · · · 0
0 µ −1 · · · 0
· · · · · · ·

−βkkjj + µnj 0 0 · · · µ

 .
Let us now prove that the determinant Q(µ, 0) of the matrix we finally obtain can
be written in the form
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802 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

Q(µ, 0) = ±µα det (Φj − µnj Ej)(2.13)

for a suitable α ≥ 0. Although elementary, the proof is quite messy in the general
case, so we will instead illustrate the strategy on a specific example. Take, for instance,
the case q = 3, j = 2, n1 = 4, n2 = 3, n3 = 2, r1 = 1, r2 = 2, r3 = 1; i.e., Q(µ, 0)
is the determinant of the 12× 12 matrix



0 −1 0 0 0 0 0 0 0 0 0 0
0 µ −1 0 0 0 0 0 0 0 0 0
0 0 µ −1 0 0 0 0 0 0 0 0
−β11

11 ∗ 0 µ −β11
12 ∗ 0 −β12

12 0 0 −β11
13 0

0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 µ −1 0 0 0 0 0
−β11

21 0 0 µ −β11
22 + µ3 0 µ −β12

22 0 0 −β11
23 0

0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 µ −1 0 0
−β21

21 0 0 µ −β21
22 0 0 −β22

22 + µ3 0 µ −β21
23 0

0 0 0 0 0 0 0 0 0 0 µ −1
0 0 0 0 0 0 0 0 0 0 0 µ



.

There are four rows in this matrix (first, fifth, eighth, and twelfth) containing one sin-
gle nonzero element. In calculating the determinant of the matrix we may, therefore,
remove the rows and columns corresponding to these four elements. This leaves an
8×8 matrix M1(µ) such that Q(µ, 0) = µ det M1(µ). Because of the previous dele-
tions, there are again four rows in M1 with one single nonzero element. Eliminating
the appropriate rows and columns of M1, we get a 4×4 matrix M2 and, finally,
deleting one row and one column of M2, a 3×3 matrix

M3 =

 −β11
11 −β11

12 −β12
12

−β11
21 −β11

22 + µ3 −β12
22

−β21
21 −β21

22 −β22
22 + µ3


such that Q(µ, 0) = µ2 det M3(µ). But we know from (2.12) that the βk1k2j1j2

are just

the elements of Φ2. Hence, M3(µ) = −Φ2 + µ3E2 and we obtain (2.13) with α = 2.
The same procedure goes through to the general case, exploiting in much the same
way our knowledge of the block structure of the modified matrix F (µ, 0).

Once we have Q(µ, 0) factorized as in (2.13), we note that its second factor
det (Φj − µnj Ej) is a polynomial of degree rj in µnj . This is trivial if j = 1
and a consequence of the nonsingularity of Φj−1 if j > 1. We now take Q(µ, z)
as a polynomial in µ whose coefficients are continuous z-dependent functions. The
continuous dependence of the roots of Q upon its coefficients guarantees the existence
of exactly rjnj continuous functions

µklj (z) = (ξkj )1/nj + o(1), k = 1, . . . , rj , l = 1, . . . , nj ,

describing all solutions of Q(µ(z), z) = 0 for z small enough (recall that some roots
ξkj of (2.5) might be zero if Φj is singular). Expansion (2.4) is obtained by returning
to the original variables (λ, ε).
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 803

Finally, if all rj roots ξkj of equation (2.5) are known to be distinct, we may

apply the implicit function theorem to (2.13) to show that the µklj (z) are in fact
analytic functions of z, thus giving rise to the power series (2.6).

Proof of Theorem 2.2. In the conditions of Theorem 2.2 it is clear that, for ε
small enough, no eigenvalue (2.6) corresponding to j can possibly coincide with any
of the eigenvalues (2.4) corresponding to Jordan blocks of different dimensions.

Furthermore, given one of these simple eigenvalues λklj (ε), a right eigenvector
associated with it may be constructed by taking as its components the m cofactors
of the elements of a row of A+εB−λklj I. This implies the analyticity of the eigenvector
since the elements of this latter matrix are analytic functions of ε and the cofactors
are simply sums of products of these elements (we recall that the eigenvector is unique
up to constant multiples due to the simplicity of the eigenvalue).

Finally, let eklj (z) be a vector in the null space of F klj (z) = F (µklj (z), z), where

µklj (z) = (λklj (z)− λ)/z. Dropping for simplicity both sub- and superscripts, we have

F (z)e(z) = L(z)P(µ(z), z)R(z)e(z) = 0,

which, due to the nonsingularity of L(z) for z 6= 0, shows that R(z)e(z) is a right

eigenvector of J+znj B̃ associated with λklj . Hence, the first term R(0)e(0) of its ε-

expansion must be, up to a constant, equal to the zero-th order term ukj of expansion
(2.7). Equation (2.8) is finally obtained by applying to the linear system F (0)e = 0
the same ideas we used to simplify Q(µ, 0) in the proof of Theorem 2.1.

Remarks.
1. A proof of the existence of power series expansions ( 2.6) and ( 2.7) under

the conditions of Theorem 2.2 goes back to Vishik and Lyusternik [13, Theorem 6,
Appendix I]. Their approach, however, is radically different from Lidskii’s, since they
impose both expansions (2.6) and (2.7) as formal series at the outset, recursively
find all coefficients, and finally prove the convergence of the series on some nontrivial
interval around ε = 0. In their setting, the assumption that all Schur complements
have nonzero distinct eigenvalues arises as a solvability condition on the system of
infinitely many equations determining the coefficients of the series. Lidskii’s approach
in [10], on the other hand, concentrates only on the leading term, regardless of the rest
of the expansion. This allows him to get more general results, avoiding at the same
time the issue of convergence of the series: in those cases in which a power series
expansion is obtained, its convergence is a consequence of the function theoretical
results invoked in the proof.

2. The computation of Schur complements is equivalent to (and may be replaced
by) choosing the eigenvector matrices Xj and Yj in a special way. Suppose, for
instance, that j = 2 and Φ1 = Y1BX1 is nonsingular. A straightforward calculation
shows that the columns of

X̃2 = X2 −X1Φ−1
1 Y1BX2(2.14)

and the rows of

Ỹ2 = Y2 − Y2BX1Φ−1
1 Y1(2.15)

are, respectively, right and left eigenvectors of A, corresponding to Jordan chains of
the same length as the eigenvectors given by the rows and columns of X2 and Y2.
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804 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

Furthermore, we have Y1BX̃2 = 0 and Ỹ2BX1 = 0. Hence, it suffices to define

W̃2 =

[
Y1

Ỹ2

]
, Z̃2 =

[
X1, X̃2

]
, and Φ̃2 = W̃2BZ̃2

to obtain a block diagonal matrix Φ̃2 whose lower right block Ỹ2BX̃2 is precisely
the Schur complement of Φ1 in the old matrix Φ2. The replacement of X3 and Y3

by suitable matrices leads to the block diagonalization of Φ3, provided that Φ̃2 is
nonsingular. It should be noted that, although only one of the two matrices (2.14)
or (2.15) is required to reproduce the Schur complement for j = 2 (by block trian-
gularizing Φ2), both of them are needed to continue to the following step j = 3.

3. Both matrices Φj−1 and Φj must be nonsingular to obtain the leading nonzero
terms in all expansions (2.4). That is probably why Lidskii’s original statement of
Theorem 2.1 imposed nonsingularity of both Φj−1 and Φj . Nevertheless, as we have
seen in the proof of the theorem, only Φj−1 need be nonsingular for the eigenvalue
expansions (2.4) to hold: suppose that Φj−1 is nonsingular and Φj is singular. Then
we have

det (Φj − ξEj) = ξβ q(ξ), q(0) 6= 0,

for a certain β > 0; i.e., (2.5) has β zero and rj − β nonzero solutions. Hence,
(rj − β)nj expansions (2.4) have a nonzero first-order term, while all we can say
about the remaining βnj eigenvalues is that they are of the form λkj (ε) = λ+o(ε1/nj ).
This strongly suggests the possibility of interaction with eigenvalues associated with
Jordan blocks of size less than nj . These interactions will become much clearer in
the next section with the use of the Newton diagram.

4. An important advantage of Lidskii’s proof technique is that it does not require
the analyticity of the perturbation. Consequently, Lidskii’s approach can be used to
investigate the variational behavior of eigenvalues under very weak differentiability
hypotheses. For example, Theorem 2.1 remains valid for perturbations of class C1.
More generally, one can even obtain one-sided or directional versions of Theorem 2.1.
For example, if A : R→ Cn×n is continuous at the origin with

A(ε) = A+ εB + o(ε) for ε > 0,

then the expansion (2.4) in Theorem 2.1 remains valid for ε ≥ 0. In fact, the same
proof holds with minor changes. First observe that the continuity of the Riesz pro-
jections depends only on the continuity of the perturbation [7, Theorem 5.1]. Next,
using a bar to denote matrices arising in this new setting, we find that

det C(ω, ε) ≡ det (ωI −A− εB − o(ε)) = det C(ω, ε) + o(ε) for ε ≥ 0,

where C(ω, ε) is given by (2.9). After changing to variables µ, z, we have

det P(µ, z) = det P(µ, z) + o(znj ),

so, multiplying by L(z) and R(z), we obtain

F (µ, z) = L(z)P(µ, z)R(z) = F (µ, z) + S(z)

for S(z) = L(z)M R(z), where M is o(znj ). Now, recall that no negative power of
z in L(z) has absolute value larger than nj . This means that S(z) = o(1), so

Q(µ, 0) = det F (µ, 0) = Q(µ, 0)
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 805

and the factorization ( 2.13) still holds. Finally, although in this case Q(µ, z) is
no longer a polynomial in both variables µ and z, it is a polynomial in µ, whose
coefficients are continuous functions of z. Thus, we may still guarantee that the roots
of Q(µ, z) depend continuously on z to conclude the proof.

Example. We consider the simplest case of a matrix having an eigenvalue which is
neither semisimple nor nonderogatory: let A be a 3×3 matrix with a triple eigenvalue
λ of geometric multiplicity two (in our notation, q = 2, n1 = 2, n2 = 1, r1 = r2 = 1).
Dropping the superscripts, we denote the two left eigenvectors by y1, y2 and the two
right eigenvectors by x1, x2. We find that Φ1 = β11 = y1Bx1 and

Φ2 =

[
β11 β12

β21 β22

]
, βij = yiBxj , i, j = 1, 2.

We have two eigenvalues

λl1(ε) = λ±
√
β11 ε

1/2 + o(ε1/2), l = 1, 2.

Furthermore, if both Φ1 and det Φ2 are different from zero, the third eigenvalue is
λ+ ξ2ε+ o(ε), where ξ2 = (det Φ2)/Φ1 is the solution of

det(Φ2 − ξE2) = det Φ2 − Φ1 ξ = 0.

Note that, if Φ1 is zero, we know only that two of the eigenvalues are o(ε1/2)
perturbations of λ, without any further indication of their asymptotic order.

Note that even in this simple example it is unclear which leading powers of ε are
to be expected when some Φj is singular. Lidskii [10] gives an example where all three
eigenvalues above are perturbed by order ε2/3, and we have seen in (1.1) a similar
example of a 5 × 5 matrix A with Jordan blocks of sizes 3 and 2, whose perturbed
eigenvalues are of order ε2/5 for a conveniently chosen perturbation. None of these
leading exponents can be explained, in principle, by any of the above results. It
seems that the information that Q(µ, 0) provides in the case of singular Φj is helpful
only in predicting which powers of ε cannot appear in the eigenvalue expansions.
In the following section we present an alternative approach that will improve our
understanding of Theorem 2.1, giving us a global picture of what happens in the
degenerate case when some Φj is singular.

3. Application of Newton’s diagram. In this section the symbol λ is used
as a parameter, not as a fixed value as earlier. We consider a complex polynomial
equation

P (λ, ε) = λm + α1(ε)λm−1 + · · ·+ αm−1(ε)λ+ αm(ε) = 0(3.1)

in λ, with analytic coefficients

αk(ε) = α̂kε
ak + · · · , k = 1, . . . ,m,

where ak is the leading exponent and α̂k the leading coefficient of αk(ε) (i.e., α̂k 6= 0
and no term of order lower than ak appears in the expansion of αk(ε)). It is well
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806 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

known [1], [7] that the roots of (3.1) are given by expansions in fractional powers of ε.
The leading exponents of these expansions can be easily found through the following
elementary geometrical construction: we plot the values ak versus k for k = 1, . . . ,m
together with the point (0, 0) corresponding to λm (if αj(ε) ≡ 0, the corresponding
point is disregarded). Then we draw the segments on the lower boundary of the convex
hull of the plotted points. These segments constitute the so-called Newton diagram
associated with P (λ, ε) (see Fig. 3.1 for two specific examples). One can prove [1,

(a) (b)

Fig. 3.1. Newton diagrams associated with the polynomials: (a)λ4 + (2ε− ε2)λ3 + ε2λ2 + (ε−
ε3)λ+ ε2, (b) λ5 − ε2λ4 + (ε− 3ε2)λ3 + ε2λ− ε3.

Appendix A7], [2], [12] that the slopes of the different segments of the Newton diagram
are precisely the leading powers of the ε-expansions of the roots λ = λ(ε) of (3.1).
The number of roots corresponding to each slope equals the length of the projection
on the horizontal axis of the segment with that particular slope. The underlying idea
is to substitute an Ansatz

λ(ε) = µεβ + · · ·(3.2)

into (3.1), with µ, β to be determined. Every point (k, ak) plotted in the diagram
produces an εak+(m−k)β term. If λ(ε) is a root of (3.1), all the terms we obtain
from this substitution must cancel each other. Hence, at least two terms of the lowest
order in ε must be present, and this lowest order is clearly to be found among the
exponents {a1 + (m − 1)β, a2 + (m − 2)β, . . . , am}. Consider the segment S of the
Newton diagram with the smallest slope s and choose β = s in (3.2). All points
(k, ak) lying on S give rise to terms with the same exponent since ak + (m − k)s
is constant on S. The fact that no point (k, ak) lies below S implies that no other
term of the expansion can be of a lower order in ε. Hence, the leading coefficients µ
are determined as the solutions of

∑
(k,ak)∈S

µm−kα̂k = 0.(3.3)

We get the leading terms of the remaining roots of ( 3.1) by repeating the same
argument for the increasingly larger slopes appearing in the Newton diagram.

Returning to the eigenvalue problem, our main goal in this section is to establish
the relationship between the quantities det Φj , j = 1, . . . , q, and the Newton diagram
associated with the characteristic polynomial of A+εB. We recall that A is a matrix
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 807

with only one eigenvalue (previously denoted by λ) of multiplicity m, with partial
multiplicities nj , each repeated rj times for j = 1, . . . , q. With no loss of generality,
we may assume that this eigenvalue is zero. In this case, the characteristic polynomial
p(λ, ε) = det(λI −A− εB) = det(λI −J − εB̃) can be written in the form (3.1), with
m =

∑q
1 rjnj (recall that λ is no longer an eigenvalue of A, but the unknown in the

characteristic polynomial). To draw the Newton diagram associated with p(λ, ε), we
must know the exponents ak for k = 1, . . . ,m. This is quite easy if the eigenvalue
is semisimple, since the Jordan form J of A is zero and each αk(ε) equals εm−k

multiplied by a certain sum of minors of B̃ of dimension m − k. In this case, the
Newton diagram is formed by one single segment of slope s = 1. If the eigenvalue is
not semisimple, some nontrivial Jordan block appears in J, which means that, apart
from the O(εm−k) terms, each αk(ε) will typically contain terms of lower order
generated by the ones appearing above the diagonal of J . This clearly shows that the
effect of nontrivial Jordan blocks is to introduce in the Newton diagram line segments
with slopes less than 1, with the smallest possible slope corresponding to the case of a
nonderogatory eigenvalue (one single segment of slope 1/m) and the largest possible
one to the semisimple case. All possible Newton diagrams for the given multiplicity
m lie between these two extremal segments.

We must now carefully determine which points (k, ak) may appear on the Newton
diagram for a particular Jordan structure. To this purpose, it will be useful to find
the lowest possible diagram compatible with the given Jordan structure. To do this,
we fix every exponent l of ε and find the largest possible k = k(l) such that there
exists a perturbation matrix B for which ak(l) = l. This amounts to fixing a height
l on the vertical axis of the Newton diagram and determining the rightmost possible
point (k(l), l) in the diagram. The following theorem gives us the values k(l) for
the exponents l = 1, . . . , fq which are relevant to our argument (we recall that fj =
r1+· · ·+rj) and, more importantly, also provides some coefficients of the characteristic
polynomial which are crucial to determine the Newton diagram.

Theorem 3.1. For every l, l = 1, . . . , fq, the corresponding k(l) is equal to
the sum of the dimensions of the l largest Jordan blocks of J. More precisely, write
f0 = 0 and suppose l = fj−1 + ρ for some j = 1, . . . , q and 0 < ρ ≤ rj . Then

k(l) = r1n1 + · · ·+ rj−1nj−1 + ρnj

and the coefficient of εl in αk(l) is equal to (−1)l multiplied by the sum of all
principal minors of Φj corresponding to submatrices of dimension l that contain the
upper left block Φj−1 of Φj (if j = 1, all principal minors of dimension l are to be
considered). If, in particular, l = fj for some j ∈ {1, . . . , q}, then the coefficient of
εfj in αk(fj) is (−1)fj det Φj .

Proof. The characteristic polynomial of A + εB is a linear combination with
coefficients ±1 of all possible products of m elements of the matrix λI − J − εB̃,
with the restriction that no two factors can be on the same row or the same column.

It is clear that the only way to obtain a product of order εl is to choose exactly
m − l factors containing ε-independent terms (i.e., “lambdas” or “minus ones”).
Furthermore, we should try to include as few lambdas as possible among these factors,
since we are looking for the smallest possible power of λ. However, we are not free
to make whatever choices we want. Due to the special position of the ε-independent
terms, every time we choose a minus one we are, at the same time, excluding from
the product those lambdas which lie on the same row or the same column. Let us
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808 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

examine the restrictions. Suppose an admissible choice (i.e., a choice producing a
term of order εl) contains β minus ones. These β choices remove a certain number
of lambdas, which depends on the number of Jordan blocks these β minus ones are
sampled from. This is due to the fact that the first minus one we choose from a
particular block excludes two lambdas, while any further minus one from the same
block removes only one. Suppose the β minus ones were taken from γ different
blocks. These β choices exclude β + γ lambdas, which, together with the m− l− β
lambdas which were actually chosen in the product, cannot exceed the total number
m of available lambdas. We conclude that γ ≤ l; i.e., we are allowed to sample minus
ones from at most l Jordan blocks. Hence, to produce the lowest possible power of λ
we must exhaust all minus ones from the l largest possible Jordan blocks of J, and
only then complete with lambdas until we have the m− l factors.

Suppose, in the first place, that l = fj for some j = 1, . . . , q. Then there is
only one way of choosing these m− l factors: we must choose the β = r1(n1 − 1) +
· · · + rj(nj − 1) minus ones from the l largest Jordan blocks, plus the m − l − β =
rj+1nj+1 + · · ·+ rqnq diagonal lambdas from the remaining Jordan blocks. Thus, we

get k(l) = l+β = r1n1 + · · ·+rjnj . Note that if we delete from λI−J−εB̃ the rows
and columns corresponding to these m− l elements, the fj × fj remaining matrix is
precisely −εΦj , which proves our claim.

The same argument is valid in the case ρ < rj+1, although in this case there is
more than one way of building up the products: each one corresponds to a different
choice of ρ blocks among the rj+1 Jordan blocks of dimension nj+1, generating a
different principal minor of Φj to be included in the sum.

Let us now introduce the following definition.

Definition 3.2. Denote Pj ≡ (k(fj), fj), and let Sj be the segment of slope
1/nj connecting Pj−1 with Pj for j = 1, . . . , q. We define the Newton envelope
corresponding to the Jordan structure of J as the diagram obtained by successively
joining the segments S1, S2, . . . , Sq.

As a first consequence of Theorem 3.1, note that all points (k(l), l) for l between
fj−1 and fj lie along the corresponding segment Sj . Hence, the Newton envelope
is indeed the lowest Newton diagram we were looking for. This is not, however,
its most interesting feature. Keep in mind that, given a particular B, only those
points (k(l), l) from the envelope such that ak(l) = l will actually be plotted in the
Newton diagram. This means, in particular, that a corner point Pj of the Newton
envelope appears on the Newton diagram only if the perturbation B is such that the
corresponding coefficient ± det Φj is nonzero. In other words, the Newton envelope
displays the generic behavior of the eigenvalues of A under perturbation, in the sense
that it coincides with the Newton diagram in all situations except in those nongeneric
cases in which the perturbation B causes one of the Φj to be singular.

Theorem 3.1 largely explains the importance of the det Φj in obtaining the
exponents 1/nj in the eigenvalue expansions. Furthermore, it clears the way for an
independent proof of Lidskii’s Theorem 2.1.

Proof of Theorem 2.1. Let us suppose first that j ∈ {2, . . . , q} is such that Φj−1

and Φj are nonsingular (the case j = 1 is completely analogous). Then both Pj−1

and Pj are among the points plotted to construct the Newton diagram and Sj is
one of the segments in the diagram (no point (k, ak) can lie below Sj). Thus, we
obtain the leading exponent of expansion (2.4). We also get the leading coefficient by
carefully examining, for the segment Sj , equation (3.3). We first note that the only
candidates (k, ak) to lie on Sj are the intermediate points Qt ≡ (k(fj−t), fj−t), t =
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 809

1, . . . , rj − 1. The fact that the Qt are separated from each other by a distance nj
on the horizontal axis implies that equation (3.3) depends on µ only through µnj .
More precisely, let T be the set of values t∈{1, . . . , rj−1} such that Qt appears in
the Newton diagram. Then∑

(k,ak)∈Sj

µm−kα̂k = µm−k(fj)

[
µnjrj α̂k(fj−1) +

∑
t∈T

α̂k(fj−t)µ
t nj + α̂k(fj)

]
= 0,

where the expression in brackets is a polynomial in µnj . Now, we recall from Theorem
3.1 that for each l = fj−t with t ∈ T, the corresponding α̂k(l) is (up to the sign) the
sum of all principal minors of Φj of dimension l containing Φj−1, which is precisely
the way the coefficients of the powers of ξ are obtained in det(Φj−ξEj). This implies
that we get the nonzero solutions of (3.3) by solving det(Φj − µnjEj) = 0.

Now suppose that Φj is singular. Then the corresponding point Pj no longer
belongs to the diagram, implying the loss of some of the expansions (2.4) or, equiv-
alently, the loss of part of the segment Sj . The part of Sj that actually remains
depends upon the nullity of Φj . If rank Φj = fj − β, there are β rows or columns
of Φj that depend linearly on the remaining ones. This means, on one hand, that
no point Qt ≡ (k(fj − t), fj − t) appears in the diagram for 1 ≤ t < β and, on the
other hand, that Qβ does appear (each principal minor of Φj of dimension fj − β
either vanishes or takes a common nonzero value, since only fj − β columns of Φj
are linearly independent). We conclude that the part of Sj remaining in the New-
ton diagram is the segment connecting Pj−1 to Qβ = (k(fj − β), fj − β) (see Fig.
3.2). This accounts for (rj − β)nj expansions (2.4), whose leading coefficients are,

Q
β

f

Pj

Pj+1

P
j-1

j-1

fj -

k(f j-1 ) k(f j - β ) k(f 

fj+1

β

j+1 )

Fig. 3.2. The Newton diagram is shown as a solid line and the envelope as a dashed line.

reasoning as above, the njth roots of the rj − β nonzero solutions of equation (2.5).
As for the βnj remaining eigenvalues, they correspond to segments whose slope is
strictly larger than 1/nj . Hence, the remaining expansions (2.4) are still valid since
they correspond to the β null solutions of equation (2.5).
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810 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

A further consequence of this Newton diagram approach is that the hypotheses of
Theorem 2.2 can be weakened in the sense that, if j is such that all roots of (2.5) are
distinct, we only need Φ1, . . . ,Φj to be nonsingular to guarantee the simplicity of the
rjnj eigenvalues λklj (ε): the slope of any segment of the diagram lying to the right of
Pj is strictly larger than 1/nj regardless of the singularity of Φs, s = j + 1, . . . , q.
Hence, no eigenvalue corresponding to a Jordan block of size less than nj can coincide
with any λklj (ε) if ε is small enough.

Apart from recovering the results of section 2, the approach through the Newton
diagram is quite helpful in getting a better understanding of the nongeneric case when
some Φj is singular. The fact that in this case Pj does not belong to the Newton
diagram implies that neither the complete segment Sj nor the complete segment Sj+1

appears on the Newton diagram. This indicates some kind of interaction between the
eigenvalues associated with blocks of size nj and those associated with blocks of size
nj+1. We may, in fact, use the Newton diagram as a tool to quantify this interaction,
actually finding both leading exponents and coefficients of the missing eigenvalue
expansions in simple situations. The range of possibilities is easily visualized with the
aid of the Newton envelope. For example, if (h1, k1) and (h2, k2) are two points that
are known to lie on both the Newton diagram and the Newton envelope, then the
segment of the Newton diagram between h1 and h2 must necessarily lie between the
chord connecting (h1, k1) to (h2, k2) and the Newton envelope. Thus, to determine the
Newton diagram one need only focus on the integer lattice points trapped between this
chord and the Newton envelope. As an illustration of the power of this observation in
the nongeneric case, we provide the following corollary. In this corollary, we identify
a case in which no integer lattice points can lie between the chord and the Newton
envelope.

Corollary 3.3. Let 0 ≤ β ≤ rj and 0 ≤ α ≤ rj+1. Suppose that Qjβ =

(k(fj − β), fj − β) and Q̂jα = (k(fj + α), fj + α) are two points lying on the Newton

diagram, while the points Qjs for s = β− 1, . . . , 1, Pj and Q̂jt for t = 1, 2, . . . , α− 1

do not lie on the Newton diagram. Set p = βnj + αnj+1 and σ = β+α
p . If

(σnj − 1)β ≤ min(σ, 1− σ),(3.4)

then there are p eigenvalues of A+ εB of the form

λl(ε) = λ+ η1/pεσ + o(εσ), l = 1, 2, . . . , p,(3.5)

where η 6= 0. Moreover, if either
(i) the inequality in (3.4) is strict or
(ii) (σnj − 1)β < σ and α = nj+1 = 1,

then

η = −
α̂k(fj+α)

α̂k(fj−β)
.(3.6)

Proof. As noted above, the Newton diagram must lie between the chord connect-
ing Qjβ to Q̂jα and the Newton envelope on the interval [k(fj−β), k(fj +α)]. Further-

more, since none of the points Qjs for s = β−1, . . . , 1, Pj and Q̂jt for t = 1, 2, . . . , α−1
lie on the Newton diagram, the Newton envelope and diagram coincide only at the
end points of this interval. Thus, the expansions (3.5) will be valid if we can show
that there are no integer lattice points strictly between the chord and the Newton
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 811

diagram on the interval [k(fj − β), k(fj + α)]. To do this we need only show that
the lattice points (k(fj) − 1, fj) and (k(fj) + 1, fj + 1) lie on or above the chord.
The condition that (k(fj) − 1, fj) lies on or above the chord yields the inequality
(σnj − 1)β ≤ σ, while the condition that (k(fj) + 1, fj + 1) lies on or above the chord
yields the inequality (σnj − 1)β ≤ 1−σ. Note that this second condition is no longer

needed if α = nj+1 = 1, since in this case (k(fj)+1, fj +1) coincides with Q̂jα. Thus,

under either condition (i) or (ii) , Qjβ and Q̂jα are the only integer lattice points on
the chord and so (3.6) follows from (3.3).

It is interesting to consider a few special cases of the above result. Note that if
β = 0, then α can take any of the values 0, 1, . . . , rj+1, and if α = 0, then β can take
any of the values 0, 1, . . . , rj . The case β = 0 reaffirms the third remark at the end
of section 2, while the case α = 0 illustrates that expansions with power 1/nj are
possible even if Φj−1 is singular. Finally, if one is given a fixed value for either α or β,
then simple bounds on the other value are easily obtained from (3.4). For example, if
α = 1, then the restriction (3.4) yields the inequality β(nj − nj+1 − 1) ≤ 1. That is,
if nj = nj+1 + 1, then β can take on any of the values 0, 1, . . . , rj ; if nj = nj+1 + 2,
then β can take only the values 0 and 1; and if nj > nj+1 + 2, then β must be zero.

Corollary 3.3 also explains the exponent appearing in the eigenvalues of Wilkin-
son’s example (1.1). In that case, the point P1 = (3, 1) does not lie on the Newton
diagram since Φ1 = 0. On the other hand, P2 = (5, 2) does appear, due to the
nonsingularity of

Φ2 =

[
0 1
1 0

]
.

Thus, an application of Corollary 3.3 with j = 1, α = β = 1 shows that there are
p = 5 eigenvalues of order σ = 2/5.

The situation becomes more complicated with the introduction of more integer
lattice points between the chord and the Newton envelope, since more possibilities for
the Newton diagram arise. But, in many cases, these possibilities can be delineated by
considering certain key lattice points as was done in the proof of the above corollary.
Indeed, this approach can provide a fairly complete picture in many particular cases.
Let us conclude by applying the ideas of this section to some specific examples.

Example 1. We first turn to our example in the preceding section of a 3×3 matrix
with q = 2, n1 = 2, n2 = 1, r1 = r2 = 1. The expansions we obtained in the previous
section correspond to a Newton diagram with two segments: S1 connecting (0, 0)
with P1 = (2, 1) and S2 joining P1 and P2 = (3, 2). Note that this is precisely the
Newton envelope corresponding to the given Jordan structure (see Fig. 3.3(a)). Now
suppose that Φ1 = 0 with det Φ2 6= 0. This means that P1 no longer is plotted, so
the diagram consists of a single segment of slope 2/3 joining (0, 0) with P2 (see Fig.
3.3(b)). If both Φ1 and Φ2 are singular, we obtain one single segment of slope 1 as
long as B is nonsingular.

Example 2. We consider a 5×5 matrix with one zero eigenvalue and q = 2, n1 =
2, n2 = 1, r1 = 2, r2 = 1. We assume, for the sake of simplicity, that A is already
in Jordan form, i.e.,
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812 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

2

(a) (b)

P

P P

1

2

Fig. 3.3. Newton diagrams corresponding to Example 1. In (a) the Newton diagram and
envelope coincide. In (b) the diagram is shown as a solid line and the envelope as a dashed line.

A =


0 1

0
0 1

0
0

 .
If B = (bij)

5
i,j=1, then

Φ1 =

[
b21 b23
b41 b43

]
, Φ2 =

 b21 b23 b25
b41 b43 b45
b51 b53 b55

 .
We consider the different possibilities.
(i) Suppose det Φ1 6= 0, so that P1 = (4, 2) appears in the diagram. Then the

perturbed matrix has four eigenvalues

λkl1 (ε) = (ξk1 )1/2ε1/2 + o(ε1/2), k, l = 1, 2,

where ξ11 , ξ
2
1 are the eigenvalues of Φ1.

• If, additionally, det Φ2 6= 0, so that P2 = (5, 3) also appears in the diagram,
then the fifth eigenvalue of A+ εB is λ11

2 (ε) = ξ2ε+ o(ε) for

ξ2 = b55 −
[
b51 b53

]
Φ−1

1

[
b25
b45

]
.

In this case, the Newton diagram and envelope coincide (see Fig. 3.4 (a)).
• If, on the other hand, Φ2 is singular, P2 does not appear in the diagram.

In this case, the order of the fifth eigenvalue is at least O(ε2), corresponding to a
segment joining P1 = (4, 2) with (5, 4). However, higher slopes might appear in some
cases.

(ii) Suppose now that Φ1 is singular. Then the point P1 no longer appears in the
Newton diagram, and to determine the order of the perturbations we need to know
whether or not the coefficient

δ = −tr Φ1 = −b21 − b43
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 813

2

(a) (b)

(c)

P

P

Q

P

P

1

2

1

2

Fig. 3.4. Newton diagrams corresponding to Example 2. In (a) the Newton diagram and
envelope coincide. In (b) and (c) the diagram is shown as a solid line and the envelope as a dashed
line.

of ε in αk(1) is different from zero, i.e., whether or not Q1 = (2, 1) is among the
points plotted in the Newton diagram.
• If δ 6= 0, then ak(1) = 1 and there is a segment of slope 1/2 in the Newton

diagram connecting (0, 0) and Q1. If, additionally, det Φ2 6= 0, there is a second
segment of slope 2/3 between Q1 and P2 = (5, 3) (see Fig. 3.4 (b)). Hence, two of
the eigenvalues are

λl1(ε) = δ1/2ε1/2 + o(ε1/2)

since δ = α̂k(1) is the unique nonzero eigenvalue of Φ1. The other three eigenvalues
of A+ εB may be expanded as

λl2(ε) = η1/3ε2/3 + o(ε2/3) for η =
det Φ2

δ

applying Corollary 3.3 (ii) (in this case α = n2 = 1 and (σn1−1)β = 1/3 < 2/3 = σ).
• If δ = 0, then ak(1) > 1 and Q1 does not appear in the diagram. In the

case when det Φ2 6= 0, the Newton diagram consists of a single segment of slope 3/5
connecting the origin withP2 (see Fig. 3.4(c)). The five eigenvalues are of the form

(det Φ2)1/5ε3/5 + o(ε3/5).

Finally, if both δ and det Φ2 are zero, the actual slopes of the Newton diagram
depend on the vanishing of the four-dimensional minors of B.
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814 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

4. Spectral condition numbers. The results of section 2 lead immediately to
the proposition of a new notion of condition number for multiple eigenvalues.

Definition 4.1. Define the Hölder condition number of the eigenvalue λ by

cond(λ) = (n1, α),

where, as before, n1 is the dimension of the largest Jordan block associated with λ and

α = max
||B||≤1

spr(Y1BX1),

where spr denotes the spectral radius and the r1 columns of X1 (rows of Y1) are
independent right (left) eigenvectors of λ, each corresponding to a Jordan chain of
greatest length n1 as defined in section 2.

The motivation for this definition is that 1/n1 is the smallest possible power of
ε in the expansion of the eigenvalues of any perturbation A+ εB, while α1/n1 is the
largest possible magnitude of the coefficient of ε1/n1 in such expansions. Clearly, it
follows from Theorem 2.1 that for all c > 1, the eigenvalues λ′ of A+ εB converging
to λ as ε ↓ 0 satisfy

|λ′ − λ| ≤ cα1/n1ε1/n1(4.1)

for all sufficiently small positive ε. In fact, this bound is sharp in the sense that
given A, there exists a perturbation B such that for all c < 1, (4.1) holds with the
inequality reversed for some perturbed eigenvalue λ′ when ε is sufficiently small.

Note that the definition depends on the choice of matrix norm || · ||. We shall
restrict our attention to unitarily invariant norms [6, p. 308].

Theorem 4.2. If the condition number cond(λ) = (n1, α) is defined by any
unitarily invariant matrix norm || · ||, then

α = ||X1Y1||2.

Proof. One has

max
||B||≤1

spr(Y1BX1) = max
||B||≤1

spr(BX1Y1)

≤ max
||B||≤1

||BX1Y1||2

≤ ||X1Y1||2,

where the final inequality follows because ||B||2 ≤ ||B|| for any unitarily invariant
norm. To see that equality holds, note the following. Let the scalar σ1, the row
vector u1, and the column vector v1 be, respectively, the largest singular value and
the corresponding left and right singular vectors ofX1Y1, so that ||u1|| = ||v1|| = 1 and
u1X1Y1v1 = σ1 = ||X1Y1||2. Setting B = v1u1 gives spr(BX1Y1) = spr(u1X1Y1v1) =
σ1.

Remarks.
1. In the case in which λ is simple, we have n1 = r1 = 1, so cond(λ) = (1, α),

where α = ||xy|| = ||x|| ||y||, with the column vector x and the row vector y, respec-
tively, right and left eigenvectors for λ, normalized so that yx = 1. Without loss of
generality, one can take ||x|| = 1, so α = ||y||. Thus the condition number reduces to
the standard definition [4, p. 152]; see also [5, p. 202], where the normalization used
is ||x|| = ||y|| = 1, giving the definition 1/(yx) for the condition number.
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ON LIDSKII’S EIGENVALUE PERTURBATION THEORY 815

2. In the case in which λ is nonderogatory, we have r1 = 1, so cond(λ) = (n1, α),
where α = ||xy|| = ||x|| ||y||, with x and y, respectively, right and left eigenvectors.
However, when n1 > 1, we have yx = 0 (directly from the Jordan form). The
normalization in this case is Q1

1P
1
1 = I, where the columns of P 1

1 (rows of Q1
1) are

right (left) Jordan chains for λ, x being the first column of P 1
1 and y the last row of

Q1
1. If A is in Jordan form, then P 1

1 = Q1
1 = I, so cond(λ) = (n1, 1).

For example, take

A =

[
δ 1
0 −δ

]
and consider the eigenvalue λ = δ. For δ > 0, one has x = [1 0]T , y = [1 1/(2δ)], so
cond(δ) = (1, α) with α = ||x|| ||y|| =

√
1 + 1/(4δ2). Since the eigenvalue is simple,

this condition number coincides with those given by [4] and [5]. As δ ↓ 0, the coefficient
α in cond(δ) diverges to +∞. For δ = 0, the eigenvalue λ = δ has multiplicity two,
so the definitions given in [4, p. 152] and [5] do not apply. In this case, A is in Jordan
form, so one has x = [1 0]T , y = [0 1], and cond(0) = (2, 1). Thus, although the
condition number is not a continuous function of δ in the conventional sense, the
divergence of α as δ ↓ 0 is reflected by the drop in the power 1/n1 at the limit point.

Chatelin [4, p. 156] also introduced a closely related Hölder condition number
in the more general context of clusters of eigenvalues. Let us restrict our attention
to the case in which the cluster consists of one multiple eigenvalue λ of multiplicity
n. Chatelin defines a Hölder condition number csp(λ) = (n, β), with a coefficient
β which depends on the conditioning of the transformation reducing the matrix to
Jordan form. Specifically, consider the matrices P and Q in (2.1), let P have a
“QR” factorization

P = UR, U∗U = I,

and define V = RQ. Thus, the columns of U form a unitary basis for the right
invariant subspace for λ, while the rows of V form a (nonunitary) basis for the left
invariant subspace, satisfying the normalization condition V U = RQPR−1 = I, since
QP = I from (2.2). Then the Chatelin condition number csp(λ) = (n1, β) has β
defined by

β = cond2(R) ‖V ‖
2
,

where cond2(R) is the ordinary condition number ‖R‖2‖R−1‖2 . (To see the equiv-

alence with Chatelin’s definition, note that U∗AU = RJR−1, using Q̂P = 0, again
from (2.2).)

An important advantage of cond(λ) = (n1, α) over csp(λ) = (n1, β) is that the
coefficient α depends only on the left and right eigenvectors, not on the Jordan
vectors. As a consequence, we obtain the following relation between both condition
numbers.

Lemma 4.3. If the condition number cond(λ) = (n1, α) is defined by any uni-
tarily invariant matrix norm, then it is related to csp(λ) = (n1, β) by

α ≤ β.D
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816 JULIO MORO, JAMES V. BURKE, AND MICHAEL L. OVERTON

Proof. First, note that

α = ‖X1Y1‖2 ≤ ‖X1‖2‖Y1‖2 ≤ ‖P‖2‖Q‖2

since the columns of X1 (resp., rows of Y1) are a subset of those of P (resp., Q).
Now, P = UR with U∗U = I and Q = R−1V, so

α ≤ ‖P‖2‖Q‖2 = ‖R‖
2
‖R−1V ‖

2
≤ cond2(R) ‖V ‖

2
= β.

Consider, for example,

A =

[
0 δ
0 0

]
with a double eigenvalue λ = 0. When δ > 0, the Jordan form of A is given by[

0 1
0 0

]
= P−1AP, P =

[
1 0
0 1/δ

]
with right eigenvector equal to the first column of P , i.e., x = [1 0]T , and left
eigenvector equal to the second row of P−1, y = [0 δ]. Thus, for δ > 0, cond(0) =
(2, α) with α = ||x|| ||y|| = δ. The Chatelin condition number is csp(0) = (2, β) with
β = max{δ, 1/δ}, the condition number of P in the 2-norm. As δ ↓ 0, the coefficient
α in cond(λ) = (2, α) converges to zero, as it should since at the limit point the power
1/n1 increases to 1, giving the perfect condition number cond(0) = (1, 1). However,
the coefficient β in csp(0) = (2, β) diverges to +∞, even though the condition number
in the limiting case δ = 0 is also csp(0) = (1, 1).

The condition number cond(λ) is trivially extended to clusters of eigenvalues by
defining it to be the lexicographic maximum of the ordered pairs defining the condition
number for each element of the cluster.
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[1] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Birkhäuser-Verlag,
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