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Abstract. The proximal point algorithm (PPA) is a method for solving inclusions of the form
0 2 T (z), where T is a monotone operator on a Hilbert space. The algorithm is one of the most
powerful and versatile solution techniques for solving variational inequalities, convex programs, and
convex-concave mini-max problems. It possesses a robust convergence theory for very general problem
classes and is the basis for a wide variety of decomposition methods called splitting methods. Yet the
classical PPA typically exhibits slow convergence in many applications. For this reason, acceleration
methods for the PPA algorithm are of great practical importance. In this paper we propose a variable
metric implementation of the proximal point algorithm. In essence, the method is a Newton-like
scheme applied to the Moreau–Yosida resolvent of the operator T . In this article, we establish the
global and linear convergence of the proposed method. In addition, we characterize the superlinear
convergence of the method. In a companion work, we establish the superlinear convergence of the
method when implemented with Broyden updating (the nonsymmetric case) and BFGS updating
(the symmetric case).
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1. Introduction. The proximal point algorithm (PPA) is one of the most pow-
erful and versatile solution techniques for problems of convex programming and mini-
max convex-concave programming. It possesses a robust convergence theory for very
general problem classes in finite- and infinite-dimensions (e.g., see [11, 16, 21, 22, 23,
28, 32, 41, 40]) and is the basis for a wide variety of decomposition methods called
splitting methods (e.g., see [4, 9, 12, 43, 44]). Yet, the classical PPA typically exhibits
slow convergence in many applications. For this reason, acceleration methods for the
PPA are of great practical importance. In this paper we propose a variable metric
implementation of the proximal point algorithm. Our approach extends and refines
results that originally appeared in [38] and is in the spirit of several recent articles
[3, 7, 10, 18, 20, 24, 25, 36]. However, there is a fundamental di↵erence between the
method presented here and those studied in [3, 7, 10, 18, 20, 24, 25, 36]. This di↵er-
ence has a profound impact on the methodology applied in this article. All previous
work on this topic (except [38]) applies exclusively to monotone operators that arise as
the subdi↵erential of a finite-valued, finite dimensional convex function. The results
of this article apply to general monotone operators on a Hilbert space. The resulting
di↵erence in methodology roughly corresponds to the di↵erence between methods for
function minimization and methods for solving systems of equations.

There are both advantages and disadvantages to the more general approach. The
advantages are that the method applies to a much broader class of problems. This is
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354 J. V. BURKE AND MAIJIAN QIAN

so not only because the theory is developed in the Hilbert space setting, but, more
important, because many monotone operators cannot be represented as the subdif-
ferential of a finite-valued, finite dimensional convex function. General monotone
operators do not possess many of the rich structural properties associated with the
subdi↵erential of a convex function (e.g., subdi↵erentials of convex functions are the
only maximal cyclically monotone operators [33]). In addition, in the case where
the operator is the subdi↵erential of a convex function, we do not require the usual
assumption that the underlying function be finite-valued.

The disadvantages of our general approach arise from the fact that the method
cannot make use of the additional structure present when the operator is the subdif-
ferential of a convex function. This complicates both the structure of the method and
its analysis. Of particular note in this regard is the complexity of our global conver-
gence result. If the operator is the subdi↵erential of a convex function, then solving
the inclusion 0 2 T (x) is equivalent to minimizing the underlying convex function.
The global convergence of a method is then typically driven by a line-search routine
(e.g., see [3, 7, 10, 18, 20, 24, 25, 36]). In the general setting we do not have direct
recourse to this strategy. This complicates both the structure of the algorithm and
its convergence theory. Nonetheless, the proof technique developed in this paper can
be refined in the convex programming setting, thereby significantly simplifying both
the global and the local convergence results [5, 6].

Notwithstanding these di↵erences in methodology, our approach is still nicely
motivated by recalling the behavior of the PPA in the context of convex programming:

min
z2H

f(z) ,(1)

where H is a Hilbert space and f :H 7! R [ {+1} is a lower semicontinuous convex
function that is not identically +1. Define the Moreau–Yosida regularization of f to
be the function f�:H 7! R given by

f�(z̄) := min
z2H

⇢
�f(z) +

1

2
kz � z̄k2

�
.

The set of solutions to (1) corresponds precisely to the set of points at which f�
attains its minimum value. The function f� is continuously Fréchet di↵erentiable
[28, Proposition 7.d]. The PPA applied to (1) is approximately the steepest descent
algorithm applied to f� [11]. This analogy immediately suggests that a variable
metric approach could be applied to the function f� to accelerate the method. This
idea was first studied in [38] and is the basis of the acceleration techniques described
in [3, 7, 10, 18, 20, 24, 25, 36].

In [3], Bonnans et al. develop methods along an algorithmic pattern originally
suggested by Qian in [38]. This pattern circumvents many of the di�culties associ-
ated with a variable metric approach applied directly to the function f�. The key
is to employ a matrix secant update based on the function f instead of f�. The
local convergence results in [3, Section 3] require some smoothness assumptions. In
particular, linear convergence is established when the function f is di↵erentiable with
Lipschitz continuous derivative, and superlinear convergence is established when f is
twice strictly Fréchet di↵erentiable at a unique solution z̄, where the second derivative
is positive definite (we speak only of quotient or q-rate of convergence).

In [18, 20, 24, 25], the authors apply the bundle concept for nonsmooth convex
minimization [17] to approximate the Moreau–Yosida regularization f� and its deriva-
tive. Variable metric updates, in particular, quasi-Newton updates, are then applied
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VARIABLE METRIC PPA: CONVERGENCE 355

using these approximate values. The superlinear convergence results in the papers
[18, 20, 24] require either strong smoothness assumptions on the function f (such
as the Lipschitz continuity of rf) or that the regularization parameter � diverges to
+1. In [20], Lemaréchal and Sagastizábal propose a clever reversal quasi-Newton for-
mula which uses the value of the gradient of f� at a variety of points other than those
strictly obtained by the iterates. This promising idea deserves further theoretical and
numerical study.

In [10] and [36], the authors develop an approach based on Newton’s method
for semismooth functions as developed in [30, 31, 37, 34]. Properly speaking, these
methods are neither an adaptation of the PPA algorithm nor a variable metric method.
Nonetheless, the flavor of both of these methodologies is present. In order to obtain
superlinear convergence, smoothness hypotheses are again required; however, these
hypotheses are of a somewhat more technical nature. Specifically, it is required that

(a) the function f be semismooth at a unique solution to (1) [37],
(b) every element of the set-valued mapping

@2
Bf(z) := { lim

yk!z
r2f�(yk) : yk ! x,rf(yk) exists for all k = 1, 2, . . .}

be nonsingular at the unique solution z̄, and
(c) the sequence of Hessian approximates {Vk} used to generate the iterates {zk}

satisfy

lim
k!1

dist (Vk, @
2
Bf(zk)) = 0 .(2)

One can show that the semismoothness hypotheses are satisfied in many cases of in-
terest when f is finite-valued. Moreover, by Rademacher’s theorem on the di↵erentia-
bility of Lipschitz continuous functions, it follows that the set-valued mapping @2

Bf(z)
is always well-defined and compact-valued in the finite dimensional, finite-valued case,
with the nonsingularity property being closely tied to the usual hypothesis of strong
convexity. Although the limiting hypotheses on the Vk’s is a bit strong, it is not en-
tirely unreasonable in the absence of di↵erentiability. In [36], Qi and Chen propose a
very nice preconditioning technique wherein an exact value for the gradient of a shifted
Moreau–Yosida regularization can be computed from inexact values for the gradient
of f�. This technique is similar in spirit to the reversal quasi-Newton formula found
in [20]. Both of these techniques should prove useful in numerical implementations.

The algorithm presented in this paper is most closely related to the methods
proposed by Chen and Fukushima [7] and Mi✏in, Sun, and Qi [25]. However, there
are several fundamental distinctions, the foremost of which is that the methods in
[7, 25] are restricted to finite dimensional finite-valued convex programming problems.
Within this framework, these authors use bundle strategies to approximate f� and its
gradient and establish the global convergence of their methods with the aid of a line
search routine. Chen and Fukushima establish global and linear convergence results
along with a generalization of the Dennis–Moré characterization theorem for super-
linear convergence [14]. One of the most important features of the Chen–Fukushima
algorithm is that the line search is based on the function f rather than approximations
to the function f�. This is very important in practice since obtaining su�ciently accu-
rate approximations to the function f� is usually quite time consuming. Their linear
and superlinear convergence results blend bundle techniques with the theory of nons-
mooth equations. Consequently, the convergence hypotheses are reminiscent of those
employed in [10] and [36]; in particular, they require semismoothness, CD-regularity,
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356 J. V. BURKE AND MAIJIAN QIAN

and the strong approximation property (2). In [6], the methods of this paper are
applied to the Chen–Fukushima algorithm to obtain the superlinear convergence of
the method when BFGS matrix secant updating is employed.

In [25], Mi✏in, Sun, and Qi obtain the first superlinear convergence result for
a variable metric proximal point algorithm using the BFGS matrix secant update in
the setting of finite dimensional finite-valued convex programming. Their proposed
algorithm uses a line search based on approximations to the function f� and requires
that the function f� is strongly convex with rf� Fréchet di↵erentiable at the unique
global solution to the convex program. In addition it is assumed that the iterates
satisfy a certain approximation property involving the gradient rf�. In section 4 of
this paper, we discuss how these hypotheses are related to those that are also required
in our convergence analysis.

In this paper, we provide a general theory for a variable metric proximal point
algorithm (VMPPA) applied to maximal monotone operators from a Hilbert space
to itself. In the important special case of convex programming, where T is taken
to be the subdi↵erential of the function f , we do not assume that f is finite-valued
or di↵erentiable on the whole space. However, to obtain superlinear convergence,
we do require certain smoothness hypotheses at a unique global solution z̄. These
smoothness hypotheses di↵er from those assumed in [3, 18, 20, 24] since they are im-
posed on the operator T�1 rather than T . In this regard, they are reminiscent of the
hypotheses employed in [25]. The choice of smoothness hypotheses has deep signifi-
cance in the context of convex programming. Di↵erentiability hypotheses on T = @f
imply the second-order di↵erentiability of f , whereas di↵erentiability hypotheses on
T�1 = (@f)�1 are related to the standard strong second-order su�ciency conditions
of convex programming [40, Proposition 2] and thus reduce to the standard hypothe-
ses used in local analysis of convergence. In particular, the di↵erentiability of (@f)�1

does not imply that @f is single-valued or di↵erentiable, nor does it imply that f is
finite-valued.

Our smoothness hypotheses also di↵er from those that appear in [7, 10, 36]. These
methods rely on the theory of nonsmooth equations and require hypotheses such as
semismoothness and nonsingularity of the elements of @2

Bf . In addition, the proof
theory for these methods specifically requires that the underlying convex function be
finite-valued in a neighborhood of the unique solution to (1) (again, these methods
assume that the function is finite-valued on all of Rn). This limits direct application
to constrained problems since in the constrained case solutions typically lie on the
boundary of the constraint region (i.e., on the boundary of the domain of the essential
objective function).

Throughout the paper we illustrate many of the ideas and results by applying
them to the case of convex programming. Our purpose here is not only to show how
the results can be applied, but also to ground them in the familiar surroundings of
this concrete application. Further details on the application of these results to the
case of convex programming can be found in [5].

The paper is structured as follows. We begin with a review of the classic proximal
point algorithm in section 2. The VMPPA is introduced in section 3. This section
contains the approximation criteria that must be satisfied at each iteration. Two
criteria are presented. The first is required to obtain global convergence and the
second is required to accelerate the local convergence of the method. This division
into global and local criteria is one of the recurring themes of the paper. On the
global level the method behaves like a steepest descent method, while at the local
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VARIABLE METRIC PPA: CONVERGENCE 357

level it becomes more Newton-like. This feature is common to most general purpose
methods in nonlinear programming, such as the nonmonotone descent methods, the
dogleg method, and trust-region methods. In section 4 we discuss the smoothness
hypotheses required for the local analysis. We also extend some of the di↵erentiability
results appearing in [19, 35] to maximal monotone operators. In section 5, we study
the operators Nk associated with the Newton-like iteration proposed in section 3.
The focus of this section is to provide conditions under which the operators Nk are
nonexpansive at a solution to the inclusion 0 2 T (z). A global convergence result
paralleling Rockafellar’s 1976 result [41] is given in section 6. In section 7 we study
local convergence rates. Linear convergence is established under a Lipschitz continuity
assumption on T�1, and a characterization of superlinear convergence for the VMPPA
is also given. This characterization is modeled on the landmark characterization of
superlinear convergence of variable metric methods in nonlinear programming due
to Dennis and Moré [14]. In [6], we use this characterization result to establish the
superlinear convergence of the method when the derivatives are approximated using
the BFGS and Broyden updating strategies.

A word about our notation is in order. We denote the closed unit ball in the
Hilbert space H by B. Then the ball with center a and radius r is denoted by
a + rB. Given a set Z ⇢ H and an element z 2 H, the distance of z to Z is
dist (z, Z) = inf{kz � z0k : z0 2 Z}.

Let H1 and H2 be two Hilbert spaces. Given a multifunction (also referred to
as a mapping or an operator depending on the context) T : H1 �!�! H2, the graph of
T , gphT , is the subset of the product space H1 ⇥H2 defined by gphT = {(z, w) 2
H1 ⇥H2|w 2 T (z)}. The domain of T is the set domT := {z 2 H1|T (z) 6= ;}. The
identity mapping will be denoted by I. The inverse of an operator T is defined by
T�1(w) := {z 2 H1|(z, w) 2 gphT}.

Given a lower semicontinuous convex function f : H! R
S{+1}, the conjugate

of f is defined by f⇤(z⇤) = supz2H{hz⇤, zi � f(z)}.
2. Monotone operators and the classic algorithm. Given a real Hilbert

space H with inner product h·, ·i, we say that the multifunction T : H �!�! H is
monotone if for every z and z0 in domT , and w 2 T (z) and w0 2 T (z0), we have
hz � z0, w � w0i � kz � z0k2 for some  � 0. If  > 0, then T is said to be strongly
monotone with modulus . The monotone operator T is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator. An
important example of a monotone operator is the subgradient of a convex function
(see Minty [27] and Moreau [28]).

We are concerned with solving inclusions of the form

0 2 T (z),(3)

where T is a maximal monotone operator. In the case of the convex programming
problem (1), the operator T is the subdi↵erential of the convex function f , and the
inclusion (3) characterizes the points z at which f attains its minimum value. A wide
variety of other problems can be cast in this framework, e.g., variational inequalities,
complementary problems, and mini-max problems. Existence results for inclusion (3)
can be found in [41].

In 1962, Minty [27] showed that, when the operator T is maximal monotone, the
Moreau–Yosida resolvent of T ,

P� = (I + �T )�1 with � > 0,
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358 J. V. BURKE AND MAIJIAN QIAN

is single-valued and nonexpansive on H. This result suggests that a solution to the
inclusion 0 2 T (z) can be iteratively approximated by the recursion zk+1 = P�(zk).
One can modify this scheme by varying the scalar � and by choosing the iterates zk+1

to be an approximate solution to the equation (I + �kT )(z) = zk. The PPA applies
precisely these ideas. The algorithm, starting from any point z0, generates a sequence
{zk} in H by the approximation rule

zk+1 ⇡ (I + ckT )�1(zk) .(4)

The principal di�culty in applying the PPA lies in executing the operators Pk =
(I + ckT )�1. In the case of convex programming, the iteration (4) reduces to the
iteration

zk+1 ⇡ arg min
z2H

⇢
ckf(z) +

1

2
kz � zkk2

�
.

Notice that executing the algorithm exactly (i.e., with “=” instead of “⇡” in the
above algorithm) can be as di�cult as solving the original problem directly. Hence it
is critical that the convergence results are obtained under the assumption of approx-
imation.

In [22] and [23], Martinet proved the convergence of the exact PPA for certain
cases of the operator T with fixed ck ⌘ c. The first theorem on the convergence of
the general PPA was proved by Rockafellar [41] in 1976. His theorem not only insures
the global convergence under an approximating rule, but also describes the global
behavior when the inclusion 0 2 T (z) has no solution.

The convergence rate of the PPA depends on properties of the operator T , the
choice of the sequence {ck}, and the accuracy of the approximation in (4). The first
rate of convergence results were also obtained by Rockafellar [41] in 1976, under the
assumption that the solution set is a singleton {z̄}. He proved that if the sequence
{ck} is bounded away from 0, and T�1(w) is bounded by a linear function of kwk
when w is near 0, then the rate of convergence is at least linear. Luque [21] extended
Rockafellar’s theorem to the case where T�1(0) is not required to be a singleton, and
showed that such an estimate of the convergence rate is tight.

3. The algorithm and approximation criteria. The algorithm proposed in
this section is a Newton-like iteration for solving the resolvent equation z = P�(z).
In the context of the convex programming problem, the iteration takes the form

zk+1 = zk �Hkrf�(z
k) ,

where the operator Hk is used to approximate second-order properties of the function
f�. If f� is twice di↵erentiable with [r2f�(zk)]�1 bounded, then for Newton’s method
one sets Hk = [r2f�(zk)]�1. However, in general, f� is only known to be di↵erentiable
with Lipschitz continuous gradient [28]. Thus, in the finite dimensional case, the Hes-
sian r2f�(x) is guaranteed to exist only on a dense subset by Rademacher’s theorem.
Further results on the second-order properties of f� can be found in [19, 35, 42].

It is well known that the negative gradient �rf�(zk) is the unique element wk

solving the problem

min
w2H

⇢
�f(zk + w) +

1

2
kwk2
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VARIABLE METRIC PPA: CONVERGENCE 359

or, equivalently, satisfying the inclusion

0 2 �@f(zk + wk) + wk .(5)

The PPA for a general maximal monotone operator T can be formally derived from
(5) by replacing �, zk, and @f by ck, zk, and T , respectively, to obtain

0 2 ckT (zk + wk) + wk ,

or equivalently,

wk = [(I + ckT )�1 � I](zk) ,

where equality follows from the fact that wk is unique. This motivates us to define
the operator

Dk := (I + ckT )�1 � I .(6)

This operator provides the analogue of the direction of steepest descent in the operator
setting.

The algorithm we propose for solving the inclusion 0 2 T (z) can be succinctly
stated as follows.

THE VARIABLE METRIC PROXIMAL POINT ALGORITHM.
Let z0 2 H and c0 � 1 be given. Having zk, set

zk+1 := zk +Hkw
k, where wk ⇡ Dk(z

k),

and choose ck+1 � 1.
As mentioned in the previous section, it is critical that the convergence results

are obtained under the assumption that Dk(zk) can only be approximated. We use
the following approximation criteria:

(G) kwk �Dk(z
k)k  min

⇢
1,

1

kHkk
�
✏k with

1X

k=0

✏k <1

and

(L) kwk �Dk(z
k)k  �kkwkk with lim

k!1
�k = 0 .

The approximation criterion (G) is used to establish global convergence properties,
while criterion (L) is used to obtain local rates of convergence.

Although these criteria are used in the proof of convergence, they are impractical
from the perspective of implementation. In their stead, we provide criteria that are
implementable. To obtain these criteria we recall the following result from Rockafellar
[41].

Proposition 1 (see [41, Proposition 3]). Let Sk(w) := T (zk +w) + 1
ck
w . Then

0 2 Sk(wk), wk = Dk(zk). Moreover, for all w 2 H we have the bound

kw �Dk(z
k)k  ckdist (0, Sk(w)) .(7)

Proposition 1 yields the following alternative approximation criteria for the wk’s.
Since this result is an immediate consequence of Proposition 1, its proof is omitted.
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360 J. V. BURKE AND MAIJIAN QIAN

Proposition 2. Consider the following acceptance criteria for the wk’s:

(G0) dist (0, Sk(w
k))  min

⇢
1,

1

kHkk
�

✏k
ck

with
1X

k=0

✏k <1

and

(L0) dist (0, Sk(w
k))  �k

ck
kwkk with lim

k!1
�k = 0 .

We have (G0) implies (G) and (L0) implies (L).
Remark. Note that to satisfy either (G0) or (L0) it is not necessary to find an

element of Sk(wk) of least norm.
Before leaving this section we recall from [41] a few properties of the operators

Dk and Pk := Dk + I that are essential in the analysis to follow.
Proposition 3 (see [41, Proposition 1]).
a) The operator Dk can be expressed as

Dk = �
✓
I + T�1 1

ck

◆�1

,(8)

and for any z 2 H, � 1
ck
Dk(z) 2 T (Pk(z)).

b) For any z, z0 2 H, hPk(z)� Pk(z0), Dk(z)�Dk(z0)i  0 .
c) For any z, z0 2 H, kPk(z)� Pk(z0)k2 + kDk(z)�Dk(z0)k2  kz � z0k2 .
Remark. An important consequence of part c) above is that the operators Pk and

Dk are Lipschitz continuous with Lipschitz constant 1; that is, they are nonexpansive.
Henceforth, we make free use of this fact.

4. On the di↵erentiability of T�1 and Dk. Just as Newton’s method for
minimization locates roots of the gradient, one can view the VMPPA as a Newton-
like method for locating roots of the operator Dk. This perspective motivates our
approach to the local convergence analysis. For this analysis, we require that the op-
erator T�1 possesses certain smoothness properties. These properties in turn imply
the smoothness of the operators Dk. Smoothness hypotheses are used in the conver-
gence analysis in much the same way as they are used in the convergence analysis
for Newton’s method. For example, recall that to ensure the quadratic convergence
of Newton’s method one requires the derivative at a solution to be both locally Lip-
schitz and nonsingular. Nonsingularity ensures that the iterates are well-defined and
can be bounded, while the Lipschitzian hypothesis guarantees that the error in the
linearization is quadratically bounded (see [29, sections 3.2.12 and 10.2.2]). We make
use of similar properties in our analysis.

In order to discuss the smoothness of T�1 and Dk, we recall various notions of
di↵erentiability for multivalued functions from the literature. For a more thorough
treatment of these ideas in the context of monotone operators, we refer the reader to
[1, 19, 26, 35, 42].

Definition 4. We say that an operator  : H �!�! H is Lipschitz continuous at
a point w̄ (with modulus ↵ � 0) if the set  (w̄) is nonempty and there is a ⌧ > 0 such
that

 (w) ⇢  (w̄) + ↵kw � w̄kB whenever kw � w̄k  ⌧ .

We say that  is di↵erentiable at a point w̄ if  (w̄) consists of a single element z̄ and
there is a continuous linear transformation J : H! H such that for some � > 0,

; 6=  (w)� z̄ � J(w � w̄) ⇢ o(kw � w̄k)B whenever kw � w̄k  � .
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VARIABLE METRIC PPA: CONVERGENCE 361

We then write J = r (w̄).
Remarks. 1) These definitions of Lipschitz continuity and di↵erentiability for

multifunction are taken from [41, pp. 885 and 887] (also see [2, p. 41]). Note that
these notions of Lipschitz continuity and di↵erentiability correspond to the usual
notions when  is single-valued.

2) Rockafellar [41, Theorem 2] was the first to use Lipschitz continuity to establish
rates of convergence for the PPA.

3) When the set  (w̄) is restricted to be a singleton {z̄}, the di↵erentiability of  
at w̄ implies the Lipschitz continuity of  at w̄. Moreover, one can take ↵(⌧) ! kJk
as ⌧ ! 0. This observation is verified in [41, Proposition 4].

4) It follows from the definition of monotonicity that if T is a maximal monotone
operator, then the operator rT (z) is positive semidefinite whenever it exists.

We now give a result that relates the di↵erentiability of a multivalued function
to the di↵erentiability of its inverse. The proof is omitted since it parallels the proof
of a similar result for single-valued functions.

Lemma 5. Assume that  : H �!�! H is di↵erentiable at z̄ with  (z̄) = {w̄} and
r (z̄) = J with J�1 bounded. Also assume that  �1 is Lipschitz continuous at w̄
with  �1(w̄) = {z̄}. Then  �1 is di↵erentiable at w̄ with r �1(w̄) = J�1.

In the two examples that follow, we examine the concepts introduced in Definition
4 when the operator in question is the subdi↵erential of a convex function. The first
example illustrates that @f�1 can be Lipschitz continuous but not di↵erentiable at
the origin, while in the second example @f�1 is di↵erentiable at the origin, but @f is
not di↵erentiable on (@f)�1(0).

Example 6. Let

f(z) :=

⇢
0 if z < 0,
z if z � 0,

and T (z) := @f(z) =

8
<

:

0 if z < 0,
[0, 1] if z = 0,
1 if z > 0 .

Then T�1(y) =

8
>><

>>:

; if y < 0 or y > 1,
(�1, 0] if y = 0,
{0} if y 2 (0, 1),
[0,1) if y = 1 .

T�1 is Lipschitz continuous at 0 but is not di↵erentiable at 0.
Example 7. Let

f(z) :=

⇢ �z if z < 0,
z5/3 if z � 0,

and T (z) := @f(z) =

8
<

:

�1 if z < 0,
[�1, 0] if z = 0,
5
3z

2/3 if z > 0.

Then T�1(y) =

8
>><

>>:

; if y < �1,
(�1, 0] if y = �1,
{0} if y 2 (�1, 0),
3
5y

3/2 if y � 0 .

T�1 is di↵erentiable at 0 with J = 0, but T is not di↵erentiable on T�1(0).
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362 J. V. BURKE AND MAIJIAN QIAN

The superlinear convergence result of section 7 requires the assumption that the
operator T�1 be di↵erentiable at the origin. Although this is a severe restriction on
the applicability of these results, it turns out that in the case of convex programming
it is a consequence of the standard second-order su�ciency conditions for constrained
mathematical programs. This and related results were established by Rockafellar in
[40, Proposition 2]. In this context, it is important to note that the second-order suf-
ficiency condition is the standard hypothesis used in the mathematical programming
literature to ensure the rapid local convergence of numerical methods. So, at least in
the context of constrained convex programming, such a di↵erentiability hypothesis is
not as severe an assumption as one might at first suspect. To the contrary, it is a
bit weaker than the standard hypothesis employed for such results. For the sake of
completeness, we recall a portion of Rockafellar’s result below.

Theorem 8. Consider the convex programming problem (1), where f : Rn !
R [ {1} is given by

f(z) =

⇢
f0(z) if fi(z)  0 for i = 1, 2, . . . ,m,
+1 otherwise,

with fi : Rn ! R convex for i = 0, 1, . . . ,m. Suppose that the following conditions
are satisfied:

(i) The functions fi for i = 0, 1, . . . ,m are k � 2 times continuously di↵erentiable
in a neighborhood of a point z̄ 2 Rn.

(ii) There is a Kuhn–Tucker vector ȳ 2 Rm for z̄ such that ȳi > 0 for i 2 I(z̄) =
{i : fi(z̄) = 0, i = 1, 2, . . . ,m}.

(iii) The gradients {rfi(z̄) : i 2 I(z̄)} are linearly independent.
(iv) The matrix H = r2f0(z̄) +

Pm
i=1 ȳir2fi(z̄) satisfies uTHu > 0 for every

nonzero u 2 Rn such that rf0(z̄)Tu = 0, and rfi(z̄)Tu = 0 for i 2 I(z̄).
Then the operator @f�1 is (k� 1) times continuously di↵erentiable in a neighborhood
of the origin.

Remark. Theorem 8 follows by applying the implicit function theorem to the
Kuhn–Tucker conditions for the parameterized problems min{f(z)�hw, zi} in a neigh-
borhood of w = 0. The relationship to @f�1 comes from the fact that @f�1(w) =
argmin {f(z)�hw, zi}. Rockafellar establishes the result only for k = 2. The extension
to k > 2 follows trivially from the implicit function theorem.

We now examine the di↵erentiability properties of the mapping Dk. Two results
in this direction are given. The first uses (8) to relate the di↵erentiability of the
operators T�1 and Dk, while the second uses the definition of Dk given in (6) to
relate the di↵erentiability of the operators T and Dk.

Proposition 9. Let T : H �!�! H be maximal monotone and � > 0. Define

D(z) = �
✓
I + T�1 1

�

◆�1

(z) .(9)

Let z̄ 2 H and set w̄ = D(z̄) and ȳ = � 1
� w̄. The operator T�1 is di↵erentiable at ȳ

with [I + 1
�r(T�1)(ȳ)]�1 bounded if and only if the operator D is di↵erentiable at z̄

with (rD(z̄))�1 bounded. In either case, we have

rD(z̄) = �

I +

1

�
r(T�1)(ȳ)

��1

.(10)D
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VARIABLE METRIC PPA: CONVERGENCE 363

Proof. First assume that T�1 is di↵erentiable at ȳ with r(T�1)(ȳ) bounded. The
di↵erentiability of T�1 at ȳ clearly implies that of D�1 at w̄ with

r[D�1](w̄) = �
✓
I +

1

�
r[T�1](ȳ)

◆
.

Since D is Lipschitzian with D(z̄) = w̄, Lemma 5 implies that D is di↵erentiable at z̄
with derivative given by (10). Since r[D�1](w̄) = (rD(z̄))�1, we conclude that the
latter is bounded.

Conversely, assume that D is di↵erentiable at z̄ with (rD(z̄))�1 bounded. We
show that D�1 is single-valued and Lipschitzian at w̄. The result will then follow
from Lemma 5.

Let � > 0 be as in Definition 4 for rD(z̄). Since D is single-valued and rD(z̄)
is surjective (it is invertible), we may apply a standard open mapping result from
functional analysis (e.g., [8, Theorem 15.5]) to obtain the existence of a ⇢ > 0 and a
0 < �̂ < � such that

w̄ + ⇢B ⇢ D(z̄ + �̂B) .(11)

Hence for each w 2 w̄ + ⇢B and z 2 D�1(w) \ (z̄ + �̂B) 6= ; we have

w = w̄ +rD(z̄)(z � z̄) + o(kz � z̄k) .(12)

Since (rD(z̄))�1 is bounded, there is a  > 0 such that

kw � w̄k+ o(kz � z̄k) = krD(z̄)(z � z̄)k � kz � z̄k .

Hence, by reducing ⇢ and �̂ if necessary, we may assume that

kw � w̄k � 

2
kz � z̄k � 

2
kw � w̄k

for w 2 w̄ + ⇢B, where the second inequality follows since D is nonexpansive. There-
fore, we can assume that o(kz � z̄k) = o(kw � w̄k) for all w 2 w̄ + ⇢B and z 2
D�1(w) \ (z̄ + �̂B). By substituting this into (12) and rearranging, we obtain

z = z̄ + (rD(z̄))�1(w � w̄) + o(kw � w̄k)
for all w 2 w̄ + ⇢B and z 2 D�1(w) \ (z̄ + �̂B).

(13)

We now show that (13) implies the existence of an ✏ > 0 such that D�1(w̄+✏B) ⇢
z̄ + �̂B. Indeed, if this were not the case, then there would exist sequences {wi} and
{zi} such that zi 2 D�1(wi), kzi � z̄k > �̂, and wi ! w̄. Since D�1 is itself maximal
monotone, its images are convex; hence, by (11), there exists a sequence {ẑi} with
ẑi 2 D�1(wi) and kẑi � z̄k = �̂ for all i = 1, 2, . . .. But then (13) implies that

ẑi = z̄ + (rD(z̄))�1(wi � w̄) + o(kwi � w̄k)

for all i = 1, 2, . . .. This contradicts the fact that wi ! w̄ and kẑi � z̄k = �̂ for all
i = 1, 2, . . ., and so such an ✏ > 0 must exist. This fact combined with (13) implies
that D�1 is Lipschitzian at w̄ with D�1(w̄) = {z̄}. Lemma 5 now applies to yield the
result.

D
ow

nl
oa

de
d 

07
/2

0/
15

 to
 2

05
.1

75
.1

18
.9

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



364 J. V. BURKE AND MAIJIAN QIAN

Proposition 10. Let D be defined as in (9). Let z̄ 2 H and set ȳ = (I +D)(z̄).
The operator T is di↵erentiable at ȳ with [I + �rT (ȳ)]�1 bounded if and only if the
operator D is di↵erentiable at z̄ with [I +rD(z̄)]�1 bounded. In either case we have
the formula

rD(z̄) = [I + �rT (ȳ)]�1 � I .

Proof. Replace D by P := I+D = (I+�T )�1 and observe that D is di↵erentiable
at z̄ with [I+rD(z̄)]�1 bounded if and only if P is di↵erentiable at z̄ with [rP (z̄)]�1

bounded. The proof now follows the same argument as in the proof of Proposition 9
with D replaced by P , T�1 replaced by T , and w̄ replaced by ȳ.

Propositions 9 and 10 say quite di↵erent things about the di↵erentiability of
Dk. To illustrate this di↵erence, observe that in Example 7 the operator T is not
di↵erentiable at 0, while T�1 and D are di↵erentiable at 0. On the other hand, if we
take T = @f with f(x) = |x|3, then T�1 is not di↵erentiable at 0, while T and D
are di↵erentiable at 0. It is also important to note that even if neither T nor T�1 is
di↵erentiable, D may be di↵erentiable. But, in this case, we know from Propositions
9 and 10 that if D is di↵erentiable and neither T nor T�1 is di↵erentiable, then both
rD(z̄) and rP (z̄) have to be singular or have unbounded inverses. For a further
discussion of these issues in the context of finite dimensional convex programming,
see [35].

When T is assumed to be the subdi↵erential of a convex function f , Propositions
9 and 10 can be refined by making use of the relation @f�1 = @f⇤, where f⇤ is the
convex conjugate of f [39, Corollary 12A]. This allows us to extend [35, Theorem 1]
and [35, Theorem 2] to the Hilbert space setting (also see [19, Theorem 3.1]). However,
some caution in terminology is required since f⇤ is not necessarily twice di↵erentiable
in the classical sense at points where @f⇤ is di↵erentiable in the sense of Definition
4. Indeed, @f⇤ may be multivalued arbitrarily close to a point of di↵erentiability.
The best way to interpret this result is through Alexandrov’s theorem [1], which
states that at almost every point z̄ in the interior of the domain of a convex function
f : Rn 7! R[{1} there is a quadratic function qz̄ such that f(x) = qz̄(x)+o(kx� z̄k2).
In [19] and [35], the matrix r2qz̄ is called a generalized Hessian and is denoted Hf(x).
Note that the existence of a generalized Hessian at the point z̄ guarantees that f is
strictly di↵erentiable at z̄. Moreover, if @f(x) is single-valued in a neighborhood of a
point z̄ at which Hf(z̄) exists, then r2f(z̄) exists and equals Hf(z̄). We extend this
terminology to the Hilbert space setting with the following definition.

Definition 11. Let �:H 7! R [ {1} be a function on the Hilbert space H. We
say that � is twice di↵erentiable in the generalized sense at a point z̄ 2 H if there is a
continuous quadratic functional qz̄ such that �(x) = qz̄(x)+o(kx� z̄k2). The operator
r2qz̄ is called a generalized Hessian of � at z̄ and is denoted by H�(z̄).

With this terminology in hand, we apply Propositions 9 and 10 to the case of con-
vex programming. The proofs of these results are not required since they are a direct
translation of Propositions 9 and 10 into the terminology of convex programming.

Corollary 12. Let f : H ! R
S{+1} be lower semicontinuous and convex.

Let z̄ 2 H and set w̄ = rf�(z̄) and ȳ = 1
� w̄. Then f� is twice (Fréchet) di↵erentiable

at z̄ with [r2f�(z̄)]�1 bounded if and only if f⇤ has a generalized Hessian at ȳ with
[I + 1

�Hf⇤(ȳ)]�1 bounded. In either case we have

r2f�(z̄) =


I +

1

�
Hf⇤(ȳ)

��1

.
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VARIABLE METRIC PPA: CONVERGENCE 365

Corollary 13. Let f : H ! R
S{+1} be lower semicontinuous and convex.

Let z̄ 2 H and set ȳ = z̄ � rf�(z̄). Then f� is twice (Fréchet) di↵erentiable at z̄
with [I +r2f�(z̄)]�1 bounded if and only if f is twice di↵erentiable in the generalized
sense at ȳ with [I + �Hf(ȳ)]�1 bounded. In either case we have

r2f�(z̄) = I � [I + �Hf(ȳ)]�1 .

Remark. As observed earlier, the generalized Hessian is necessarily positive
semidefinite. This observation can be used to further refine the statement of Corol-
laries 12 and 13.

5. Newton operators. In this section we study the operators associated with
the variable metric proximal point iteration:

Nk := I + HkDk = Pk + (Hk � I)Dk .(14)

This notation emphasizes the fact that these operators produce Newton-like iterates.
Just as in the case of the classical Newton’s method for equation solving [29, section
12.6], one of the keys to the convergence analysis is to show that these operators
are contractive with respect to the solution set T�1(0). Clearly the operators Nk are
single-valued. Moreover, fixed points of the operators Nk are solutions to the inclusion
0 2 T (z) since

0 2 T (z) , Pk(z) = z , Dk(z) = 0 , Nk(z) = z.

Thus, conditions that ensure that the operators Nk are nonexpansive with respect
to T�1(0) are important for the global analysis of the variable metric proximal point
iteration. To obtain this property, we impose the following conditions on the linear
transformations {Hk}:

(H1) Each Hk is a continuous linear transformation with continuous inverse.
(H2) There is a nonempty closed bounded subset � of T�1(0) such that

k(Hk � I)Dk(z
k)k  �kkDk(z

k)k for all k,

where

�k :=
kDk(zk)k

2�k + 3kDk(zk)k with �k = sup{kzk � zk : z 2 �}.

Remark. The set � in (H2) is used to guarantee the boundedness of the sequence
{zk}. By taking � = {z̄}, one can show that every weak cluster point of the sequence
{zk} is an element of T�1(0). It was observed by Iusem [13] that if T�1(0) is bounded
and one takes � = T�1(0), then the sequence {zk} has a weak limit z1 2 T�1(0) (see
Theorem 17 and [41, Theorem 1]).

Hypothesis (H1) is standard and is automatically satisfied in the finite dimensional
case. On the other hand, hypothesis (H2) is quite technical and requires careful
examination. This hypothesis is problematic since it specifies that the matrices Hk

satisfy a condition that depends on the unknown values �k and kDk(zk)k. We will
show that in certain cases it is possible to satisfy (H2) without direct knowledge of
these unknown values. This is done in two steps. First it is shown in Lemma 14 that
if T�1 is Lipschitz continuous or di↵erentiable at the origin, then �k is bounded below
by a positive constant (which can be taken to be 1/6 as kDk(zk)k approaches zero).
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366 J. V. BURKE AND MAIJIAN QIAN

Then, in Lemma 15, it is shown that (H2) is satisfied if a related condition in terms
of Hk and wk is satisfied. Taken together, these results imply that at least locally
(H2) can be satisfied by checking a condition based on known quantities.

Further insight into hypothesis (H2) can be gained by considering the case in
which T�1 is di↵erentiable at the origin. In this case Hk is intended to approximate
�(rDk(0))�1 = (I + c�1

k J), where J = r(T�1)(0) (by Proposition 9). Hence, if
Hk ⇡ �(rDk(0))�1, then (Hk � I) ⇡ c�1

k J . Therefore, one can guarantee that (H2)
is satisfied by choosing ck su�ciently large and Hk ⇡ I. This fact is used in [6] to
establish the superlinear convergence of the method when the Hk’s are obtained via
matrix secant updating techniques.

The purpose of hypothesis (H2) is to globalize what is essentially a local algorithm
(Newton’s method). In the context of convex programming, one commonly obtains
global convergence properties with the aid of a line search routine applied to the
objective function f or its regularization f�. However, in the operator setting there
is no natural underlying objective function to which a line search can be applied.
This is a key di↵erence between the approach taken in this paper and those in [3,
7, 10, 18, 20, 24, 36]. In the convex programming setting, the global convergence
of the VMPPA is driven by a line search routine applied to the objective function
f (or its regularization f�). In the operator setting, hypothesis (H2) replaces the
line search and the associated hypotheses needed to make the line search strategy
e↵ective (such as the finite-valuedness of the objective function f and the boundedness
of the sequence {Hk}). On the other hand, when it is known that the operator T
is the subdi↵erential of a finite-valued finite dimensional convex function, then the
algorithm of this paper can be modified to include the line search routine of Chen
and Fukushima [7], thereby avoiding the need for hypothesis (H2) [6].

We now show three cases where the �k’s are bounded away from zero.
Lemma 14. Suppose T�1(0) is nonempty.
(i) If the operator T is strongly monotone with modulus , then T�1(0) = {z̄},

kzk � z̄k 
✓

1 +
1

ck

◆
kDk(z

k)k ,

and �k � 1
5+ 2

ck

� 1
5+2/ for all k.

(ii) If the operator T�1 is Lipschitz continuous at the origin with modulus ↵, then

dist (zk, T�1(0)) 
✓

1 +
↵

ck

◆
kDk(z

k)k ,(15)

for all k such that kDk(zk)k  ⌧ , where ⌧ is given in Definition 4. Moreover, if
T�1(0) = {z̄}, then �k � 1

5+2↵/ck
� 1

5+2↵ for all k such that kDk(zk)k  ⌧ .

(iii) If T�1 is di↵erentiable at the origin with derivative J , then T�1(0) = {z̄},
there is a � > 0 such that for all k with kDk(zk)k  ⌧ we have

kzk � z̄k 
✓

1 +
kJk
ck

+ �(kDk(z
k)k)

◆
kDk(z

k)k ,

and �k � 1

5+2 kJkck
+�(kDk(zk)k) for all k, where �(⌧) ! 0 as ⌧ ! 0.

Proof.
(i) If T is strongly monotone with modulus , then kz � z0k  1

kw � w0k for
any z, z0, w, w0 such that w 2 T (z) and w0 2 T (z0). That is, T�1 is single-valued
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and Lipschitz continuous. Let z = Pk(zk) and z0 = z̄, where {z̄} = T�1(0). By
Proposition 3 a) we have � 1

ck
Dk(zk) 2 T (Pk(zk)). Hence

kzk � z̄k  kzk � Pk(z
k)k+ kPk(z

k)� z̄k 
✓

1 +
1

ck

◆
kDk(z

k)k ,

since Dk = Pk � I. By the definition of �k,

�k =
kDk(zk)k

2kzk � z̄k+ 3kDk(zk)k

� kDk(zk)k
2(1 + 1

ck
)kDk(zk)k+ 3kDk(zk)k

� ck
5ck + 2

.

This establishes the result since ck � 1 for all k.
(ii) If kDk(zk)k  ⌧ , Definition 4 implies that

T�1

✓
� 1

ck
Dk(z

k)

◆
⇢ T�1(0) + ↵

����
1

ck
Dk(z

k)

����B = T�1(0) +
↵

ck
kDk(z

k)kB ,

or
✓
I + T�1 1

ck

◆
(�Dk(z

k)) +Dk(z
k) ⇢ T�1(0) +

↵

ck
kDk(z

k)kB .

Since Dk(zk) = �(I + T�1 1
ck

)�1(zk), we have zk 2 (I + T�1 1
ck

)(�Dk(zk)), and so

zk 2 T�1(0)�Dk(z
k) +

↵

ck
kDk(z

k)kB.

Hence (15) holds. If T�1(0) = {z̄}, then the lower bound on �k follows as in part (i).
(iii) This result follows as in part (ii) using the second remark after Defini-

tion 4.
When wk ⇡ Dk(zk), one can establish the inequality in hypothesis (H2) from a

related condition on the vectors wk. A specific technique for accomplishing this is
given in the following lemma.

Lemma 15. Let ⇠, �̂k, �k 2 R+ be such that

0  ⇠ < 1, �k  min
�
1, kHkk�1

 3

7
(1� ⇠)�̂k, and �̂k  1

3
,(16)

and let Hk be a continuous linear transformation from H to itself. If zk, wk 2 H
satisfy

k(I �Hk)w
kk  ⇠�̂kkwkk and kwk �Dk(z

k)k  �kkwkk,(17)

then k(I � Hk)Dk(zk)k  �̂kkDk(zk)k. Therefore, if (H1) and criterion (L) are
satisfied, and if ⇠ and the sequence {(�̂k, �k)} ⇢ R2 satisfy (16), with �̂k  �k for all
k (where �k is defined in (H2)), then hypothesis (H2) is satisfied.

Proof. From (16) and (17), we have

kwkk  kDk(z
k)k+ kwk �Dk(z

k)k  kDk(z
k)k+

3

7
(1� ⇠)�̂kkwkk;
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368 J. V. BURKE AND MAIJIAN QIAN

hence

kwkk  1

1� 3
7 (1� ⇠)�̂k

kDk(z
k)k .

Again by (17),

k(I �Hk)Dk(z
k)k  k(I �Hk)w

kk+ kHkkkwk �Dk(z
k)k+ kwk �Dk(z

k)k
 ⇠�̂kkwkk+ (kHkk+ 1)�kkwkk 

✓
⇠ +

6

7
(1� ⇠)

◆
�̂kkwkk

 ⇠ + 6
7 (1� ⇠)

1� 3
7 (1� ⇠)�̂k

�̂kkDk(z
k)k  �̂kkDk(z

k)k

since the inequality �̂k  1
3 implies that

⇠+ 6
7 (1�⇠)

1� 3
7 (1�⇠)�̂k

= 6+⇠
7�3(1�⇠)�̂k

 1.

We conclude this section by showing that the operators Nk are nonexpansive with
respect to the set T�1(0).

Proposition 16. Assume T�1(0) is nonempty. If the sequence of linear transfor-
mations {Hk} satisfies hypotheses (H1) and (H2), then for all k we have kHkDk(zk)k 
3
2kDk(zk)k and

kNk(z
k)� z̄k2 +

�2
k

4
kDk(z

k)k2  kzk � z̄k2 for all z̄ 2 �.(18)

Proof. Let z̄ 2 �. From the definitions of Pk and Nk, we have

kPk(zk)�z̄k = kNk(z
k)�(Hk�I)Dk(z

k)�z̄k � |kNk(z
k)�z̄k�k(Hk�I)Dk(z

k)k|;
(19)
hence

kPk(zk)�z̄k2 � kNk(z
k)�z̄k2+k(Hk�I)Dk(z

k)k2�2k(Hk�I)Dk(z
k)kkNk(z

k)�z̄k .
(20)
From hypothesis (H2), we have

kHkDk(z
k)k  kDk(z

k)k+ k(Hk � I)Dk(z
k)k  (1 + �k)kDk(z

k)k  3

2
kDk(z

k)k .

Hence

kNk(z
k)� z̄k  kzk � z̄k+ kHkDk(z

k)k  �k +
3

2
kDk(z

k)k .

Then, again by hypothesis (H2),

k(Hk � I)Dk(z
k)k  �kkDk(z

k)k =
kDk(zk)k2

2�k + 3kDk(zk)k 
kDk(zk)k2

2kNk(zk)� z̄k .(21)

Thus, from (20) and (21),

kPk(zk)� z̄k2 � kNk(z
k)� z̄k2 + k(Hk � I)Dk(z

k)k2 � kDk(z
k)k2 .(22)

Letting z = zk and z0 = z̄ in Proposition 3 c) yields

kPk(zk)� z̄k2 + kDk(z
k)k2  kzk � z̄k2 .(23)
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VARIABLE METRIC PPA: CONVERGENCE 369

From (22) and (23) we have

kNk(z
k)� z̄k2 + k(Hk � I)Dk(z

k)k2  kzk � z̄k2 .(24)

We now consider ↵k = k(Hk�I)Dk(zk)k
kDk(zk)k . If ↵k � �k

2 , then (18) holds by (24). Suppose

that ↵k <
�k
2 . From (19), we have

kPk(zk)� z̄k � kNk(z
k)� z̄k � �k

2
kDk(z

k)k .

Therefore, by (23),

kNk(z
k)� z̄k 

q
kzk � z̄k2 � kDk(zk)k2 +

�k
2
kDk(z

k)k .

Using the inequality
p
a2 � b2  a� b2

2a for a > b > 0,

kNk(z
k)� z̄k  kzk � z̄kk � kDk(zk)k2

2kzk � z̄k +
�k
2
kDk(z

k)k .

But kDk(zk)k
2kzk�z̄k � �k; thus

kNk(z
k)� z̄k  kzk � z̄k � �k

2
kDk(z

k)k

or

kNk(z
k)� z̄k+

�k
2
kDk(z

k)k  kzk � z̄k .(25)

From (25) we again obtain (18).

6. Global convergence. The statement and proof of the global convergence
result given below parallels the development given by Rockafellar in [41, Theorem 1]
for the classical PPA.

Theorem 17. Let {zk} be any sequence generated by the VMPPA under criterion
(G) (or (G0)). Suppose that the solution set T�1(0) is nonempty and the sequence
of linear transformations {Hk} satisfies the hypotheses (H1) and (H2). Then the
sequence {zk} is bounded, each weak cluster point of this sequence is an element
of T�1(0), and limkDk(zk) = 0. If it is also assumed that T�1(0) is bounded and
� = T�1(0) in (H2), then there is a z̄ 2 T�1(0) such that {zk} converges weakly to z̄.

In order to establish this result we require the following technical lemma, whose
proof is straightforward and so is omitted.

Lemma 18. Suppose the nonnegative sequences {✏k} satisfy
P1

k=0 ✏k < +1. If
{uk} is a nonnegative sequence satisfying uk+1  ✏k + uk, then {uk} is a Cauchy
sequence.

Proof of Theorem 17. We begin by showing that the limit limk kzk � z̄k = µ(z̄)
exists for every z̄ 2 �. To this end let z̄ 2 � and observe that the definition of Nk

and Proposition 16 imply that

kzk+1 � z̄k = kzk+1 �Nk(z
k) +Nk(z

k)� z̄k  kzk+1 �Nk(z
k)k+ kNk(z

k)� z̄k
 kHkkkwk �Dk(z

k)k+ kzk � z̄k  ✏k + kzk � z̄k .
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370 J. V. BURKE AND MAIJIAN QIAN

Therefore, Lemma 18 implies that the sequence {kzk � z̄k} is Cauchy, and so µ(z̄)
exists for every z̄ 2 �. An immediate consequence of the existence of these limits is
the boundedness of the sequences {zk} and �k.

We now show that the sequence {Dk(zk)} converges strongly to the origin. In-
deed, if this is not the case, then there is a subsequence J ⇢ {1, 2, . . .} such that
infJ kDk(zk)k = �1 > 0. This in turn implies that infJ �k = �2 > 0 since otherwise
limJ kDk(zk)k = 0 due to the boundedness of the sequence {�k}. Let z̄ 2 �. By
Proposition 16,

�2
k

4
kDk(z

k)k2 � kzk � z̄k2 + kzk+1 � z̄k2  kzk+1 � z̄k2 � kNk(z
k)� z̄k2

= hzk+1 �Nk(z
k), zk+1 � z̄ +Nk(z

k)� z̄i
 kzk+1 �Nk(z

k)k(kzk+1 � z̄k+ kNk(z
k)� z̄k)

 kHkkkwk �Dk(z
k)k(kzk+1 � z̄k+ kzk � z̄k)  ✏k(kzk+1k+ 2kz̄k+ kzkk) = ✏kCk ,

with {Ck} bounded, where the final inequality follows from criterion (G). Hence

�2
k

4
kDk(z

k)k2  kzk � z̄k2 � kzk+1 � z̄k2 + ✏kCk,

whereby we obtain the contradiction

0 <
�2

1�
2
2

4
 lim sup

J

�2
k

4
kDk(z

k)k2

 lim
J

(kzk � z̄k2 � kzk+1 � z̄k2 + ✏kCk) = µ(z̄)� µ(z̄) + 0 = 0 .

Therefore, limk kDk(zk)k = 0.
Next let J ⇢ {1, 2, . . .} be such that the subsequence {zk}J converges weakly to

z1, i.e., z1 is a weak cluster point of the sequence {zk}. We show that z1 must be
an element of T�1(0). From Proposition 3 a), we have that � 1

ck
Dk(zk) 2 T (Pk(zk))

for all k; hence 0  hz�Pk(zk), w+ 1
ck
Dk(zk)i, or equivalently, hz� zk�Dk(zk), w+

1
ck
Dk(zk)i � 0 for all k and z, w with w 2 T (z). Taking the limit over J yields the

inequality hz � z1, wi � 0 for all z, w with w 2 T (z). Since T is maximal monotone,
we get 0 2 T (z1).

Under the assumption that � = T�1(0), the argument showing that there is no
more than one weak cluster point of {zk} is identical to the one given by Rockafellar
in [41, Theorem 1].

Remark. To ensure the strong convergence of the sequence {zk}, one again re-
quires a growth condition on the inverse mapping T�1 in a neighborhood of the origin.
Rockafellar has shown that Lipschitz continuity of T�1 at the origin su�ces for this
purpose [41, Theorem 2]. Other conditions can be found in the work of Luque [21,
Proposition 1.2]. The results of Rockafellar and Luque are easily extended to the
VMPPA.

7. Convergence rates.

7.1. Linear convergence. Just as in Rockafellar [41, Theorem 2], we require
that the operator T�1 is Lipschitz continuous at the origin in order to establish that
the convergence rate is at least linear.

Theorem 19. Let {zk} be any sequence generated by the VMPPA satisfying
both criteria (G) and (L) for all k. Assume that T�1 is Lipschitz continuous at the
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VARIABLE METRIC PPA: CONVERGENCE 371

origin with modulus ↵ and the solution set T�1(0) is a singleton {z̄}. If the sequence
{Hk} satisfies the hypotheses (H1) and (H2) with �kkHkk ! 0, then the sequence {zk}
strongly converges to the solution and there is an index k̄ such that

kzk+1 � z̄k  �kkzk � z̄k for all k � k̄ ,

where �k satisfies lim supk!1 �k < 1. That is, the convergence rate is linear.
Proof. By Theorem 17, we have kDk(zk)k ! 0. Hence, Part (ii) of Lemma 14

implies that {zk} converges strongly to z̄. We now establish the linear rate.
Let ⌧ > 0 be as in Definition 4, and let k̃ be such that k 1

ck
Dk(zk)k  ⌧ for all k �

k̃ . By Proposition 3 a) and the Lipschitz continuity of T�1 at 0, we have

kPk(zk)� z̄k  ↵

ck
kDk(z

k)k .(26)

Hence relation (14) and hypothesis (H2) yield

kNk(z
k)� z̄k = kPk(zk) + (Hk � I)Dk(z

k)� z̄k
 kPk(zk)� z̄k+ �kkDk(z

k)k .(27)

Let ak := ↵
ck

+ �k. Using (26) and (27),

kNk(z
k)� z̄k 

✓
↵

ck
+ �k

◆
kDk(z

k)k = akkDk(z
k)k .(28)

Let � := 1
2(5+2↵) . By Proposition 16 and Lemma 14 we have, for k � k̃, that

kNk(z
k)� z̄k2 + �2kDk(z

k)k2  kzk � z̄k2 .(29)

By (28) and (29), when k � k̃,

kNk(z
k)� z̄k2  ak

2kDk(z
k)k2  ak

2

�2
kzk � z̄k2 � ak

2

�2
kNk(z

k)� z̄k2 .(30)

Let µk := akp
a2
k
+�2

. From (30) we have

kNk(z
k)� z̄k  µkkzk � z̄k .(31)

By (31), criterion (L) (or (L0)), and Proposition 3 c),

kzk+1 � z̄k  kzk+1 �Nk(z
k)k+ kNk(z

k)� z̄k
 �kkHkkkwkk+ µkkzk � z̄k  �kkHkk

1� �k
kDk(z

k)k+ µkkzk � z̄k


✓
�kkHkk
1� �k

+ µk

◆
kzk � z̄k = �kkzk � z̄k ,

where �k := �kkHkk
1��k + µk. Since there is a �̃ > 0 such that µk < 1 � �̃ for any

k, and �kkHkk ! 0, we have �k < 1 for k su�ciently large. Moreover, we have
lim supk!1 �k = lim supk!1 µk  1� �̃.
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372 J. V. BURKE AND MAIJIAN QIAN

7.2. Superlinear convergence. We now give an analogue of Dennis and Moré’s
[14] characterization theorem for the superlinear convergence of variable metric meth-
ods in nonlinear programming that applies to the VMPPA. This result is used in [6]
to establish the superlinear convergence of the VMPPA when the Broyden (nonsym-
metric case) or the BFGS (symmetric case) updating formula is used to generate the
matrices Hk.

Theorem 20. Let {zk} be any sequence generated by the VMPPA satisfying
criterion (L) for all k. Suppose that the operator T�1 is di↵erentiable at the origin
with T�1(0) = {z̄} and rT�1(0) = J . If limk kDk(zk)k = 0, then {zk} converges to
the solution z̄ superlinearly if and only if

[I � (I + 1
ck
J)H�1

k ](zk+1 � zk)

kzk+1 � zkk ! 0 as k !1 .(32)

Remark. By Proposition 9 we have rD(z̄) = �(I + 1
cJ)�1. Consequently, condi-

tion (32) can be recast in the more familiar form given in [15, Theorem 8.2.4]. Note
that the assumption in (32) on the sequence {Hk} is much weaker than assuming that
this sequence converges. Specific choices of the linear transformations Hk satisfying
(32) are discussed in [6].

The proof of Theorem 20 requires the following lemma.
Lemma 21. Under the conditions in Theorem 20 we have
(a) T�1(�1

ck
Dk(zk))� z̄ � J(�1

ck
Dk(zk)) ⇢ o(kzk � z̄k)B, and

(b) (I + 1
ck
J)H�1

k (zk+1 �Nk(zk)) 2 o(kzk � z̄k)B,
for all k su�ciently large.

Proof. For part (a), let � > 0 be such that

T�1(w)� Jw � z̄ ⇢ o(kwk)B(33)

whenever kwk < �. Let k̄1 be such that whenever k > k̄1, kDk(zk)k  �. Then, by
(33) and Proposition 3 c), when k > k̄1,

T�1

✓�1

ck
Dk(z

k)

◆
� z̄ � J

✓�1

ck
Dk(z

k)

◆
⇢ o(kDk(z

k)k)B ⇢ o(kzk � z̄k)B .

We now prove (b). Note that Nk(zk) = (I +HkDk)(zk); hence by criterion (L)
����

✓
I +

1

ck
J

◆
H�1

k (zk+1 �Nk(z
k))

���� =

����

✓
I +

1

ck
J(wk �Dk(z

k)

◆����

 (1 + kJk)kwk �Dk(z
k)k  �k(1 + kJk)kwkk

 �k(1 + kJk)
1� �k

kDk(z
k)k .(34)

Therefore by (34) and Proposition 3 c),
✓
I +

1

ck
J

◆
H�1

k (zk+1 �Nk(z
k)) 2 o(kDk(z

k)k)B ⇢ o(kzk � z̄k)B.

Proof of Theorem 20. Let z̃k+1 := Nk(zk) = (I + HkDk)(zk). By Proposition 3
a) we have z̃k+1 = zk �Hk(I + T�1 1

ck
)�1(zk). Hence

zk 2
✓
I + T�1 1

ck

◆
[H�1

k (zk � z̃k+1)]

= H�1
k (zk � z̃k+1) + T�1


1

ck
H�1

k (zk � z̃k+1)

�
,
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VARIABLE METRIC PPA: CONVERGENCE 373

or equivalently,

zk+1 � z̄ = zk � z̄ + (zk+1 � zk)

2

T�1

✓
1

ck
H�1

k (zk � z̃k+1)

◆
� z̄ + (zk+1 � zk) +H�1

k (zk � z̃k+1)

�

=


T�1

✓
1

ck
H�1

k (zk � z̃k+1)

◆
� z̄ � J

✓
1

ck
H�1

k (zk � z̃k+1)

◆�

+


I �

✓
I +

1

ck
J

◆
H�1

k

�
(zk+1 � zk)

+

✓
I +

1

ck
J

◆
H�1

k (zk+1 � z̃k+1)

=


T�1

✓�1

ck
Dk(z

k)

◆
� z̄ � J

✓�1

ck
Dk(z

k)

◆�

+


I �

✓
I +

1

ck
J

◆
H�1

k

�
(zk+1 � zk)

+

✓
I +

1

ck
J

◆
H�1

k (zk+1 � z̃k+1) .(35)

By Lemma 21 the first and third of the three terms appearing on the right-hand side
of this inclusion can be bounded by an expression of the form o(kzk � z̄k)B. If (32)
holds, then [I � (I + 1

ck
J)H�1

k ](zk+1 � zk) 2 o(kzk+1 � zkk)B . Therefore there are

positive sequences {↵1k} and {↵2k}, each converging to zero such that, for k > k̄1,

kzk+1 � z̄k  ↵1kkzk+1 � zkk+ ↵2kkzk � z̄k
 ↵1k(kzk � z̄k+ kzk+1 � z̄k) + ↵2kkzk � z̄k
= ↵1kkzk+1 � z̄k+ (↵1k + ↵2k)kzk � z̄k.

Let k̄2 > k̄1 be such that ↵1k <
1
2 for all k > k̄2. Then, denoting ↵1k+↵2k

1�↵1k
by ⌧k,

kzk+1 � z̄k  ↵1k + ↵2k

1� ↵1k
kzk � z̄k = ⌧kkzk � z̄k

whenever k > k̄2, and ⌧k ! 0 as k !1. Therefore {zk} converges to z̄ superlinearly.
Conversely, suppose that

lim
k!1

kzk+1 � z̄k
kzk � z̄k = 0 .(36)

Divide (35) by kzk � z̄k and let k !1. From (36) and Lemma 21 we obtain

[I � (I + 1
ck
J)H�1

k ](zk+1 � zk)

kzk � z̄k ! 0 as k !1 .

However, from (36) we have

kzk � z̄k
kzk+1 � zkk 

kzk � z̄k
kzk � z̄k � kzk+1 � z̄k =

1

1� kzk+1�z̄k
kzk�z̄k

! 1

as k !1. Hence (32) holds.
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8. Concluding remarks. In this paper, we introduced a new PPA for solving
the inclusion 0 2 T (x), where T is an arbitrary maximal monotone operator. The
global convergence of the algorithm is demonstrated with an inexact solution at each
step. This is important in practice, since solving for the exact solution at each step is
impractical and may in fact be almost as di�cult as solving the original problem. If it
is assumed that T�1 is Lipschitz continuous at the origin, then the method is shown to
be linearly convergent. If it is further assumed that T�1 is di↵erentiable at the origin,
then the classical characterization of superlinear convergence due to Dennis and Moré
also holds for the VMPPA. In [6], this characterization of superlinear convergence is
applied to establish the super-linear convergence of the method when certain matrix
secant updating strategies are employed to generate the matrices Hk. In [5], we give
some of the implementation details in the case of convex programming. We show how
to apply the method to solve the associated primal, dual, and Lagrangian saddle point
problems. In particular, it is shown how the bundle technique [17] can be applied to
satisfy the approximation criteria (L) and (G) in both the primal and saddle point
solution techniques. Preliminary numerical results comparing these three approaches
are also presented.
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